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Abstract

The Boolean ring B[M] universal over a meet semilattice M is examined. It is the vector
space over the two element field Z2 with base M\{0}. The Z2 linear independence of a meet
subsemilattice of a Boolean ring is characterized in order theoretic terms and some ramifications
of this on B[M] are considered. The space 3"9{M) of proper filters of M is shown homeomorphic
to the Stone space S(B[M]) of B[M] if M has no least element, with ^P(M) U {M} and S(B[M])
homeomorphic otherwise. The congruence lattice 6(M) of M is compared to the ideal lattice
J (B [M]) of B [M] with best results coming if M is a tree with zero when 6 (M) = J (B [M]).

1. Introduction

Suppose M is a meet subsemilattice of a Boolean ring B such that if M
has a least element then 0B £ M. The Boolean ring B is said to be universal
over M if the following condition holds: for each Boolean ring R and each
meet homomorphism t/f: M —> .R mapping M's least element to zero (if M has
one), there is exactly one ring homomorphism <j>: B-+R extending i//. This
condition determines B up to M-isomorphism and this B universal over M
will be denoted B[M]. It is natural to ask how B[M] is built out of M and in
general how properties of one of M or B[M] are reflected in the other. It is
the purpose of this paper to examine certain of the relationships occuring
between M and B[M].

The motivation for this work is twofold: the Mostowski and Tarski (1939)
examination of those Boolean rings with a chain basis and the MacNeille
(1939) study of Boolean extensions of distributive lattices. Also influential
here is the recent paper of Byrd, Mena and Troy (1975) on Boolean rings
generated by distributive lattices. The results and techniques of the latter
authors are quite similar to those here; the use of these authors' notion of
evenly generated ideal resulted in an improvement in the results of Section 3
(making them apply to semilattice trees rather than just those with a zero).
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[2] The ring universal over a semilattice 403

Many of the notions here (universal object, extension and contraction of
congruences etc.) can be phrased in the general context of universal algebra,
but it is felt here that the majority of the results presented depend on the
specific context and so it is in that specific context we remain.

In section 1 we build and characterize B[M] finding that M\{0} is a Z2

vector space base of B[M]. (Here Z2 always denotes the two element field).
Hence S[M] is almost the semigroup algebra of M over the field Z2 (see
Clifford and Preston (1961) page 159), and is exactly this if M has no least
element. Also the Z2 linear independence of M\{0} in B[M] is characterized
in order theoretic terms. Section 2 is mostly a generalization of a result of
Mostowski and Tarski (1939) who established a one-one correspondence
between the upper ends of a chain C and primes of B[C]. We compare the
space of filters of M to the Stone space of B[M]. In section 3 we use the
classical technique of extension and contraction of congruences to compare
the congruence lattice 0(M) of M to the ideal lattice $(B[M]) of B[M].
Here we use the evenly generated ideal EM of B[M] and find that 0(M) =
${EM) if and only if M is a semilattice tree, meaning that for each m G M,
[m ] = {y G M | y g m} is a chain. It turns out that EM = B [M] if M has a least
element. So if M is a semilattice tree with a least element then 6{M) =

f(B[M])-
Frequently used here are certain properties of Boolean rings which we

now list. Let B be a Boolean ring, xu • • \ xn, a, b all elements of B and P a
arime ideal of B. Then

(i) Xi + • • • + xn S= x, v • • • v xn,
(ii) if a • b = 0 then a + b = a v b, and
(iii) one of a, b, or a + b is in P.

2. The Boolean rings universal over a meet semilattice

Let B be a Boolean ring, M CB. We call M an admissible subsemilattice
)f B if and only if M is a meet subsemilattice of B which has a least element
)nly in case 0 is in M. Each meet semilattice is an admissible subsemilattice of
;ome Boolean ring, a fact that can be seen by the following construction.

PROPOSITION 2.1. Suppose M is a meet semilattice. Then there is a Boolean
ing B so that (i) M is an admissible subsemilattice of B and (ii) M\{0} is a Z2

jector space base for B.

