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On K3 Surface Quotients of K3 or Abelian
Surfaces

Alice Garbagnati

Abstract. _e aim of this paper is to prove that a K3 surface is the minimal model of the quotient
of an Abelian surface by a group G (respectively of a K3 surface by an Abelian group G) if and only
if a certain lattice is primitively embedded in its Néron–Severi group. _is allows one to describe
the coarse moduli space of the K3 surfaces that are (rationally) G-covered by Abelian or K3 surfaces
(in the latter case G is an Abelian group). When G has order 2 or G is cyclic and acts on an Abelian
surface, this result is already known; we extend it to the other cases.

Moreover, we prove that a K3 surface XG is the minimal model of the quotient of an Abelian
surface by a group G if and only if a certain conûguration of rational curves is present on XG .
Again, this result was known only in some special cases, in particular, if G has order 2 or 3.

1 Introduction

_anks to the Torelli theorem for K3 surfaces and to the theory of the lattice polarized
K3 surfaces, in order to describe themoduli space of K3 surfaces having a certain geo-
metric property it is useful to express this geometric property in terms of embeddings
of certain lattices. In this paper we analyze the geometric property: “a K3 surface is
the minimal model of the quotient of an Abelian or a K3 surface by a ûnite group”.
Under certain conditions we are able to translate this property to a lattice theoretic
property and thus to describe the coarse moduli space of the K3 surfaces that are
(rationally) covered by Abelian surfaces or by K3 surfaces. _is generalizes several
previous results by Nikulin [N1], by Bertin [Be], and by Sarti and the author [GS1].

_e ûrst and crucial example is given by the Kummer surfaces. A Kummer surface
is a K3 surface obtained as minimal resolution of the quotient A/ι, where A is an
Abelian surface and ι is an involution onA. In [N1], Nikulin proved that aK3 surface is
a Kummer surface if and only if at least one of the two following equivalent conditions
holds:
(a) a certain lattice, called theKummer lattice, is primitively embedded in theNéron–

Severi group of the K3 surface;
(b) there are sixteen disjoint smooth rational curves on the K3 surface.
_e ûrst condition is more related to the lattice theory and allows one to describe the
coarse moduli space of the K3 surfaces that are Kummer surfaces. _e second one is
clearly more related to the geometry of the surface.
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In a more general setting, we consider the following situation: Y is either an Abe-
lian or aK3 surface,G is a ûnite group of automorphisms ofY , and theminimalmodel
of Y/G is a K3 surface X. In this case we say that X is (rationally) G-covered by Y .
In view of the results by Nikulin on Kummer surfaces, it is quite natural to pose the
following two questions.

Question A Is the property “a K3 surface X is (rationally) G-covered by a surface Y”
equivalent to the condition “there is a certain lattice (depending on G) that is primitively
embedded in NS(X)”?

We observe that a positive answer to this question immediately provides a descrip-
tion of the coarse moduli space of the K3 surfaces (rationally) covered by Abelian or
K3 surfaces.

Question B Is the property “a K3 surface X is (rationally) G-covered by a surface Y”
equivalent to the condition “there is a certain conûguration of rational curves on X”?

_emain results of this paper are to give a positive answer to:
● Question A in the case where Y is an Abelian surface (see _eorem 4.4);
● Question B in the case where Y is an Abelian surface (see _eorem 4.7);
● Question A in the case where Y is a K3 surface and G is an Abelian group (see

_eorem 5.2).
It is not possible in general to give a positive answer to Question B in the case

where Y is a K3 surface. For example, it is known that the answer is negative if we
assume that Y is a K3 surface and G = Z/2Z; cf. [GS2]. I do not know if it is possible
to extend the positive answer given to Question A in the case where Y is a K3 surface
and G is an Abelian group to the weaker hypothesis that Y is a K3 surface, without
assumptions (or with diòerent assumptions) on G.

_e positive answer to Question A in the case where Y is an Abelian surface was
already known ifG is a cyclic group; indeed, the classical case of the Kummer surface,
i.e.,G = Z/2Z, was considered byNikulin [N1], as we said above, the other cyclic cases
are considered in [Be]. In _eorem 4.4 we address the remaining cases. In order to
state and prove this theorem, the ûrst step is to ûnd all the ûnite groups G acting on
an Abelian surface in such a way that A/G desingularizes to a K3 surface. We assume,
without loss of generality, thatG does not contain translations. _e list of these groups
is classically known (see [F]) and consists of four cyclic groups and three noncyclic
(and non Abelian) groups. One of the noncyclic groups, the quaternion group, can
act on two diòerent families of Abelian surfaces and the actions have diòerent sets
of points with nontrivial stabilizer. So we have to consider four actions of noncyclic
groups on an Abelian surface. _e second step is the identiûcation of the lattice that
should characterize the K3 surfaces that are (rationally)G-covered by an Abelian sur-
face. _is lattice depends onG, and the natural candidate (also in view of the previous
results by Nikulin and Bertin) is the minimal primitive sublattice of NS(X), which
contains all the curves arising from the desingularization of A/G. We call the lattices
constructed in this way lattices of Kummer type, and we denote them by KG . _ey
have already been determined if G is a cyclic group, and they are computed in the
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noncyclic case in Section 4.2. _e lattices arising in the noncyclic cases were consid-
ered in [W], but unfortunately some of the results presented in [W, Proposition 2.1]
are not correct, as we show below. _e last step is to prove our main result; that is,
the primitive embedding of the lattices KG in the Néron–Severi group of a K3 sur-
face X is equivalent to the fact that X is (rationally) G-covered by an Abelian surface.
We combine a result of [Be], which allows us to give a geometric interpretation of
the (−2)-classes appearing in the lattice KG , with classical results on cyclic covers
between surfaces, in order to reconstruct the surface A starting from (X ,KG).

_e positive answer to Question A in the case where Y is a K3 surface and G is an
Abelian group, is contained in _eorem 5.2. _e fourteen admissible Abelian groups
are listed in [N3,_eorem4.5]. Only the caseG = Z/2Zwas already known; see [GS1].
_e proof of the result is totally analogous to the one given in the case where Y is an
Abelian surface, with the advantage that the lattices of Kummer type are substituted
by other lattices, denoted byMG , whichwere already computed in [N3, Sections 6 and
7] for all the admissible groups G. _e extension to the non Abelian groups G seems
more complicated: the lattices MG are known also in the non Abelian cases, [X], but
it is not so clear how to reconstruct the surface Y only from the data (X ,MG).

Let us now discuss the more geometric Question B. _e positive answer to Ques-
tion B in case Y is an Abelian surface was already known in cases G = Z/2Z and
G = Z/3Z. _e case of the involution was considered by Nikulin [N1], as mentioned.
_e case G = Z/3Z is due to Barth [Ba1]. _e other groups are considered here. _e
proof of this very geometric result is essentially based on computations in lattice the-
ory. Indeed, the idea is to prove that if a K3 surface X admits a certain conûguration
of curves, then the minimal primitive sublattice of the Néron–Severi group contain-
ing these curves is in fact KG . We emphasize that the computations with these lattices
are strongly conditioned by the fact that we are considering many curves, which im-
plies that the rank of the lattices that they span is high. _is is exactly the hypothesis
that fails if we consider the case where Y is a K3 surface (and not an Abelian surface).
Indeed, in this case the result cannot be extended (at least without conditions on the
Abelian group G).

In Section 2 we recall some known results. In Section 3 we present Proposition 3.2
(based on previous results by Bertin), which is fundamental in the proof of our main
theorems. In Section 4.2 we compute the lattices KG in the case whereG is not a cyclic
group and in Section 4.3 we give an exhaustive description of the lattices of Kummer
type and of their properties. In Section 4.4 we state and prove two of ourmain results,
giving a positive answer to the Questions A and B in case Y is an Abelian surface (see
_eorems 4.4 and 4.7). In Section 4.5 we discuss the relation between K3 surfaces that
are (rationally) Z/3Z-covered by Abelian surfaces, K3 surfaces which are (rationally)
(Z/3Z)2-covered by K3 surfaces, and K3 surfaces that are (rational) (Z/3Z)2-covers
of K3 surface. _is generalizes a similar result on Kummer surfaces, proved in [GS2].

In Section 5we concentrate onK3 surfaces covered byK3 surfaces, giving a positive
answer toQuestionA in this setting. Moreover, we givemore precise results on the K3
surfaces that are (rationally) Z/3Z-covered by K3 surfaces, presenting all the possible
Néron–Severi groups of a K3 surface with this property and minimal Picard number.
_is generalizes results proved in [GS1].
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Notation
● D4n is the dicyclic group of order 4n (also called the binary dihedral group), which

has the following presentation: ⟨a, b, c ∣ an = b2 = c2 = abc⟩. (In the case where
n = 2 it is the quaternion group). _e GAP id of D8 is (8, 4) and that of D12 is
(12, 1).

● T is the binary tetrahedral group: it has order 24 and the following presentation:
⟨r, s, t ∣ r2 = s3 = t3 = rst⟩. _e GAP id of T is (24, 3).

● A3,3 is the generalized dihedral group of the abelian group of order 9; it has order
18 and the following presentation: ⟨r, s, t ∣ r2 = s3 = t3 = 1, tr = rt2 , sr = rs2⟩. _e
GAP id of A3,3 is (18, 4)

2 Preliminaries

In this section we recall some very well known facts and ûx the notation.

