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A FORMULA ON THE APPROXIMATE SUBDIFFERENTIAL OF THE
DIFFERENCE OF CONVEX FUNCTIONS

J .E . MARTINEZ-LEGAZ AND A. SEEGER

We give a formula on the e-subdifferential of the difference of two convex functions.
As a by-product of this formula, one recovers a recent result of Hiriart-Urruty,
namely, a necessary and sufficient condition for global optimality in nonconvex
optimisation.

1. THE e-SUBDIFPERENTIAL OF A DC-FUNCTION

Whether the extended-real-valued function / : X —» K is convex or not, we use
the standard expression

(1) def(x0):={u(EX* :f{x)>f(xo) + (u,x-xo)-e for all x £ X]

as definition for the e-subdifferential of / at xo £ X. Here X and X* are locally
convex (real) topological linear spaces paired in duality by a bilinear form (•,•) : X* x
X —> R . As it is customary, we assume that e is a nonnegative real number and that
so is a point at which / is finite. The particular instance e = 0 corresponds, of course,
to the usual subdifferential

(2) 8f(x0) := {u e X* : / ( * ) > / ( z o ) + (» ,*-*o) for all x G X} .

It is important to note that in the nonconvex case, the e-subdifferential mapping
dc f : X =t X* may be empty-valued at some points.

Formulas for evaluating the e-subdifferential of a convex function can be found, for
instance, in Kutateladze [4] and Hiriart-Urruty [1]. These authors established calculus
rules for most of the operations preserving convexity (like addition, inf-convolution,
upper envelope, et cetera). They did not consider, however, the case of the subtraction,
an operation which does not preserve the convexity in general.

The purpose of this note is to write a formula on the e-subdifferential of a DC-
function, that is, of a function / which can be represented as the difference

x e X —» /(«) := g(x) - h(x)
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of two convex functions g,h : X —> RU {+00}. Since g and h may take the value
+00 at the same time, we adopt here the rule (+00) — (+00) = +00. The class of
DC—functions has received a great deal of attention in recent time. For a survey on this
topic, one may consult Hiriart-Urruty [2]. In particular, one can find there a formula
on the Fenchel conjugate of the difference of two convex functions. To the best of our
knowledge, a formula on the e-subdifferential of such type of difference has not been
established yet.

In next theorem,

A-B = {u$X* : u + B CA}

stands for the "star-difference" between two sets A and B in X* (see [2, p.56]).

THEOREM 1 . Let g,h : X —* R U {+00} be two lowersemicontinuous proper

convex functions, Unite at xo G X . Then, for every e ̂  0, one has

(3) de (g - h)(x0) = f | {de+xg(x0)- 8X h(x0)} .

Setting e = 0, one gets in particular

(4) d(g-h)(xo)= f| {dxg(x0)-dxh(x0)}.

PROOF: By definition, u £ de(g — h)(x0) if and only if

(5 — h) (x) > (g - h) (x0) + (u, x - x0) - e for all x G X

or, what is equivalent,

(5) g{x) - hu(x) ^ g (x0) - hn(x0) - e for all x€X,

where hu :— h+ (u,-). But, according to the Toland-Singer duality theorem [6, 7], one

can write

(6) inf {g(x) - M * ) } = inf {(&„)' (v) - 9*(y)} ,

where the convention (+00) — (+00) = 00 applies on both sides of this equality, and
tp* : X* —> R U {+00} stands for the Fenchel conjugate of tp : X —> R U {+00}.
Consequently, (5) is equivalent to

(7) (h1iy(y)-g*(y)^g{x0)-h4x0)-e for all y £ X*.
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Now, introduce the notation

p(y) := (hu)* (y) + hu(x0) - (y,x0)

q(y) •= 9*(y) + g(xo) - (y,x0)

and write (7) in the form

(8) p{y)> q(y)-e for all y e X*.

The inequality (8) relating the nonnegative functions p and q can be expressed in terms

of an inclusion

(9) {yeX* : p{y) ^ } c { y e T : q(y) <e + \} for all A > 0

between their corresponding level sets. But, from the very definition of p and q, one

sees that

{y G X* : p(y) < A} = d\hu(x0) = u + d\h(x0),

and

{yeX* : q{y) < e + A} = de+x g(x0).

Summarising, one has proved that u £ de(g — h) (xo) if and only if

(10) v. + dxh{x0)cde+xg(x0) fo r a l l A ^ O .

This is precisely what formula (3) says. U

REMARK 2. The lower-semicontinuity and the convexity of g are not essential assump-
tions in Theorem 1. In fact, these assumptions have been used only for writing equality
(6). It is known that formula (6) is still valid if g : X —* RU{+oo} is arbitrary. On the
other hand, formula (6) has been extended to the more general conjugation framework
of Moreau. Consequently, a formula similar to (3) can be obtained for the corresponding
generalised concept of e-subdifferential. For the above mentioned extensions of formula
(6), see for instance Martinez-Legaz [5, Theorem 3.1].

2. AN APPLICATION TO DC-PROGRAMMING

The different consequences and applications of Theorem 1 will not be explored in
this short note. We shall mention, however, the application we had in mind when we
established formula (3). Recall that a point Xo € X is said to be an e-minimum of the
function / : X —> R, if f(xo) is finite and

f(x0) - e < f(x) for all x G X .

As an illustration on the use of Theorem 1, we exhibit a necessary and sufficient condi-
tion for e-minimality due to Hiriart-Urruty [3].
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COROLLARY 3 . (see [3, Theorem 4.4]) Let g and h be as in Theorem 1. A

necessary and sufficient condition for XQ £ X be an e-minimum of x 6 X i—> / (x ) :=

g(x) — h(x) is that

(11) dxh(x0) C de+xg{x0) for all \> 0.

In particular, XQ £ X is a global minimum of f = g — h if and only if

(12) d\h(x0) C dxg(x0) for all A ̂  0.

PROOF: Condition (11) is equivalent to 0 6 dt (g - h) (x0). D

REMARK 4. Theorem 1 can, in turn, be derived from Corollary 3. Indeed, starting

from (5) it suffices to apply the optimality condition (11) to the e-minimum xo of the

function g — hn . In this way, one gets

dxhu(x0) C de+xg(x0) for all A ̂  0,

which is equivalent to (10). The proof we gave in Sectionl was inspired on a proof of

(12) due to Pham Dinh Tao, communicated to us by Hiriart-Urruty (personal commu-

nication).
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