PROOF. This is almost the same as constructing the semigroup algebra
12[M\ of the semigroup M over the field Z2 (see Clifford and Preston (1961),
>age 159). Let B be the Z2 vector space whose base is the set of nonzero
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elements of M (i.e. if M has a least element throw it out, otherwise leave M
alone). If M has a least element identify it with the zero of B. We can view
M C B. The meet operation on M extends to an associative, bilinear
multiplication on B under which B becomes a Boolean ring. The described
properties of B then follow easily. Note that if M has no least element then B
is actually Z2[M].

For any Boolean ring B and any meet homomorphism <j>: M —* B, call $
admissible if whenever M has a least element m0 then <t>(m0) is the zero of the
ring B. The ring constructed in 2.1 is significant because of the next result.

PROPOSITION 2.2. Let M be a meet setnilattice, B a Boolean ring,
<t>: M—> B admissible. The following statements are equivalent:

(i) <f> is the universal admissible map into a Boolean ring (i.e. if R is a
Boolean ring and i//:M—>J? is admissible then there is exactly one ring
homomorphism cr: B —» R so that cr ° cfr = ip).

(ii) (<f>(m) | m G M, m not least inM) is a basis for B as a Z2 vector space.
(iii) (<f>(m )| m E M , m not least in M) is Z2 linearly independent in B and

ring generates B.

PROOF. Since 4>[M] is a subsemilattice of B and B is a Boolean ring, (ii)
and (iii) are certainly equivalent. We show (i) equivalent to (ii). Assume (ii)
holds. Note that because of (ii), <f> is necessarily one-one. Hence we can view
M C B, B a vector space with basis M\{0}. (Actually 4> is an order
embedding). Let R be any Boolean ring and i/»:M—*R admissible. Now
there is exactly one Z2 linear map a: B —* R so that cr ° <f> = ip. But a actually
preserves the multiplication in B of elements of </>[M]; that is, if m, n E M,
a(4>m • <j>n)= o-(<f>(mn))= tp(mn)= ipmipn = a(<f>m)- a(4>n). So cr pre-

serves the multiplication on a generating subset of B. Hence cr preserves
multiplication and so is a ring homomorphism so that cr ° <f> = i/». Its unique-
ness is clear. Finally by 2.1 and the standard techniques we get (i) implies (ii).

NOTE. We will call the Boolean ring described in 2.2 the Boolean ring
universal over M and write J5[M] to denote it. The conditions of 2.2 imply
that the map <(>: M—»• B[M] is an admissible order embedding. The universal
Boolean ring over M can then be characterized as a Boolean ring B wherein
M is an admissible subsemilattice whose nonzero element form a Z2 vector
space basis for B. Every Boolean ring is a Z2 vector space and so has a Z2

vector space basis; our interest is in those with a multiplicatively closed basis.
Our goal now is to translate Z2 linear independence of an admissible
subsemilattive into some order theoretic statement.

PROPOSITION 2.3. Let M be an admissible subsemilattice of the Boolean
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ring B. Then M\{0} is Z2 linearly independent in B if and only if M satisfies the
following condition in B:

if mu- • •, mk, m EL M and if each
LI

k

nit < m then V m, < m.

Actually the "if" part does not require the admissibility of M in B.

PROOF. For the "if" part suppose M is just a meet subsemilattice of B
satisfying LI. Assume by way of contradiction, that M\{0} is not linearly
independent. Then there is a Z2 linear combination:

X Am • m = 0 where Am G Z2, a.a.\m = 0

w G M m^O,

where not all Am 's are zero. Note that there are no repetitions of elements of
M in this sum. Let m,,---,mk be the nonzero elements of M whose
coefficients in the above sum are not zero. Since our field of scalars is Z2 the
above linear combination now reads:

nti+ • • • + mk = 0

with nXi/m, if *V /'• Without loss of generality assume k > 1 . Relabel the
elements, if necessary, so that m, is maximal in the list mi, • • •, mk. Multiplying
the last equation through by mx and solving for m, we get

W i = W i - / M 2 + ' " - + w j i - mk.