2.1 Lattices

Deûnition 2.1 A lattice is a pair (L, bL), where L = Zn , n ∈ N and bL ∶ L×L → Z is a
symmetric nondegenerate bilinear form taking values inZ. _e number n is the rank
of L. _e signature of (L, bL) is the signature of the R linear extension of (L, bL).
A lattice is said to be even if the quadratic form induced by bL on L only takes

values in 2Z.
_e discriminant group of L is L∨/L, where the dual L∨ can be identiûed with the

set {m ∈ L ⊗Q ∣ bL(m, l) ∈ Z for all l ∈ Z} (here we also denote by bL the Q linear
extension of bL). _e discriminant form is the one induced by bL on the discriminant
group. _e length of a lattice (L, bL), denoted by l(L), is the minimal number of
generators of the discriminant group.
A lattice is said to be unimodular if its discriminant group is trivial, i.e., if its length

is zero.

_e discriminant group of a lattice is a ûnite free product of cyclic groups. Its order
is the determinant of some (and so of any) matrix that represents the form bL with
respect to some basis of L. _is number is called the discriminant of the lattice L and
is denoted by d(L).

In the sequel we are interested in the construction of overlattices of ûnite index of
a given lattice. Let L and M be two lattices with the same rank. Let L ↪ M. _en
M is generated by the vectors that generate L plus by some other vectors that are
nontrivial in M/L but that necessarily have an integer intersection with all the vectors
in L (otherwise the formonM cannot take values inZ). _ismeans that the nontrivial
vectors in M/L are nontrivial elements of in the discriminant group of L.

If, moreover, we require that the lattice M is even, then L is automatically even
(since it is a sublattice of M) and also the nontrivial classes in M/L have an even self
intersection. So, if we have an even lattice L and we want to construct an even over-
lattice of ûnite index, we have to add to the generators of L some nontrivial elements
in L∨/L that have an even self intersection.
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More generally, every isotropic subgroup of L∨/L (where a subgroup H of L∨/L is
isotropic if the discriminant form restricted to H is trivial) corresponds to an overlat-
tice of L of ûnite index , and, vice-versa, every overlattice of L of ûnite index corre-
sponds to an isotropic subgroup of L∨/L ; see [N4, Section 1].

If M is an overlattice of L with index r, then d(L)/d(M) = r2.

Deûnition 2.2 Let M and L be two lattices with rank(M) ≤ rank(L). Let φ∶M →
L be an embedding of M in L. We say that φ is primitive, or that M is primitively
embedded in L, if L/φ(M) is torsion free.

Proposition 2.3 ([N4, Proposition 1.6.1]) Let L be a unimodular lattice, let M be
a primitive sublattice of L, and let M⊥ be the orthogonal complement to M in L. _e
discriminant group of M is isomorphic to the discriminant group of M⊥. In particular,
since the length of a lattice is at most the rank of the lattice,

l(M) = l(M⊥) ≤ min{ rank(M), rank(L) − rank(M⊥)} .

Deûnition 2.4 A root of the lattice (L, bL) is a vector v ∈ L such that bL(v , v) = −2.
_e root lattice of a given lattice L is the lattice spanned by the set of all the roots in L.
A lattice is called a root lattice if it is generated by its roots.

2.2 Covers

Here we recall a very well known and classical result (see [BHPV, Chapter I, § 17]) on
covers, which will be essential for our purpose.

Let Y be a connected complex manifold and let B be an eòective divisor on Y .
Suppose we have a line bundle L on Y such that

(2.1) OY(B) = L⊗n

and a section s ∈ H0(Y ,OY(B)) vanishing exactly along B. We denote by L the total
space of L and we let p∶ L → Y be the bundle projection. If t ∈ H0(L, p∗(L)) is the
tautological section, then the zero divisor of p∗s − t deûnes an analytic subspace X
in L. _e variety X is an n-cover of Y branched along B and determined by L, and
the cover map is the restriction of p to X. If both Y and B are smooth and reduced,
then X is smooth.

Let us denote by D ∈ Pic(Y) the divisor associated with the line bundle L. Con-
dition (2.1) is equivalent to B = nD, i.e., B/n = D ∈ Pic(Y). For this reason we call B
an n-divisible divisor in the Picard group. We o�en call the curves in the support of
B an n-divisible set of curves. _e previous discussion implies that with each eòective
divisible divisor one can associate a cyclic cover of the variety.

Let us consider a sort of converse. Let π∶X → Y be an n-cyclic cover between
smooth varieties such that the branch locus is smooth and all its components have
codimension 1 in Y . _en π determines a divisor (supported on the branch locus)
that is divisible by n. _is applies in particular to a special situation that we will now
consider. Let X and Y be two surfaces. Let α be an automorphism of X of order 2
or 3 that ûxes only isolated points. _en it is possible to construct a blow up X̃ of X
such that α induces an automorphism α̃ of X̃ whose ûxed locus consists of disjoint
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curves. So X̃/α̃ is a smooth surface that we denote by Y which is birational to X/α.
_e quotient map X̃ → X̃/α̃ = Y is a ∣α∣ ∶1 cover of Y branched along a smooth union
of curves. Hence there is an ∣α∣-divisible set of curves on Y that is a smooth birational
model of X/α. If ∣α∣ = 2a3b , then the iterated application of the previous procedure
to suitable powers of α, produces a suitable ∣α∣-divisible set of curves on a surface Y
that is a smooth surface birational to X/α.

2.3 K3 Surfaces

We work with smooth projective complex surfaces.

Deûnition 2.5 A surface Y is called a K3 surface if its canonical bundle is trivial
and h1,0(Y) = 0.

_e second cohomology group of aK3 surface equippedwith the cup product is the
unique even unimodular lattice of rank 22 and signature (3, 19), and it is denoted by
ΛK3. _e Néron–Severi group of a K3 surface Y is a primitively embedded sublattice
of ΛK3 with signature (1, ρ(Y) − 1). Consequently, the transcendental lattice, which
is the orthogonal complement to the Néron–Severi group in the second cohomology
group, is a primitively embedded sublattice of ΛK3 with signature (2, 20 − ρ(Y)).

Let G ⊂ Aut(Y) be a group of automorphisms of Y . We will say that it acts sym-
plectically if it preserves the symplectic structure of Y , i.e., if its action on H2,0(Y) is
trivial. _e ûnite groups acting symplectically on aK3 surface are classiûed byNikulin
[N3], in the case of the Abelian group, and by Mukai [M] in the other cases. A com-
plete list can be found in [X].

If a ûnite group G acts symplectically on a K3 surface Y , then Y/G is a singular
surface, whose desingularization Ỹ/G is a K3 surface.

Deûnition 2.6 Let Y be a K3 surface admitting a symplectic action of a ûnite group
G. Let Ỹ/G be the minimal model of Y/G. We will denote by EG the sublattice of
NS(Ỹ/G) generated by the curves arising from the desingularization of Y/G. We
will denote by MG the minimal primitive sublattice of NS(Ỹ/G) that contains EG .
We observe that MG is an overlattice of ûnite index of EG .

We now show an explicit and very classic example: letY be aK3 surface that admits
a symplectic action ofZ/2Z. _enY/(Z/2Z) has eight singular points of typeA1. _e
desingularization of Y/G introduces eight rational curves on ̃Y/(Z/2Z); let us denote
them by M i , i = 1, . . . , 8. _e lattice spanned by the curves M i is clearly isomorphic
to A81 , so EZ/2Z = A81 . One can also consider a diòerent construction: one blows up
Y in the eight ûxed points for the action of Z/2Z. One obtains the surface Ỹ , with
eight exceptional curves E i , i = 1, . . . , 8. _en one li�s the action of Z/2Z on Y to an
action ofZ/2Z on Ỹ that ûxes the exceptional curves. So one obtains a smooth surface
Ỹ/(Z/2Z) that is in fact isomorphic to ̃Y/(Z/2Z). _e 2 ∶1 map Ỹ → Ỹ/(Z/2Z) is
ramiûed on the union of the curves E i and so it is branched along the union of the
curves M i . By Section 2.2, it follows that∑i M i is divisible by 2 in NS(Ỹ/G). Hence,
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EZ/2Z is generated by M i , i = 1, . . . , 8 and is isometric to A81 ; MZ/2Z is generated by
the same classes as EZ/2Z and by the divisible class∑i M i/2.

Similarly one can apply the results of Section 2.2 to the cyclic groups of order 3, 4, 6,
and 8 in order to conclude that the K3 surface Ỹ/G contains a divisible set of rational
curves. _e same is true also for cyclic groups of order 5 and 7 as proved by Nikulin in
[N3]. _is shows that for every cyclic group G acting symplectically on a K3 surface
Y , there is a ∣G∣-divisible set of rational curves on the minimal model of Y/G. _e
description of this ∣G∣-divisible set is given in [N3] and implies the description of the
lattice MG .

Let us assume that the sum of n disjoint rational curves is divisible by 2 in NS(Y).
By Section 2.2, there exists a 2 ∶1 cover of Y branched along the union of these curves.
_e covering surface is not minimal, but one can contract certain curves in order to
obtain a minimal model. It was proved by Nikulin that only two possibilities occur:
theminimalmodel of the covering surface is a K3 surface and in this case n = 8, or the
minimal model of the covering surface is an Abelian surface and in this case n = 16.
A similar result holds for covers of order 3 and was proved by Barth [Ba1]. We collect
these results in Proposition 2.8 a�er introducing some deûnitions.

Deûnition 2.7 An Ak (resp. Dm , m ≥ 4, E l , l = 6, 7, 8) conûguration of curves
is a set of k (resp. m, l) irreducible smooth rational curves whose dual diagram is a
Dynkin diagram of type Ak (resp. Dm , E l ).
A set of disjoint Ak conûgurations is n-divisible if there is a linear combination of

the curves contained in the conûguration that can be divided by n in theNéron–Severi
group of the surface.

Proposition 2.8 ([Ba1, N1]) Let Y be a K3 surface that contains a set of m disjoint
rational curves (i.e., a set of m disjoint A1-conûgurations). If this set is divisible by 2,
then m is either 8 or 16. In the ûrst case the cover surface associated to the divisible class
is a K3 surface, in the latter it is an Abelian surface.

Let Y be a K3 surface which contains a set of m disjoint A2-conûgurations. If this set
is divisible by 3, then m is either 6 or 9. In the ûrst case the cover surface associated with
the divisible class is a K3 surface, in the latter it is an Abelian surface.

In case where G is an Abelian group acting symplectically on a K3 surface Y , the
type and the number of points with a nontrivial stabilizer is determined by Nikulin in
[N3, Section 5]. In the same paper the author determines the lattice EG and MG for
all the admissible Abelian groups (we will recall this result in Proposition 5.1).

In certain cases the presence of certain conûgurations of rational curves suõces to
conclude that the K3 surface is covered either by an Abelian or by a K3 surface. Since
this property will be useful, we summarize the cases where it appears.

Proposition 2.9 Let Y be a K3 surface that admits sixteen disjoint rational curves.
_en it is the desingularization of the quotient of an Abelian surface by the groupZ/2Z.
In particular, the set of these sixteen curves is 2-divisible (see [N1, _eorem 1] ).

Let Y be a K3 surface that admits û�een disjoint rational curves. _en it is the desin-
gularization of the quotient of a K3 surface by the group (Z/2Z)4. In particular, the set
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of these û�een rational curves contains four independent subsets of eight rational curves
that are 2-divisible (see [GS2, _eorem 8.6]).

Let Y be a K3 surface that admits fourteen disjoint rational curves. _en it is the
desingularization of the quotient of a K3 surface by the group (Z/2Z)3. In particular,
the set of these fourteen rational curves contains 3 independent subsets of eight rational
curves that are 2-divisible (see [GS2, Corollary 8.7]).

Let Y be a K3 surface that admits nine disjoint A2-conûgurations of rational curves.
_en it is the desingularization of the quotient of an Abelian surface by the group Z/3Z.
In particular, the set of nine disjoint A2-conûgurations of rational curves is 3-divisible
(see [Ba1, _eorem]).

3 A Preliminary and Fundamental Result

In this section we recall a result by Bertin [Be, Lemma 3.1], and we deduce a corollary
of this result, Proposition 3.2. _ese are essential for the sequel.
First we introduce some notation, following [Be]. Let us consider a K3 surface Y .

We denote by C+ the component of the cone {v ∈ NS(Y) ⊗R such that v2 > 0} that
contains at least one ample class. We observe that the ample cone is contained in C+.
Let us deûne

∆ ∶= {δ ∈ NS(Y) such that δ2 = −2} and ∆+ ∶= {δ ∈ ∆ such that δ is eòective}.

Moreover, we let

B ∶= {b ∈ ∆+ such that b is the class of an irreducible curve}.

We observe that the curves C whose classes are contained in the set B are smooth
irreducible rational curves. We pose

K ∶= {v ∈ C+ such that vb > 0 for all b ∈ B}.

_e cone K is the ample cone of S, and so NS(Y) ∩K ∩ C+ is the set of the pseudo
ample divisors of Y . _is means that if h ∈ NS(Y) ∩K ∩ C+, then h2 > 0 and hv ≥ 0
for all the eòective classes v.

Lemma 3.1 ([Be, Lemma 3.1]) Let Y be a projective K3 surface and let h ∈ NS(Y)∩
K ∩ C+. Let us denote ∆h ∶= ∆ ∩ h⊥. _en B ∩ h⊥ is a basis of ∆h .

Proposition 3.2 Let Y be a K3 surface. Let h be a pseudoample divisor on Y and let
L = h⊥ ∶= {l ∈ NS(Y) such that l h = 0} be the orthogonal complement of h in NS(Y).
Let us assume that there exists a root lattice R such that:
(i) L is an overlattice of ûnite index of R;
(ii) the roots of R and of L coincide.
_en there exists a basis of R that is supported on smooth irreducible rational curves.

Proof Let us consider the root lattice of L, denoted by R(L). By the deûnition of
∆h , R(L) and ∆h coincide. So there is a basis of R(L) which is supported on smooth
irreducible rational curves by [Be, Lemma 3.1] (i.e., by Lemma 3.1). By the hypothesis,
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R(L) is isometric to R and so there exists a basis for R that is supported on smooth
irreducible rational curves.

4 K3 Surface Quotients of Abelian Surfaces

In this section we concentrate on K3 surfaces that are constructed as quotients of an
Abelian surface by a group of ûnite order. First, we recall some known results and
we compute the lattices associated with this construction in the case where G is not
Abelian. _e results about these lattices are summarized in Proposition 4.3. _en we
state and prove the main results of this section, which are _eorems 4.4 and 4.7.

4.1 Preliminaries and Known Results

Deûnition 4.1 Let A be an Abelian surface. Let G ⊂ Aut(A) be a ûnite group of
automorphisms of A. Let us consider the minimal model of A/G and let us call it XG .

Let K i be the curves on XG arising by the resolution of the singularities of A/G.
Let FG be the lattice spanned by the curves K i and let KG be the minimal primitive
sublattice of NS(XG) containing the curves K i . Clearly, KG is an overlattice of ûnite
index, rG , of FG . We will say that the lattice KG is a lattice of Kummer type.

_e following well known result, due to Fujiki, classiûes the group G ⊂ Aut(A)
such that G does not contain translations and XG is a K3 surface.

_eorem 4.2 ([F]) Let G be a group of automorphisms of an Abelian surface A that
does not contain translations. If the minimal resolution of A/G is a K3 surface, then
G = Z/nZ, n = 2, 3, 4, 6, or G ∈ {D8 ,D12 ,T}.

_e requirement that G does not contain translations is not seriously restrictive;
indeed, the quotient of an Abelian surface by a ûnite group of translations produces
another Abelian surface. Up to replacing the ûrst Abelian surface by its quotient by
translations, we can assume without loss of generality that the group G does not con-
tain translations.

4.2 Non-cyclic Quotients of Abelian Surfaces

_e aim of this section is to describe the lattices KG in case G is not cyclic. _ese
lattices were also computed in [W], but two of the results given in [W, Proposition
2.1] are incorrect. In particular, we prove that the lattices KG are not the ones given in
[W, Proposition 2.1] if G = D′

8 and G = D12.

4.2.1 The Actions of D8 and D′

8

LetG be the quaternion group. _ere are two diòerent families of tori onwhichwe can
deûne the action ofG in such a way that XG is a K3 surface, and on these two diòerent
families G has diòerent sets of points with nontrivial stabilizer. So the quotients of an
Abelian surface by each of these actions produce two diòerent singular surfaces with
diòerent sets and types of singularities.
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_e group G has the presentation

⟨α4 , β ∣ α4
4 = β4 = 1, α2

4 = β2 , α−1
4 βα4 = β−1⟩ .

We pose A ∶= C2/Λ and

α4∶AÐ→ A, (z1 , z2) z→ (iz1 ,−iz2)
β∶AÐ→ A, (z1 , z2) z→ (−z2 , z1).

_e actions of α4 and β are algebraic automorphisms on both A ∶= E i × E i (where
E i is the elliptic curve with j-invariant equal to 1728, i.e., the elliptic curve associated
with the lattice ⟨1, i⟩) and the Abelian surface A′ ∶= C2/Λ, where

Λ ∶= ⟨(1, 0), (i , 0), ( 1+i
2 ,

1+i
2 ) , ( 1+i

2 ,
i−1
2 )⟩ .

So the group generated by α4 and β is both a subgroup of Aut(A) and by Aut(A′).
We denote it byD8 when it is considered as subgroup of Aut(A) and byD′

8 when it is
considered as subgroup of Aut(A′).

We now identify the points of A (resp. A′) that have a nontrivial stabilizer for D8
(resp. D′

8). All of them are 2-torsion points and indeed are ûxed for α2
4 = β2. We

obtain Tables 1 and 2
We observe that α2

4(= β2) is the center of G ∶= ⟨α4 , β⟩, and in particular that it is
a normal subgroup of ⟨α4 , β⟩. So, in order to construct A/G, one can ûrst consider
A/⟨α2

4⟩ and then (A/⟨α2
4⟩)/Q, where Q is the quotient group G/⟨α2

4⟩. _e group Q is
isomorphic to (Z/2Z)2 and is generated by α4 and β, where g is the image of g ∈ G
under the quotient map G → G/⟨α2

4⟩.
_e automorphism α2

4 is (z1 , z2) ↦ (−z1 ,−z2), and the surface A/α2
4 is singular

in the image of the sixteen 2-torsion points of A. We denote by A[2] the set of these
points on A. _e desingularization, Km(A), of A/⟨α2

4⟩ is obtained by blowing up the
singular points once, and it is the Kummer surface of A. Let (p, q) ∈ A[2]; then we
denote by K(p,q) ⊂ Km(A) the sixteen rational curves arising from the desingulariza-
tion of A/⟨α2

4⟩.
_e minimal resolution XG of A/G is birational to the minimal resolution of

Km(A)/Q, where Q = G/⟨α2
4⟩. Since the minimal resolution of A/G is a K3 sur-

face, and birational K3 surfaces are isomorphic, we conclude that the minimal model
of A/G is the minimal model of Km(A)/Q. We recall that Km(A) is a K3 surface and
Q = (Z/2Z)2 acts on Km(A) preserving the symplectic structure (indeed the quo-
tient has the induced symplectic structure). _e action of the group (Z/2Z)2 on a K3
surface is very well known (see [N3, Section 5]). Each copy of Z/2Z in (Z/2Z)2 sta-
bilizes exactly eight points and there are no points ûxed by the full group. So there are
24 points with nontrivial stabilizer in Km(A) and then in the quotient Km(A)/Q we
have twelve singular points, each of themof typeA1. _is can be also checked by hand,
considering the action of Q over the curves K(p,q). By Tables 1 and 2, G has no points
with a nontrivial stabilizer outside the set of the 2-torsion points A[2]. So the points
with a nontrivial stabilizer for Q on Km(A) are all contained in the curves K(p,q).