Each of m,m2, m,m3, • • •, m\mk is in M. If each of m,m2, • • •, mimk is less than
m, then condition LI gives:

k

m, = m,m2 + • • • + m1mk =£ V w^m, < nil

a contradiction. Hence for some / > 1, mim, = m, implying m, ^ m(. But mi is
maximal among m,,---,mk so mi=m,. But this is a contradiction. Thus
condition LI forces M\{0} to be Z2 linearly independent in B.

Assume now M is an admissible subsemilattice of B. We show the "only
if" part in the case M has a least element. The reader should make the
appropriate adjustments in the other case. In P(M) = {D \D C Af} consider
the interval R = [{0}, M] = { D C M | 0 £ D } . (Note: it is the admissibility of M
that puts 0 G M.) The interval R is a Boolean lattice whose join and meet are
set theoretic union and intersection respectively. Consider the map p.M^R
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given by p(m) = (m] = {y G M | y g m } . This p is an admissible map into a
Boolean ring. Assume now that M\{0} is Z2 linearly independent in B. The
subring of B generated by M, (M)B, is by 1.2 isomorphic to B[M]. Hence with
p: M^ R admissible, there is exactly one ring homomorphism t/»: (M)B —* R
extending p. Notice that for elements of (M)B the join in (M)B is the same as
their join in B. If x, y G MB then tp(x v y ) = tj/(x + y + x • y) =
ifrx + ipy + >px • ipy = ij/x v i/»y (latter is join in R) = </a U t/>y. Then for
Xi, • • •, xn in (M)B we get

in <M)B and «/»( V xf) = 0 <A(x,).

We now show M satisfies LI in B. Suppose not. Then there are elements
»ii, • • •, mk, m in M with each m, < m but with their join in B, VT=i m, = m.
But applying ip to this last equality gives UT-i <Am, = t/wi. Because i/> extends
p this last equation is actually U T - I (m,] = (m]. This in turn forces m S mt for
some i which is a contradiction.

COMMENT. At this point we mention a simple consequence of indepen-
dence which will be used often. Suppose M C B, B a Boolean ring. Suppose
M\{0} is Z2 independent. Assume m, m,, • • •, mk G M, m ^ O and m =
/«, + • • •+ wk. Then m = mt for some i G {1, • • •, k}.

We mention some consequences of 2.3. First, proper joins that exist in M
are lost in the transition to B[M]. To clarify: suppose mx, m2 are incompara-
ble elements of M and suppose m = supM {"ii, m2}. Then because of LI it is
clear that m^ supB[M]{mi,m2}. Thus B[M] is a purely semilattice theoretic
object.

For another application recall that a meet semilattice M is called a
semilattice tree if for each m G M the set (m] = {y G M\y Si m) is a chain.
We then have

COROLLARY 2.4. Lef T be a semilattice tree. The nonzero elements of T are
Z2 linearly independent in any Boolean ring wherein T is a meet subsemilattice.
Thus B [ T] is characterized by the conditions: it is a Boolean ring in which T is
admissible and which T ring generates.

As a final application of 2.3 we can now detect when B[M] will have an
identity.

PROPOSITION 2.5. For a meet semilattice M, the Boolean ring B[M] has a
largest element (is a Boolean lattice) if and only if M has finitely many
maximal elements uu • • -,uk so that each element m G M is dominated by at
least one of these (i.e. M = U^,(Ui]).
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PROOF. Suppose first that B [ M ] has a 1. This is uniquely expressible as a