If the point (p, q) ∈ A is ûxed by G, then Q ≃ (Z/2Z)2 preserves the curve K(p,q),
which is a copy ofP1. Hence,Q has six pointswith nontrivial stabilizer onK(p,q). So in
Km(A)/Q there are three singular points on the image of K(p,q). Hence on XG there
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Points in the same orbit Stabilizer

(0, 0) D8 = ⟨α4 , β⟩
( 1+i

2 ,
1+i
2 ) D8 = ⟨α4 , β⟩

( 1
2 ,

1
2 ), (

i
2 ,

i
2 ) Z/4Z = ⟨β⟩

(0, 1+i
2 ), ( 1+i

2 , 0) Z/4Z = ⟨α4⟩
( 1

2 ,
i
2 ), (

i
2 ,

1
2 ) Z/4Z = ⟨α4 ○ β⟩

( 1
2 , 0), (

i
2 , 0), (0,

1
2 ), (0,

i
2 ) Z/2Z = ⟨α2

4⟩ = ⟨β2⟩
( 1+i

2 ,
1
2 ), (

1+i
2 ,

i
2 ), (

1
2 ,

1+i
2 ), ( i

2 ,
1+i
2 ) Z/2Z = ⟨α2

4⟩ = ⟨β2⟩

Table 1: Points of Awith nontrivial stabilizer for D8

Points in the same orbit Stabilizer

(0, 0) D′

8 = ⟨α4 , β⟩
( 1+i

2 , 0) D′

8 = ⟨α4 , β⟩
( i

2 ,
i
2 ) D′

8 = ⟨α4 , β⟩
( 1

2 ,
i
2 ) D′

8 = ⟨α4 , β⟩
( 1

2 , 0), (
i
2 , 0), (0,

i
2 ), (

1+i
2 ,

i
2 ) Z/2Z = ⟨α2

4⟩ = ⟨β2⟩
( 1+i

4 ,
1+i
4 ), ( 1−i

4 ,
i−1
4 ), ( i−1

4 ,
i−1
4 ), (−1−i

4 , i+1
4 ) Z/2Z = ⟨α2

4⟩ = ⟨β2⟩
( 1+i

4 ,
i−1
4 ), ( 1−i

4 ,
i+1
4 ), ( i−1

4 ,
i+1
4 ), (−1−i

4 , i−1
4 ) Z/2Z = ⟨α2

4⟩ = ⟨β2⟩

Table 2: Points of A′ with nontrivial stabilizer for D′

8

are three rational curves that intersect the image of K(p,q)(arising from the desingu-
larization of these points). We call these curves K(i)

(p,q), i = 1, 2, 3 and let K(0)
(p,q) be the

strict transform of the image of K(p,q) under the quotient map Km(A) → Km(A)/Q.
_e curves K(i)

(p,q), i = 0, 1, 2, 3 generate a copy of the lattice D4 in NS(XG).
If the point (p, q) ∈ A has the group Z/4Z ⊂ G as stabilizer, then there is an-

other point (p′ , q′) in its orbit. _e quotient group Q switches the curves K(p,q) and
K(p′ ,q′) and has four points with nontrivial stabilizer in K(p,q)∪K(p′ ,q′) (two on each
curve). So on the quotient surface Km(A)/Q there is a curve K(0)

(p,q) which is the
common image of K(p,q) and of K(p′ ,q′), and there are two singular points on such a
curve. We denote by K(1)

(p,q) and K(2)
(p,q) the curves in XG arising from the desingular-

ization of these two singular points. _e curves K(i)
(p,q), i = 0, 1, 2 generate a copy of

A3 in NS(XG) (here, with an abuse of notation, we denote by K(0)
(p,q) both a curve on

Km(A)/Q and its strict transform on XG).

https://doi.org/10.4153/CJM-2015-058-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-058-1


On K3 Surface Quotients of K3 or Abelian Surfaces 349

K(0)
(0,0)

K(1)
(0,0)

K(2)
(0,0)

K(3)
(0,0)

K(0)
(

1+i
2 , 1+i2 )

K(1)
(

1+i
2 , 1+i2 )

K(2)
(

1+i
2 , 1+i2 )

K(3)
(

1+i
2 , 1+i2 )

K(0)
(

1
2 ,

1
2 )

K(1)
(

1
2 ,

1
2 )

K(2)
(

1
2 ,

1
2 )

K(0)
(0, 1+i2 )

K(1)
(0, 1+i2 )

K(2)
(0, 1+i2 )

K(0)
(

1
2 ,

i
2 )

K(1)
(

1
2 ,

i
2 )

K(2)
(

1
2 ,

i
2 )

K(0)
(

1
2 ,0)

K(0)
(

1+i
2 , 12 )

Figure 1: Curves of FD8 on XD8

K(0)
(0,0)

K(1)
(0,0)

K(2)
(0,0)

K(3)
(0,0)

K(0)
(

1+i
2 ,0)

K(1)
(

1+i
2 ,0)

K(2)
(

1+i
2 ,0)

K(3)
(

1+i
2 ,0)

K(0)
(
i
2 ,

i
2 )

K(1)
(
i
2 ,

i
2 )

K(2)
(
i
2 ,

i
2 )

K(3)
(
i
2 ,

i
2 )

K(0)
(

1
2 ,

i
2 )

K(1)
(

1
2 ,

i
2 )

K(2)
(

1
2 ,

i
2 )

K(3)
(

1
2 ,

i
2 ) K(0)

(
1
2 ,0)

K(0)
(

1+i
4 , 1+i4 )

K(0)
(

1+i
4 , i−1

4 )

Figure 2: Curves of FD′8 on XD′8

If the point (p, q) ∈ A has the group Z/2Z ⊂ G as stabilizer, it is generated by
α2

4 and in the same orbit of (p, q) there are the other three points (p′ , q′), (p′′ , q′′),
(p′′′ , q′′′). _e group Q permutes the curves

K(p,q) , K(p′ ,q′) , K(p′′ ,q′′) , K(p′′′ ,q′′′)

in Km(A). So their image in XG is a unique curve K(0)
(p,q).

_e curves arising from the desingularization of A/D8 (resp. A′/D′

8) are repre-
sented in Figure 1 (resp. Figure 2).

4.2.2 The Lattice KD8

Let us now ûx a speciûc action of G. In particular, let the Abelian surface be A (e.g.,
A ≃ E i×E i) and soG ⊂ Aut(A) is the groupD8. In this case the lattice FD8 is isometric
to D2

4 ⊕ A3
3 ⊕ A2

1 ; see Table 2. Its discriminant group is (Z/2Z)6 × (Z/4Z)3 and is
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generated by the following classes:

d1 ∶=
1
2
(K(1)
(0,0) + K(2)

(0,0)) , d2 ∶=
1
2
(K(1)
(0,0) + K(3)

(0,0)) ,

d3 ∶=
1
2
(K(1)
(

1+i
2 , 1+i2 )

+ K(2)
(

1+i
2 , 1+i2 )

) , d4 ∶=
1
2
(K(1)
(

1+i
2 , 1+i2 )

+ K(3)
(

1+i
2 , 1+i2 )

) ,

d5 ∶=
1
2
K(0)
(

1
2 ,0)

, d6 ∶=
1
2
K(0)
(

1+i
2 , 12 )

,

d7 ∶=
1
4
(K(1)
(

1
2 ,

1
2 )
+ 2K(0)

(
1
2 ,

1
2 )
+ 3K(2)

(
1
2 ,

1
2 )
) , d8 ∶=

1
4
(K(1)
(0, 1+i2 )

+ 2K(0)
(0, 1+i2 )

+ 3K(2)
(0, 1+i2 )

) ,

d9 ∶=
1
4
(K(1)
(

1
2 ,

i
2 )
+ 2K(0)

(
1
2 ,

i
2 )
+ 3K(2)

(
1
2 ,

i
2 )
) .

_e set of twelve curves

S ∶= {K( j)
(0,0) ,K

( j)
(

1+i
2 , 1+i2 )

,K(k)
(

1
2 ,

1
2 )
,K(k)
(0, 1+i2 )

,K(k)
(

1
2 ,

i
2 )
} ,

j = 1, 2, 3, k = 1, 2 arises from the desingularization of the quotient of a K3 surface (the
surface Km(A)) by the group (Z/2Z)2. By [N3, Section 6, case 2a), equation (6.17)],
S contains two independent subsets of eight curves that are 2-divisible. Indeed the
two classes

v1 ∶= d1 + d3 + 2d7 + 2d8 , v2 ∶= d2 + d4 + 2d8 + 2d9

are contained in NS(XG). Moreover, the set S ∪ {K
(

1+i
2 ,0) ,K( 1+i

2 , 12 )
} forms a set of

fourteen disjoint rational curves contained in the curves of FD8 (this set consists of
the vertical curves in Figure 1). By Proposition 2.9, theminimal primitive sublattice of
the Néron–Severi group that contains these fourteen curves is spanned by the curves
and by three other divisible classes. So there is another divisible class contained in
NS(XG), namely

v3 ∶= d1 + d3 + 2d9 + d5 + d6 .