Z2 linear combination of M\{0}. Let mu---,m, be the elements of M\{0}

whose coefficients in this linear combination are nonzero. So 1 = m, + • • • + m,

with m , ^ m, if iV /• Relabel mu • • •, m, ii necessary so that mu m2, • • -,mk are

the elements of {mi, • • •, m,} which are maximal in this set. (So k S t.) Then

each m, (1 =S/ S t) is less than or equal to some mf for i Si k. Let x be any

element of M. Then x = x - l = x - m 1 + x - m 2 + - - - + x - m,. Since M\{0} is Z2

independent in B[Af], M satisfies LI in B [ M ] , If each of x • mu • • -,x • m,

were less than x then

x = x • nii+ • • • + x • m, Si V x • m, < x,

a contradiction. So for some i G {1, • • •, t}, x = x • m<; so that x Si î,-. There-
fore each element of M is dominated by one of mu • • •, m, and so by one of
mu • • •, mk. Hence M = Uf^ (w,-] and it follows that {mt, • • •, mk} is the set of
maximal elements of M.

To prove the converse suppose M = U?=i(Mi] where uu • • •, uk are the
maximal elements of M. We claim that their join in B[M], ux v • • • v ua, is the
maximum element of B[M]. Take any m G M. Then m ^ u* for some i hence
m g Ui v • • • v uk so that m • («i v • • • v uk) = m. So multiplication by
Mi v • • • v Mk of any element of M leaves the latter element fixed. Since M\{0}
is a base for B[M] it follows that for any x G B[M], x • (MI v • • • v Mt) = x. So
our claim about Ui v • • • v uk is proven, and B[M] has a 1.

3. Filters of M, primes of B[M]

Unless otherwise indicated B denotes B[M]. For any x G B, x has a
unique expression as a Z2 linear combination of nonzero elements of M,

x = ^ A m ( x ) - m m G M, m ^ 0

where Am(x)GZ2 and almost all Am(x) = 0. Denote by n(x) the number
#{m G M | A m ( x ) ^ 0 } . Notice that n(0) = 0, and n ( x ) = l if and only if
x G M\{0}.

Of interest later is the set Po = {x G B | n(x) is even}. For later use the
properties of Po are summarized here. First 0 G Po and if m G M with rnj^O
then m & Po. Also Po+ P0Q Po and Po is an ideal of B if and only if the
nonzero elements of M form a filter in M. Thus if M has no least element Po is
an ideal of B. Next, if Po is an ideal of B it is a prime ideal. Finally M\P0 = M
in the case M has no least element while M\P0 = M\{0} if M has a least
element.
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For any set X, P(X) = {D | D C X} is a Boolean topological space under
the topology of set theoretic order convergence (a net (DA)*eA converges to D
if and only if for all x G X: x G D implies that eventually i £ D , while x &. D
implies that eventually x£Dx). For a Boolean ring B, S(B) = {P\P prime
ideal of B} (= {P\P maximal ideal of B}) inherits the above topology from
P(B). There is another formally different topology on S(B), the spectral (or
Zariski) topology, wherein a subset E of S(B) is closed if and only if there is a
subset D of B so that E = {P G S(B)\D C P}. The lattice of ring ideals of B
is order isomorphic to the lattice of subsets of S(B) which are open in the
spectral topology. The point to be made here is that for any Boolean ring B
(even without 1) these topologies on S(B) coincide. [The restriction of the
power set's topology is generated by sets of the form Cx = {P G S(B)\x G P}
and JV,={Pe S(B)\x £ P} for all x E B. The spectral topology on S(B) is
generated by sets of the form Nx, x G B. But for any x G B, Cx = Uy>»Nx+y.
Hence the topologies coincide.]

For any meet semilattice M, a filter F of M is a subset of M satisfying (i)
x, y G F implies x A y G F and (ii) x E.F, x g y imply y G F. Let S'(M) =
{F\ F is a filter of M}. Notice that <j> and M are in ^(M). (Whereas S(B) has
only proper ideals in it). The set 5F(M) becomes a topological space inheriting
the topology of P(M). We can easily establish a relation between the spaces
^(M) and S(B[M]). For P G S(B[M]) observe that M\P = {x G M|x £ P}
is in &(M). So we get a mapping 4>: S(B[M])^ ^(M) whereby P i-» M\P.
This map was first described by Mostowski and Tarski (1939) in the case that
M is a chain. The next theorem, which sums up the facts about <i>, is a
generalization of the results of Mostowski and Tarski.