Let us denote by LD8 the lattice spanned by FD8 and the classes v1, v2, v3. Its dis-
criminant group is (Z/4Z)3 and is generated by:

δ1 ∶= d4 + d7 = 1
4(2K(1)

(
1+i
2 , 1+i2 )

+ 2K(2)
(

1+i
2 , 1+i2 )

+ K(1)
(

1
2 ,

1
2 )
+ 2K(0)

(
1
2 ,

1
2 )
+ 3K(2)

(
1
2 ,

1
2 )
) ,

δ2 ∶= d3 + d4 + d8 = 1
4(2K(2)

(
1+i
2 , 1+i2 )

+ 2K(3)
(

1+i
2 , 1+i2 )

+ K(1)
(0, 1+i2 )

+ 2K(0)
(0, 1+i2 )

+ 3K(2)
(0, 1+i2 )

) ,
δ3 ∶= d3 + d5 + d9

= 1
4(2K(1)

(
1+i
2 , 1+i2 )

+ 2K(2)
(

1+i
2 , 1+i2 )

+ 2K
(

1
2 ,0)

+ K(1)
(

1
2 ,

i
2 )
+ 2K(0)

(
1
2 ,

i
2 )
+ 3K(2)

(
1
2 ,

i
2 )
) .

_ere are two possibilities, either KD8 ≃ LD8 or KD8 is an overlattice of LD8 of ûnite
index; see Section 2.1. In the latter case KD8 contains an elementw that is nontrivial in
the discriminant group of LD8 . So w = ∑3

i=1 α iδ i , α i ∈ Z and (α1 , α2 , α3) /≡ (0, 0, 0)
mod 4. If (α1 , α2 , α3) ≡ (2, 2, 2) mod 4, let z ∶= w; otherwise, let z ∶= 2w. _e
element z ∈ KD8 consists of the sum of certain disjoint rational curves divided by 2.
_ese curves are chosen in

{K(1)
(

1
2 ,

1
2 )
,K(2)
(

1
2 ,

1
2 )
,K(1)
(0, 1+i2 )

,K(2)
(0, 1+i2 )

,K(1)
(

1
2 ,

i
2 )
,K(2)
(

1
2 ,

i
2 )
}
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(which are the ones which appear in δ i with an odd coeõcient). By Proposition 2.8 a
set of at most six disjoint rational curves cannot be divisible by 2, so w cannot exist.
We conclude that LD8 ≃ KD8 , and it is generated by the generators of FD8 and by
{v1 , v2 , v3}.

_is result agrees with the one given in [W, Proposition 2.1].

4.2.3 The Lattice KD′8

We now consider the Abelian surface A′, so G ⊂ Aut(A′) is D′

8. In this case, FD′8 is
D4

4 ⊕ A3
1 . Its discriminant group is (Z/2Z)11 and is generated by

d′1 ∶=
1
2
(K(1)
(0,0) + K(2)

(0,0)) , d′2 ∶=
1
2
(K(1)
(0,0) + K(3)

(0,0)) ,

d′3 ∶=
1
2
(K(1)
(

1+i
2 ,0) + K(2)

(
1+i
2 ,0)

) , d′4 ∶=
1
2
(K(1)
(

1+i
2 ,0) + K(3)

(
1+i
2 ,0)

) ,

d′5 ∶=
1
2
(K(1)
(

i
2 ,

i
2 )
+ K(2)

(
i
2 ,

i
2 )
) , d′6 ∶=

1
2
(K(1)
(

i
2 ,

i
2 )
+ K(3)

(
i
2 ,

i
2 )
) ,

d′7 ∶=
1
2
(K(1)
(

1
2 ,

i
2 )
+ K(2)

(
1
2 ,

i
2 )
) , d′8 ∶=

1
2
(K(1)
(

1
2 ,

i
2 )
+ K(3)

(
1
2 ,

i
2 )
) ,

d′9 ∶=
1
2
K
(

1
2 ,0)

, d′10 ∶=
1
2
K
(

1+i
4 , 1+i4 )

,

d′11 ∶=
1
2
K(1)
(

1+i
2 , i−1

2 )
.

_e set of twelve curves

S ∶= {K( j)
(0,0) ,K

( j)
(

1+i
2 ,0) ,K

( j)
(

i
2 ,

i
2 )
,K( j)
(

1
2 ,

i
2 )
} , j = 1, 2, 3,

arises from the desingularization of the quotient of a K3 surface (the surface Km(A′))
by the group (Z/2Z)2 (i.e., the group Q ∶= G/⟨α2

4⟩) so, by [N3, Section 6, case 2a),
equation (6.17)], there are two divisible classes whose curves are in S. Hence,

(4.1) v′1 ∶= d′1 + d′3 + d′5 + d′7 , v′2 ∶= d′2 + d′4 + d′6 + d′8
are contained in NS(XG). Moreover, in the lattice FD′8 it is easy to identify a set of
û�een disjoint rational curves (the vertical ones in Figure 2), which contains the set S.
By Proposition 2.9 the minimal primitive sublattice of the Néron–Severi group which
contains these curves is spanned by the curves and by four other divisible classes. Two
of these divisible classes are v′1 and v′2; the others are

v′3 ∶= d′1 + d′3 + d′4 + d′6 + d′9 + d′10 , v′4 ∶= d′1 + d′4 + d′7 + d′8 + d′9 + d′11 .
_ese four divisible classes are also contained in KD′8 . Let us denote by LD′8 the lattice
spanned by FD′8 and by the classes v′1, v′2, v′3, v′4. Its discriminant group is (Z/2Z)3 and
is generated by

δ′1 ∶= d′2 + d′3 + d′4 + d′5 , δ′2 ∶= d′3 + d′4 + d′6 + d′7 , δ′3 ∶= d′4 + d′5 + d′6 + d′7 + d′11 .
If KD′8 does not coincide with LD′8 , then there is a vector w that is nontrivial in the

discriminant group of LD′8 , and is not contained in KD′8 , by Section 2.1. _e curves
that appear with a nontrivial coeõcient in δ′1, δ′2, and δ′3 are all contained in the set of
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û�een disjoint rational curves considered above. So if a vector as w exists, it gives an
overlattice of the lattice spanned by û�een disjoint rational curves with index greater
than 24 and contained in the Néron–Severi group of a K3 surface, but this is impossi-
ble. Indeed, if we construct an overlattice of index 24 of A15

1 , every 2-divisible set con-
tains exactly eight disjoint rational curves by Proposition 2.8, and two divisible sets
have exactly four curves in common. Let us denote by e i the û�een classes generating
A15

1 . _e ûrst divisible set contains eight classes, so up to permutation of the indices
we can assume that it is S1 ∶= {e1 , . . . , e8}. _e second one contains eight classes, four
of them in common with S1, so we can assume that it is S2 ∶= {e1 , . . . , e4 , e9 , . . . , e12}.
Similarly, the third can be chosen to be S3 ∶= {e1 , e2 , e5 , e6 , e9 , e10 , e13 , e14}. _is
forces the fourth to be S4 ∶= {e1 , e3 , e5 , e7 , e9 , e11 , e13 , e15}. But now it is not possi-
ble to ûnd another subset of {e1 , . . . , e15} that contains eight elements and such that
its intersection with each set Si contains exactly four elements.

We conclude that LD′8 coincides with KD′8 , which is generated by the vectors in FD′8
and by the four vectors v′1, v′2, v′3 and v′4.

_is result is diòerent to the one given in [W]. Indeed, the lattice of Kummer type
ΠD′8 described in [W, Proposition 2.1] contains a vector that consists of six disjoint
rational curves divided by 2, which is not possible by Proposition 2.8.

4.2.4 The Lattice KT

Let us now consider the torus A′. _ere is an extra automorphism, which is not con-
tained in D′

8 and acts on A′: the automorphism

γ∶ (z1 , z2) Ð→ ( i − 1
2

(z1 − z2),
−i − 1

2
(z1 + z2)) .

_e automorphism γ has order three and the group ⟨α4 , β, γ⟩ is the binary tetrahedral
group T. It is the semidirect product ⟨γ⟩ ⋉D′

8. In particularD′

8 is a normal subgroup
of T hence A′/T is birational to (A′/D′

8)/⟨γ⟩, where γ is the image of γ under the
quotient map T → T/D′

8. Hence, the K3 surface XD′8 , desingularization of A′/D′

8,
admits a symplectic automorphism, γX , of order 3 induced by γ. _e K3 surface XT,
desingularization of A/T, is then isomorphic to the K3 which is the desingularization
of XD′8/γX . In order to construct FT, we consider the action of γX on the curves of
FD′8 , see Figure 2. Since

γ(( 1 + i
2
, 0)) = ( 1

2
,
i
2
) and γ(( 1

2
,
i
2
)) = ( i

2
,
i
2
) ,

the three copies of D4, whose components are

K( j)
(

1+i
2 ,0) , K( j)

(
1
2 ,

i
2 )
, and K( j)

(
i
2 ,

i
2 )
, j = 0, 1, 2, 3

are permuted by γX . Hence these three copies of D4 are identiûed on XT and corre-
spond to a unique copy of D4 on XT. _e same happens to the three copies of A1,
which are permuted by γX and thus give a unique copy of A1 on XT. Since (0, 0)
is a ûxed point for γ, the automorphism γX preserves the set of curves {K( j)

(0,0)},
j = 0, 1, 2, 3. Indeed γX preserves the curve K(0)

(0,0) and permutes the curves K( j)
(0,0),

j = 1, 2, 3. So it is not the identity on K(0)
(0,0) (since it moves the intersection points
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among K(0)
(0,0) and K( j)

(0,0), j = 1, 2, 3) and thus has two ûxed point on it. On the quo-
tient these two points correspond to two singularities of type A2. _is gives six curves
on XT (one is the image of K(0)