THEOREM 3.1. For any meet semilattice M the map * : S(B[M])
given by ^(P) = M\P is a homeomorphism between S(B[M]) and imO. (The
latter inherits its topology from SF(M).) Furthermore each proper filter F of M
(i.e. F/ <\>, F^ M) is in

PROOF. Write B = B[M]. We show first that 4> is one-one. Let P, Q G
S(B) and suppose M\P = M\Q. For any i £ B let A(x) denote the
statement: x G P if and only if x G Q. Now is n(x) is 0 or 1 then A(x) surely
holds. Suppose by way of contradiction that P^ Q. Then choose x so that
A(x) fails and n(x) is minimal making A(x) fail. Note that n(x)^ 1. Write
x = m + y for m G M\{0} and y G B with n(y)< n(x) (also
n(m) = 1 < n(x)). Since A (x) fails we can assume i G P . x ^ O . Now x £ Q,
Q a prime ideal forces one of y or m to be in Q. But A(m) and A (y) hold so
one of y or m is in P. But then m + y = x G P forces both y and m to be in P.
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But again A{m), A(y) holding puts both m and y in Q, so finally x = m + y
is in Q, a contradiction. Hence P = Q.

The continuity of <I> is apparent so we now show <I>: S(B[M])—Mm <t> is a
homeomorphism. Suppose that for a net (PA|AGA) in S(B) the net
(M\PA | A G A) converges in the topology of 9{M) to M\P where P G S(B).
We claim that (PA | A £ A) converges to P in the topology of S(B). For each
x G B let F,(x) denote the statement:

x G P implies that eventually j £ P ,

and

x £ P implies that eventually x g! PA.

We show E(x) holds for all x G B. Certainly E(x) is true if n(x) = 1 (this is a
consequence of M\P* -* M\P in ^(M)). Suppose E(x) fails for some x E.B.
Take x in B with n(x) minimal such that E(x) fails. Then n(x)> 1 and we
can write x = w + y where m G M\{0} and n(y)< n(x), with E(m), £(y)
both true.

CASE 1. x G P. Since it is not true that eventually x E PA, then one of m
or y must fail to be in P. But x being in P forces the other of m, y to fail to be
in P. So eventually m £ PA and eventually y E PA. But each PA is prime so
eventually x = m + y G PA. But this says E(x) holds.

CASE 2. x g! P. Then one m or y must be in P while the other is not. So
without loss of generality say m G P, y g! P. So eventually w G PA and y £ PA.
So eventually x = m + y g. PA. But again we have £(x).

In either case we reach a contradiction, that E(x) holds. So JE(X) is true
for all x G B and this gives PA -»• P in S(B).

Finally we show each proper filter of M is in imO. Let F be a proper
filter of M. We claim that the ideal / generated by M\F in B misses F. For
otherwise there is an element f of F and elements m,, • • •, m, of M\F so that
/ S i B i V ' v m , and this gives / = V !_,(/• mj); the latter plus condition LI
then force / = / • m, for some i putting m* into F, a contradiction. Now choose
P to be an ideal of B maximal with respect to containing M\F and missing F.
It is easy to show that P G S(B) and that M\P = F. Hence F = <J>(P).

We now observe that M has a least element if and only if im<I> consists
precisely of the proper filters of M. If M has no least element, im<& consists of
the nonempty filters, and the prime ideal of B mapping to the improper filter
M is Po.

COROLLARY 3.2. Let M be any meet semilattice. If M has a least element
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then S(B[M]) and % (M) = {F ^ M | F proper filter of M} are homeomorphic.
If M has no least element then S(B[M]) and5Fp{M) U{M} are homeomorphic.

4. Comparison of congruences between M and B[M]

We examine the natural question of how the congruences of a semilattice
M compare to those of its universal Boolean ring B[M]. For this some
notation is required: 0(M) = {a \cr is a meet congruence of M}, 6(B) = {p \p
is a lattice (ring) congruence of B) and $>(B) = {J\J ring ideal of B}. For
JEJ'(B) and p E 8(B) we say p and J are associated if the following
condition holds: (JC, y)Gp if and only if x + y G J. The relation of being
associated establishes an order isomorphism between 6{B) and ^(B).

Each meet congruence a of M has at least one extension to a (ring)
congruence of B[M], namely to cr', the B[M] congruence generated by a.
Actually a' = fl{p|p G 0(B)and cr § p}. Let /(cr) denote the ideal of B[M]
associated with the congruence a'. It is not difficult to see that /(cr) is the
ideal generated by the set {m + n | m, n G M and man). We denote this by
writing I(a) = (m + n | m, n G M and mra], We call cr' the extension of a to
B[M] and I (a) the ideal extension of a.

Now starting with an ideal / of B[M] and its associated ring congruence
p, let cr(J) denote p D (M x M) = pc (p contracted to M), which is a meet
congruence of M, and call o-(J) the contraction of J (or p) to M. Certainly
cr(/) = {(w, n)\ m, n G M and m + « G / } .

We call a congruence cr of M contracted if for some /E^(B[M]) ,
cr = cr(J). A congruence p of B[M] is called extended if p = a' for some a in
0(M); while an ideal / of B[M] is extended if / = I(cr) for some cr in 6(M).
If p and / are associated then p is extended if and only if / is extended.

The two maps: 0(M)—»J>(B[M\) whereby cr ̂ /(cr) and
$(B[M])^> &(M) whereby J i-» o-(J) form a Galois connexion of mixed type.
Namely for any cr G 0(M) and any J G ̂ (B[M]) we have:

a § cr(/) if and only if /(cr) g /.
As a consequence of this fact all the following statements hold:
(i) The map 0(M)—> S>{B[M]) is completely join preserving (and so

order preserving). Extension preserves arbitrary joins.
(ii) The map $(B[M])^> 6(M) is completely meet preserving (and so

order preserving). Contraction preserves arbitrary meets.
(iii) The map a •-» cr(/(cr)) is a closure operator in 6(M) whose closure

family of fixed elements is the collection of contracted congruences.
(iv) The map / •-» /(cr(/)) is a kernel operator in ^(B[M]) whose kernel

family of fixed elements is the collection of extended ideals.
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(v) The complete lattice of contracted congruences is order isomorphic
to the complete lattice of extended ideals under the restriction of our
mappings of extension and contraction. These restrictions are inverse to one
another.
The previous results are general consequences of any Galois connexion (see
Schmidt (1953, section 8)). But in our specific case we can say more. Using the
universal property of B[M] it is not difficult to show that for any congruence
<r of M:

B[M/a] = B[M]/a'

and so {cr')c = a. Thus:

PROPOSITION 4.1. For each meet semilattice M each congruence of M is
contracted. So for any a E 6{M), a = a(I(<r)) = (ae)c. Hence 6(M) is order
isomorphic to the lattice of extended ideals.

We turn now to the other side of the coin to examine the extended ideals
of B[M]. Write B for B[M]. For any ideal / of B let D{J) = {m + n\m,
nEM and m + nEJ}. We have seen that I(a(J)) = (D(J)] (the ideal
generated by the set D(J)). Certainly (D(J)] consists of all finite sums of
elements of D(J). Hence an ideal / is extended if and only if J = {x \x is a
finite sum of elements of D(J)}.

There is a largest extended ideal, namely I(M x M) = I(<T(B)) =
(D (£?)], which consists of all finite sums of elements of the form m + n where
m, nEM. Following Byrd, Mena and Troy (1975) we will call this ideal the
ideal evenly generated by M and denote it EM. Though for the above authors
M was a distributive sublattice of B generating B, their results are analogous
to what we find here. For our next lemma, which summarizes the easily
established facts about EM, we remind the reader of the notation n(x) (for
x E B) and the set Pu = {x | n(x) is even}, which were introduced in section 2.