(0,0), one is the common image of K( j)
(0,0) for j = 1, 2, 3,

four come from the desingularization of the two singular points of type A2) and their
dual graph is a copy of E6 (the image of K(0)

(0,0) intersects the image of K( j)
(0,0) and one

curve of each copy of the two A2 arising from the desingularization).
We recall that a symplectic automorphism of order three on a K3 surface has ex-

actly six ûxed points. Since γX ûxes two points on K(0)
(0,0) and has no ûxed points

on the other curves of FD′8 , it necessarily ûxes four points in XD′8 outside the curves
in FD′8 . Hence the desingularization XT introduces four disjoint A2-conûgurations.
_us, the lattice FT is isometric to E6 ⊕ D4 ⊕ A1 ⊕ A4

2. We ûx the following notation:

e3 e2 e0 e4 e5 f1 f0 f2

e1 f3 ,

where {e j} forms a basis of E6 and { f j} forms a basis of D4. We denote by a(1) a
generator of A1 and by a(h)j , j = 1, 2, h = 1, 2, 3, 4, the basis of the h-th copy of A2. A
basis for the discriminant group of FT is given by

d1 ∶=
1
3
(e2 + 2e3 + e4 + 2e5) +

1
2
( f1 + f2), d2 ∶=

1
3
(a(2)1 + 2a(2)2 ) + 1

2
( f1 + f3),

d3 ∶=
1
3
(a(3)1 + 2a(3)2 ) + 1

2
a(1) , d4 ∶=

1
3
(a(4)1 + 2a(4)2 ),

d5 ∶=
1
3
(a(5)1 + 2a(5)2 ).

_e curves e2 , e3 , e4, e5, a( j)1 , a( j)2 , j = 2, 3, 4, 5 are the curves arising from the
resolution of the quotient XD′8/γX . So by Section 2.2 (see also Proposition 2.8), the
class

(e2 + 2e3 + e4 + 2e5 +
4

∑
j=1

(a j
1 + 2a j

2))/3

is contained in NS(XT) and hence also in KT (which is the minimal primitive sub-
lattice of NS(XT) which contains the curves eh , f j , a(s)r ). So the vector v ∶= 4d1 +
4d2 + 4d3 + d4 + d5 mod FT is contained in KT. Let us denote by LT the lattice gen-
erated by the curves of FT and v. Its discriminant group is generated by δ1 ∶= d1 + d2,
δ2 ∶= d1 + d3, δ3 ∶= d1 + d4. If LT /= KT, then there exists a vector w ∈ KT, which
is a nontrivial element of the discriminant group of LT, which is (Z/6Z)3. So either
w or a multiple of w generates either Z/3Z or Z/2Z in the discriminant group of LT.
Every linear combination of δ1, δ2 and δ3 which generates Z/2Z is the sum of at most
four disjoint rational curves divided by 2, and so cannot be a class in NS(XT), by
Proposition 2.8. Similarly, every linear combination of δ1, δ2, and δ3 that generates
Z/3Z contains at most ûve disjoint A2-conûgurations of rational curves. By Propo-
sition 2.8 it is impossible to construct a 3-divisible class with fewer than six disjoint
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A2-conûgurations. We conclude that KT = LT is generated by v and by the curves in
FT.

_is result agrees with the one given in [W].

4.2.5 The Lattice KD12

Let A be the Abelian surface A ∶= Eζ3 × Eζ3 , where ζ3 is a primtive third root of
unity and Eζ3 is the elliptic curve with j-invariant 0. Let us now consider the ac-
tion of the group D12, which is algebraic on A and is generated by the two automor-
phisms α6∶ (z1 , z2) ↦ (ζ6z1 , ζ56z2) (where ζ6 is a 6-th primitive root of unity), and
β∶ (z1 , z2) ↦ (−z2 , z1). We observe that there are the relations α3

6 = β2, α6
6 = β4 = 1,

α−1
6 βα6 = β−1, so α6 and β generate D12 ⊂ Aut(A). _e points of A with nontrivial

stabilizer for D12 are those in Table 3:

points in the same orbit stabilizer
(0, 0) D12 = ⟨α6 , β⟩

(0, 1−ζ3
3 ), (−1+ζ3

3 , 0), ( 1−ζ3
3 , 0), (0, −1+ζ3

3 ) Z/3Z = ⟨α2
6⟩

( 1−ζ3
3 , 1−ζ3

3 ), (−1+ζ3
3 , 1−ζ3

3 ), ( 1−ζ3
3 , −1+ζ3

3 ), (−1+ζ3
3 , −1+ζ3

3 ) Z/3Z = ⟨α2
6⟩

( 1
2 ,

1
2 ), (

ζ3
2 ,

1+ζ3
2 ), ( 1+ζ3

2 , ζ32 ) Z/4Z = ⟨β⟩
( ζ3

2 ,
ζ3
2 ), ( 1+ζ3

2 , 1
2 ), (

1
2 ,

1+ζ3
2 ) Z/4Z = ⟨β⟩

( 1+ζ3
2 , 1+ζ3

2 ), ( 1
2 ,

ζ3
2 ), ( ζ3

2 ,
1
2 ) Z/4Z = ⟨β⟩

(0, 1
2 ), (0,

ζ3
2 ), (0, 1+ζ3

2 ), ( 1
2 , 0), (

ζ3
2 , 0), (

1+ζ3
2 , 0) Z/2Z = ⟨α3

6⟩

Table 3: Points of Awith nontrivial stabilizer for D12

It follows that FD12 is isometric to D5 ⊕ A2
2 ⊕ A3

3 ⊕ A1.
First, we consider the quotient by ⟨α2

6⟩, which is a normal subgroup of D12. _e
quotient A/⟨α2

6⟩ is a surface with nine singularities of type A2, in the image of the
points p contained in the set

P ∶= {(0, 0), (0, 1 − ζ3
3

) , ( −1 + ζ3
3

, 0) , ( 1 − ζ3
3

, 0) , (0, −1 + ζ3
3

) ,

( 1 − ζ3
3

,
1 − ζ3

3
) , ( −1 + ζ3

3
,
1 − ζ3

3
) , ( 1 − ζ3

3
,
−1 + ζ3

3
) , ( −1 + ζ3

3
,
−1 + ζ3

3
)} .

_is introduces eighteen curves on the K3 surface Ã/⟨α2
6⟩, which is the desingular-

ization of A/⟨α2
6⟩, namely the curves K j

p , p ∈ P, j = 1, 2, which desingularize the point
p ∈ P. _e automorphism β ∈ Aut(A) induces an automorphism β′ on Ã/⟨α2

6⟩. Since
β ûxes (0, 0), β′ preserves the set of curves {K( j)

(0,0)}, j = 1, 2. _e automorphism β′

ûxes the intersection point K(1)
(0,0) ∩ K(2)

(0,0) and switches the curves K(1)
(0,0) and K(2)

(0,0).
_e square (β′)2 preserves the curves K(1)

(0,0) and K(2)
(0,0) and ûxes their intersection

point and another point on each curve. _e points in P−{(0, 0)} have a trivial stabi-
lizer with respect to the action of ⟨β⟩ on A, so the eight A2-conûgurations generated
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K(4)
(0,0)K

(0)
(0,0) K(1)

(0,0)K
(3)
(0,0)

K(2)
(0,0)

K(2)
(0, 1−ζ33 )

K(1)
(0, 1−ζ33 )

K(2)
(

1−ζ3
3 , 1−ζ33 )

K(1)
(

1−ζ3
3 , 1−ζ33 )

K(1)
(

1
2 ,

1
2 )

K(3)
(

1
2 ,

1
2 )

K(2)
(

1
2 ,

1
2 )

K(1)
(
ζ3
2 ,

ζ3
2 )

K(3)
(
ζ3
2 ,

ζ3
2 )

K(2)
(
ζ3
2 ,

ζ3
2 )

K(1)
(

1+ζ3
2 , 1+ζ32 )

K(3)
(

1+ζ3
2 , 1+ζ32 )

K(2)
(

1+ζ3
2 , 1+ζ32 )

K
(0, 12 )

Figure 3: Curves of FD12 on XD12

byK j
p , p ∈ P−{(0, 0)}, j = 1, 2, aremoved by β′. In particular, neither β′ or (β′)2 have

ûxed points on these curves. _e automorphism β ûxes other nine points of A (see
Table 3), which correspond to three points on Ã/⟨α2

6⟩ − {K j
p} (where p ∈ P, j = 1, 2)

and thus to three singularities of type A3 on Ã/⟨α2
6⟩/β′. _e automorphism β2 ûxes

other six points on A (see Table 3), which correspond to 2 points of Ã/⟨α2
6⟩ − {K( j)p }

(where p ∈ P, j = 1, 2) and thus to one singular point of type A1 on Ã/⟨α2
6⟩/β′.