LEMMA 4.2. For any semilattice M: (a) Po S EM, (b) EM = B if and only if
OEM (meaning M has a least element), (c) if M has no least element, EM — P»
and is a prime ideal, and finally (d) the ideals of EM are exactly the ideals of B
contained in EM. So extension-contraction is actually a Galois connexion
between 8(M) and $(EM).

PROOF. For any ideal J of B, the ideals of J (viewed as a Boolean ring)
are exactly the ideals of B contained in J. Hence (d) holds. Now (a) is obvious
and (c) holds once (b) is true. So we show only (b). If 0 E M then any m in M
can be written m = 0+ m, the latter certainly in EM. Hence M S EM and we
get EM = B in the case that OEM. Now suppose 0 £ M and that EM = B.
Since M has no least element it is clear that D(B)S Po. But also Po is an ideal
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so EM = (D(B)]gP0, hence Po= B[M]; but the latter is impossible. (We
have not explicitly said it but we assume M/ 0 . So choosing m G M, m is not
zero, because M has no least element, so n(m)= 1, forcing m £ Po)

We emphasize the last statement of 4.2. All extended ideals of B are
contained in BM and so are ideals of the Boolean ring EM. Also for each
o-Gd(M), O- = <T(I(O-)) where /(o-)e J>(EM). This means that each M
congruence is the contraction of an ideal of the ring EM. We will hereafter
treat our Galois connexion as between 6(M) and J>(EM), with all elements of
6{M) contracted.

Our interest now is in what conditions on M will make all ideals of EM

extended. If this happens then 6(M) = $(EM), which makes 0(M) distribu-
tive. So in light of the result of Papert (1964) we have: for each ideal of EM to
be extended it is necessary that M be a semilattice tree. We aim to show that
M being a semilattice tree is sufficient to make all EM ideals extended.

LEMMA 4.3. Let B be any Boolean ring and let x =b\+--- + bk+y + z

where ft,, • • •, ftk, y, z G B and each bt g y 2 z. Then if k is even x =

(ft, H + bk) v (y + z) while if k is odd then x = (ft, + • • • + bk + y) v z.

PROOF. In a Boolean ring, if a • ft = 0 then a v ft ft = a + ft. If k is even
then under the above hypotheses we have:

(ft, + • • • + ftk) • (y + z) = (ft,y + • • • + ftky) + (ft,z + • • • + bkz)

= k -y +k -z =0 + 0 = 0.

Hence

x = (ft, + • • • + bk)+ (y + z) = (ft, + • • • + bk) v (y + z).

This proof for the k odd case is similar.

PROPOSITION 4.4. Let M be a semilattice tree with least element. In B[M]
form the set D = {m + n | m, n G M}. Then each element of B [M] is the finite
join of elements of D.

PROOF. Let x be an element of B = B[M] which is the sum of s nonzero
elements of M and suppose for each y G B: if y is the sum of fewer than s
nonzero elements of M then y is the join of finitely many elements of D.
Since MC.D we may as well assume s g 2. Write x=m, + --- + ms,
m, G M\{0}.

Let i G {1, • • •, 5}. The set {wi,m,, m2mh • • •, wsm,} is a subset of M which
is bounded above by m,. Since M is a tree this set must be totally ordered. Let
m,w, be the least element of this set and choose mkm, to be the least in
{m,w,, • • •, mt-,mi, m,+,mi, • • •, msmt}. Then
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m,x = 2! "i;-m,- +

If s is even the above lemma says that

By the choice of s, £>*,.* w,m, is the finite join of elements of D. So apparently
m,x is the finite join of elements of D. If s is odd then the above lemma, plus
the fact that

give us:

m,x = I ̂  m^m, I v (m,m,).

Again the choice of s makes 2,^, m^m, the finite join of elements of D and so
with m.mt in D we get m̂ x to be the finite join of elements of D.

Thus for each i = 1, • • •, s, x • m, is the finite join of elements of D. But
x = OTi + --- + ms = wi iV---vm s implies x = (xm,) v (xm2) v • • • v (xm,) and
so x itself is the finite join of elements of D.

COROLLARY 4.5. Let M be a semilattice tree. Let

D ={a + b\a,b<EMU {0}} (formed in B [M]).

Then each element of B [M] is the finite join of elements of D.

PROOF. If M has a least element this corollary is identical to 4.4. Suppose
M has no least element. In B[M] let N = M U{0}. Then N is a semilattice
tree with a least element (0) and B[M] = B[N] . The claim of 4.5 then follows
from 4.4 applied to N and B[N].

We come to our main result.

PROPOSITION 4.6. Let M be a meet semilattice. The following statements
are equivalent:

(i) M is a semilattice tree
(ii) each ideal of EM is extended.

Hence 0(M)= $(EM) for any semilattice tree M. The congruences of a
semilattice tree are order isomorphic to the congruences of some Boolean ring.

PROOF. We need only show (i) => (ii). Let J&J>(EM). Then
/ 6 3{B[M\) and / C EM. We must show / C I(o-(J)). Let / G J. By corollary
4.5 write / = V".id, where each d, = a, + h with a,, fc£MU {0}. Notice that
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each a, + b, G /. If M has a least element then each a,, fc£M and so
a, + kG {m + n | w, n G M and m + n £ j } , Thus each a: + b, E I(cr(J)) and
so ;' G I(cr(J)). If M has no least element then EM = P,, and each a, + b,G 7 C
£M forces each a, + ft, into P(>. Since n(a, + ft;) is even either both ah ft, are in
M or both are zero. In either of these cases a, + b, 6=
(w + n I m, n G M, m + n G / ] C I(<r(J)). So / G /(o-(J)). So in any case / C
7(cr(/)). The other statements follow easily-

Notice that if M is a tree with no least element then 6(M)= J(Pn)- If M
is a tree with a least element then EM = B, so we have the following.

COROLLARY 4.7. Let T be a semilattice tree with a least element. Then
d(T) = ^(B[T]) under the mappings of extension and contraction. So the
compact congruences of T, c(6(T)), form a Boolean ring isomorphic to B[T].
Also 6(T) is isomorphic to the lattice of open subsets of the space 3PP(T).

PROOF. Only the last statement needs clarification. For any topological
space X let 6(X) denote the lattice of open subsets of X. For any Boolean
ring B we have:

and so

But S(B[T]) is homeomorphic to &P(T) and so G(S(B[T]))= €(FP(T}) and
hence $(B[T])= G(&P(T)). But 6(T) = J>(B[T\) and so the last statement of
the corollary follows.

We can rephrase the results of 4.6 in terms of congruences by passing
from ideals of EM to the associated congruences of the ring EM. So if T is a
semilattice tree then 0(T)=d(ET) and if further T has a least element

Finally we have an application. Let T\, T2 be semilattice trees with a least
element. If 3PP(T,) and^p(T:) are homeomorphic then their open set lattices
are isomorphic and then it follows from 4.7 that 6(T,)= 6{T2). On the other
hand suppose 0(T,)= 9(T2). Then the lattices of compact elements are
isomorphic: B[7"i] = B[T2]. The latter are then isomorphic as rings and so as
Z2 vector spaces. It then follows that S(B[T,]) and S(J3[7"2]) are homeomor-
phic, hence 3Fp(Ti) is homeomorphic to 3FP(T2). But the isomorphic Z2 spaces
B[Tt] and B[T2] must have the same Z2 dimension so that # T, = # T2.
Summing up these observations we get:

COROLLARY 4.8. Let T,, T2 be semilattice trees each with a least element.
Then d{T,)= 8(T2) if and only if &P(T,) is homeomorphic to &P(T2). If this
happens then # Tt = # T2.
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