Hence in the desingularization of (Ã/⟨α2
6⟩)/β′, which is isomorphic to XD12 , there

are the following curves:

K(h)
(0,0) , h = 0, . . . , 4,

which form a D5; the curves

K( j)
(0, 1−ζ33 )

and K( j)
(

1−ζ3
3 , 1−ζ33 )

, j = 1, 2,

which form two disjoint copies of A2 and that are image of the eight copies of A2 not
preserved by β′; the curves

K( j)
(

1
2 ,

1
2 )
, K( j)

(
ζ3
2 ,

ζ3
2 )
, K( j)

(
1+ζ3
2 , 1+ζ32 )

, j = 1, 2, 3,

which form three disjoint copies of A3, and the curve K
(0, 12 )

, which is a copy of A1.
_e intersection properties of these curves are presented in Figure 3.
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_e discriminant group of FD12 is (Z/12Z)2 × (Z/4Z)2 ×Z/2Z, generated by

d1 ∶=
1
4
(2K(4)

(0,0) + K(1)
(0,0) + 2K(2)

(0,0) + 3K(3)
(0,0)) ,

d2 ∶=
1
4
(K(1)
(

1
2 ,

1
2 )
+ 2K(2)

(
1
2 ,

1
2 )
+ 3K(3)

(
1
2 ,

1
2 )
) + 1

3
(K(1)
(0, 1−ζ33 )

+ 2K(2)
(0, 1−ζ33 )

) ,

d3 ∶=
1
4
(K(1)
(
ζ3
2 ,

ζ3
2 )
+ 2K(2)

(
ζ3
2 ,

ζ3
2 )
+ 3K(3)

(
ζ3
2 ,

ζ3
2 )

) + 1
3
(K(1)
(

1−ζ3
3 , 1−ζ33 )

+ 2K(2)
(

1−ζ3
3 , 1−ζ33 )

) ,

d4 ∶=
1
4
(K(1)
(

1+ζ3
2 , 1+ζ32 )

+ 2K(2)
(

1+ζ3
2 , 1+ζ32 )

+ 3K(3)
(

1+ζ3
2 , 1+ζ32 )

) ,

d5 ∶=
1
2
K
(0, 12 )

.

_e curves

K( j)
(0,0) , j = 1, 2, 3, 4, 5, K(h)

(
1
2 ,

1
2 )
, K(h)

(
ζ3
2 ,

ζ3
2 )
, K(h)

(
1+ζ3
2 , 1+ζ32 )

, h = 1, 2, 3, and K
(0, 12 )

arise from the desingularization of the Z/4Z quotient Ã/⟨α2
6⟩ → (Ã/⟨α2

6⟩)/β′. So the
class vD12 ∶= d1 + 9d2 + 9d3 + d4 + d5 is contained in NS(XD12), because XD12 is the
resolution of Ã/⟨α2

6⟩)/β′.
Let us denote by LD12 the lattice generated by the curves of FD12 and by vD12 . _e

discriminant group of LD12 is (Z/12Z)2 × Z/2Z and is generated by the vectors δ1 ∶=
d1 + 9d2, δ2 ∶= d1 + 9d3, δ3 ∶= 2d1 + d5. Either KD12 coincides with LD12 or it is
an overlattice of ûnite index of LD12 . In the latter case there would be a nontrivial
vector w in the discriminant group of LD12 , which is contained in KD12 . Either w or a
multiple of w generates either Z/2Z or Z/3Z in the discriminant group. It is easy to
check that there is no vector w as required, since it should correspond either to the
sum of n, n ≤ 7, disjoint rational curves divided by 2 or to the sum of m disjoint A2-
conûgurations divided by 3, with m ≤ 2. By Proposition 2.8, these two possibilities
are not acceptable, so KD12 coincides with LD12 .

_is result contradicts the one given in [W]. In our construction the lattice of
Kummer type is generated by the classes of the curves arising from the desingulariza-
tion of A/G and by a class 4-divisible (i.e., the vector vD12 ). In [W, Proposition 2.1]
the lattice of Kummer type (Π12, with the notation used in [W]), is claimed to be
generated by the classes of the curves arising from the desingularization of A/G and
by a class 2-divisible (and not 4-divisible). _e discriminant group of the lattice ΠD12

described in [W] is (Z/12Z)2 × (Z/2Z)3. _is group has ûve generators. Since the
rank of ΠD12 is 19 and the rank of ΛK3 is 22, this is impossible because of Proposition
2.3.

4.3 The Kummer Type Lattices

Here we collect the results obtained above and the known ones in order to give a
description of all the lattices of Kummer type. In particular, we show that for all the
lattices KG of Kummer type, the roots of KG coincide with the roots of FG , which will
be very useful later.
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Proposition 4.3 (See [N1] for G = Z/2Z; [Be] for G = Z/nZ, n = 3, 4, 6; Section 4.2
and [W] for G = D8, D′

8, D12, T).) Let A be an Abelian surface with an action of a
ûnite group G that does not contain translations. Let XG be the minimal model of A/G.
If XG is a K3 surface, then G is one of the following seven groups: Z/2Z, Z/3Z, Z/4Z,
Z/6Z,D8,D12,T. We recall that there are two diòerent actions of the quaternion group,
denoted by D8 and D′

8.
Let us assume that XG is a K3 surface (so G is one of the seven groups listed above).

Let K i be the curves on XG arising by the resolution of the singularities of A/G. _en
the lattice FG spanned by the curves K i is one of the following root lattices:

G Z/2Z Z/3Z Z/4Z Z/6Z
FG A16

1 A9
2 A4

3 ⊕ A6
1 A5 ⊕ A4

2 ⊕ A51

G D8 D′

8 D12 T
FG D2

4 ⊕ A3
3 ⊕ A2

1 D4
4 ⊕ A3

1 D5 ⊕ A3
3 ⊕ A2

2 ⊕ A1 E6 ⊕ D4 ⊕ A4
2 ⊕ A1

.

Let KG be theminimal primitive sublattice of NS(XG) containing the curves K i , then
KG is an overlattice of ûnite index rG of FG with the following properties: _e roots of

G Z/2Z Z/3Z Z/4Z Z/6Z
rG 25 33 24 6

rank(KG) 16 18 18 18
K∨

G/KG (Z/2Z)6 (Z/3Z)3 (Z/4Z)2 × (Z/2Z)2 (Z/6Z)3 ×Z/2Z

G D8 D′

8 D12 T
rG 23 24 4 3

rank(KG) 19 19 19 19
K∨

G/KG (Z/4Z)3 (Z/2Z)3 Z/2Z × (Z/12Z)2 (Z/6Z)3

the lattice KG coincide with the roots of the lattice FG for all G.
By construction, KG is a negative deûnite lattice primitively embedded in NS(XG),

and thus ρ(XG) ≥ 1 + rank(KG).

Proof _e groups G that act on A in such a way that the resolution of A/G is a K3
surface are classiûed by [F, Lemma 3.3]. _e properties of FG and KG are proved
in [N1, Section 1] for G = Z/2Z; [Be, Section 1 and _eorem 2.5] for G = Z/nZ,
n = 3, 4, 6; in Section 4.2 and [W, Proposition 2.1] for G = D8, D′

8, D12, T. _e
unique observation that needs to be proved is that the root system of FG coincides
with the one of KG . _is was explicitly proved in [Be, Proposition 1.3] for G = Z/nZ,
n = 3, 4, 6. In Section 4.2 we described a basis for FG and KG if G is noncyclic, and
in [N1] a basis for KZ/2Z is given. One can explicitly write down a Gram matrix for
the lattice KG . Since KG is a negative deûnite lattice, the number of vectors with a
given self intersection is ûnite and can be computed. In particular, one computes

https://doi.org/10.4153/CJM-2015-058-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-058-1


358 A. Garbagnati

the number of vectors of self-intersection −2 in KG (for example, using the command
ShortestVectors(-KG) in Magma) and one compares it with the number of vectors
of self-intersection −2 in FG . _ey coincide for every group G in the list, and this
concludes the proof.

4.4 The Main Results

_e aim of this section is to present and to prove our main result (_eorem 4.4). One
can deduce whether a K3 surface is the quotient of an Abelian surface by checking if
a certain lattice is primitively embedded in its Néron–Severi group. _is essentially
implies that one can construct the moduli space of a K3 surface that is a desingular-
ization of the quotient of an Abelian surface by a ûnite group as a moduli space of a
lattice polarized K3 surfaces.

_e other result of this section (_eorem 4.7) is that one can deduce whether a K3
surface is rationally G-covered by an Abelian surface by checking if a certain conûg-
uration of rational curves is present on the K3 surface.
Combinating these two results we deduce a synthetic description of the lattices of

Kummer type as overlattices with certain properties of the lattices FG (see Corollary
4.8).

_eorem 4.4 Let G be one of the groups Z/nZ, n = 2, 3, 4, 6, D8, D′

8, D12, and T,
and let KG be the lattice of Kummer type deûned above. A K3 surface is the minimal
model of A/G for a certain Abelian surface A if and only if KG is primitively embedded
in NS(XG).

Proof One of the implications is trivial. If XG is the desingularization of A/G, then
NS(XG) contains the classes of the curves arising from the desingularization of A/G,
so it contains the lattice FG . By deûnition KG is the minimal primitive sublattice of
NS(XG) containing FG , and so KG is primitively embedded in NS(XG).

Let XG be a K3 surface such that KG is primitively embedded in NS(XG). We ûrst
prove our result in the case where ρ(XG) = 1+ rank(KG), i.e., where it is the minimal
possible. Let us denote by h the generator of the 1-dimensional subspace of NS(XG)
that is orthogonal to KG , so NS(XG) is an overlattice of ûnite index of Zh ⊕ KG . Up
to the action of the Weyl group, we can assume that h is a pseudoample divisor on
XG . Since KG is an overlattice of ûnite index of FG , FG is a root lattice, and the roots
of FG coincide with the roots of KG , the assumptions of Proposition 3.2 (with L ∶= KG
and R ∶= FG) are satisûed. Hence we can assume that the classes generating FG are
supported on smooth irreducible rational curves. _is fact suõces to reconstruct the
surface A that is the minimal model of the G-cover of XG . _is is well known in the
case where G = Z/2Z, see [N1]. _e cases G = Z/3Z and G = Z/4Z are described in
[Be, Sections (4.1) and (4.2)]. As an example, we describe how one can reconstruct A
in the cases G = Z/6Z, G = D′

8, and G = T.
Let us assume G = Z/6Z. _en FG ≃ A5 ⊕ A4

2 ⊕ A51 and KG is obtained by adding
to FG the class

v ∶= 1
6
(

5

∑
j=1

jK( j)1 ) + 1
3

5

∑
i=2

(K(1)i + 2K(2)i ) + 1
2
(

10

∑
i=6

K(1)i ) ,
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where K( j)1 , j = 1, . . . , 5 is a basis of A5, K( j)i , j = 1, 2, i = 2, 3, 4, 5 is a basis of the
(i − 1)-th copy of A2, and K(1)i , i = 6, . . . , 10 is a generator of the (i − 5)-the copy of
A1. Let us now consider 3v. It exhibits the set of curves

{K(1)1 ,K(3)1 ,K(5)1 ,K(1)6 ,K(1)7 ,K(1)8 ,K(1)9 ,K(1)10 }

as a set of eight disjoint rational curves divisible by 2 on a K3 surface. _en there
exists a 2 ∶1 cover of XG , Ỹ → XG , branched along these curves and such that the
minimal model Y of Ỹ is a K3 surface. _e minimal model Y is obtained contracting
the eight (−1)-curves which are the 2 ∶1 cover of the branch curves. Let us consider
the rational 2 ∶1 maps π∶Y ⇢ XG . _en π(−1)(K( j)i ) splits into two rational curves for
j = 1, 2, i = 2, 3, 4, 5, this gives eight A2-conûgurations on Y ; π−1(K(2)1 ) is a rational
curve which is a 2 ∶1 cover of K(2)1 branched in two points; π(−1)(K(3)1 ) is a rational
curve which is a 2 ∶1 cover of K(3)1 branched in two points and we observe that a�er
the contraction Ỹ → Y , π−1(K(2)1 ) and π−1(K(3)1 ) form a copy of A2. So we have nine
copies of A2 on Y . By Proposition 2.9, there exists an Abelian surface A that is a 3 ∶1
rational cover of Y . _e minimal model of this cover is an Abelian surface A, which
is indeed a (rational) G-cover of XG .

In case ρ(X) > 1 + rank(KG), the proof follows by a standard deformation argu-
ment that we summarize here: If ρ(X) > 1 + rank(KG), then ρ(X) = 20. _ere ex-
ists a 1-dimensional family {Xt}t∈C that deforms X such that the generic member Xt
has Picard number 19 and KG is primitively embedded in NS(Xt). Since generically
ρ(Xt) = 1+rank(KG), for a generic t there exists an Abelian surface At . As described
in [MTW, Section 5.2], the members of the 1-dimensional family of Abelian surfaces
At admits a symplecticG action and the desingularization of At/G is Xt . Generically
ρ(At) = 3 but there are special members, At in the family {At} such that ρ(At) = 4.
_ese Abelian surfaces are (rational) G-covers of K3 surfaces Xt , which has Picard
number 20. In particular there exist an Abelian surface A, special member of the
family {At}, which is a (rational) G-cover of X.

Let us now consider the non Abelian case. We remark that in this case ρ(X) is
necessarily equal to 1 + ρ(KG), because the latter is 20.

Let G = D′

8 and KD′8 as described in Section 4.2 and let X be a K3 surface such that
KD′8 is primitively embedded in NS(X). _e classes v′1 and v′2 given in (4.1) allows
one to construct a (Z/2Z)2-cover of X. Let us denote by Y the minimal model of the
(Z/2Z)2-cover of X branched with multiplicity 2 along each the twelve curves in the
set

S ∶= {K( j)
(0,0) ,K

( j)
(

1+i
2 ,0) ,K

( j)
(

i
2 ,

i
2 )
,K( j)
(

1
2 ,

i
2 )
} , j = 1, 2, 3.

Let πY ∶Y ⇢ X be the rational map induced by the (Z/2Z)2-cover and let ⟨µ, ν⟩
the cover group. We observe that π(−1)

Y (K(0)
(0,0)) consists of a unique irreducible ra-

tional curve and coincides with the inverse image of the D4-conûguration K( j)
(0,0),

j = 0, 1, 2, 3. We denote this curve on Y by K(0,0). Similarly the inverse images of the
D4-conûguration K( j)

(
1+i
2 ,0), (resp. K

( j)
(

i
2 ,

i
2 )
, K( j)
(

1
2 ,

i
2 )
) for j = 0, 1, 2, 3, consists of a unique

irreducible rational curve denoted by K
(

1+i
2 ,0), (resp. K( i

2 ,
i
2 )
, K
(

1
2 ,

i
2 )
). Since the curve
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K
(

1
2 ,0)

(resp. K
(

1+i
4 , 1+i4 )

, K
(

1+i
4 , i−1

4 )
) is not in the branch locus of the (Z/2Z)2-cover of

X and does not meet the branch locus, its inverse image on Y consists of four dis-
joint rational curves, denoted by K( j)

(
1
2 ,0)

(resp. K( j)
(

1+i
4 , 1+i4 )

, K( j)
(

1+i
4 , i−1

4 )
) for j = 1, 2, 3, 4.

_us, there are sixteen disjoint rational curves on Y . Hence, by Proposition 2.9,
Y is a Kummer surface of an Abelian surface B, and there exists the rational map
πB ∶B ⇢ Y , whose cover involution will be denoted by ιB . Hence, there is a 8 ∶1 map,
πY ○πB ∶B ⇢ X. By construction, the automorphisms µ and ν ofY preserve the branch
locus of the map πB ∶B ⇢ Y , and thus they induce two automorphisms µB and νB on
B. Let us denote byHB the group generated by ιB , µB and νB . By construction, B ⇢ X
is the map induced by the desingularization of the quotient B/HB . In particular, the
group HB has order 8.

Let γ∶X → S be the contraction of all the curves in FD′8 . _e singular surface S
has four singularities of type D4 and 3 singularities of type A1. It is immediate to
check by our construction that B ⇢ X

γ→S coincides with the quotient B → B/HB
and so S = B/HB . _e quotient singularities of type D4 correspond to points whose
stabilizer is the quaternion group, so the quaternion group D′

8 has to be a subgroup
of the group HB , but the order of HB is 8, as the order of the quaternion group, so HB
is the quaternion group. _is implies that X is the desingularization of the quotient
B/D′

8.
_e case G = D8 is analogous. In the case where G = D12 one ûrst considers a 4 ∶1

cover of the K3 surface XG . _e minimal model of such a cover, say Y , contains nine
disjoint A2-conûgurations, hence there exists an Abelian surface B that is a 3 ∶1 cover
of Y . _en one proves that X is the desingularization of B/HB , where HB is a group
generated by certain automorphisms and, considering the singularities, one proves
that HB must be D12 (since it has order 12 and has to contain D12).

Let us now consider the case G = T. Let X be a K3 surface such that KT is
primitively embedded in NS(X). So there are nineteen curves that span the lat-
tice E6 ⊕ D4 ⊕ A1 ⊕ A4

2 and there is a 3-divisible class that involves six disjoint A2-
conûgurations. So there exists a 3 ∶1 cover of X whose minimal model is a K3 surface
Y . We denote the 3 ∶1 rational map by π∶Y ⇢ X. _e inverse image on Y of the curves
in FT consists of nineteen rational curves that span the lattice D4

4 ⊕ A3
1 (where a copy

of D4 is mapped by π to the E6 contained in FT, three other copies of D4 are mapped
to the unique copy of D4 in FT, the three copies of A1 are mapped by π to the unique
copy of A1 in FT). We observe that D4

4⊕A3
1 ≃ FD′8 . In order to reconstruct the Abelian

surface that is the cover of X, it suõces to prove that not only FD′8 , but exactly KD′8
is primitively embedded in NS(Y). Once one proves this, one ûnds an Abelian sur-
face B such that Y is the minimal resolution of B/D′

8 (we already proved this result),
and one deduces that X is the minimal resolution of B/T as in the previous cases. In
Section 4.2 we constructed the lattice KD′8 introducing four divisible vectors. Two of
them (v′1 and v′2) are strictly related to the geometry of the quotient that we are con-
sidering. _e property of these two vectors, which is essential in order to reconstruct
the Abelian surface B with a D′

8-action, is that the curves appearing in these two di-
visible classes are all contained in the D4-conûgurations; i.e., the curves that generate
the three copies of A1 in FD′8 do not appear in these divisible classes. Since there are
û�een disjoint rational curves contained in the set of the nineteen curves that span
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D4
4 ⊕ A3

1 , we know that there are also four independent divisible classes in NS(Y) by
Proposition 2.9. Now we have to show that at least two of them can be chosen to have
no components in the direct summands A3

1 of D4
4 ⊕ A3

1 . Suppose the opposite; this
means that there is a choice of three divisible vectors n1, n2, and n3 such that all the
elements in ⟨n1 , n2 , n3⟩ have components among the generators of A3

1 . Just to ûx the
notation we gives to the curves in FD′8 the same names as in Section 4.2. We choose
the ûrst class n1 in such a way that it has some components in A3

1 . We recall that the
divisible classes are the sum of eight disjoint rational curves divided by 2 and that they
are linear combinations of the elements of the discriminant group. We observe that a
divisible class has components among the generators of A3

1 if and only if at least one
of the vectors (of the discriminant group) d9, d10, and d11 appears with a nontrivial
coeõcient in its expression. Since the generators of the discriminant group d i with
i /= 9, 10, 11 are the sum of two rational curves divided by 2 an even number of vectors
d9, d10 and d11 with a nontrivial coeõcient appears in the expression of n1. So we can
assume that n1 = d9 + d10 + m1, where m1 ∈ ⟨d j⟩, j = 1, . . . , 8. Now we construct a
second divisible class n2, assuming that it has some components among the genera-
tors of A3

1 . If n2 = d9 + d10 + m2, where m2 ∈ ⟨d j⟩, j = 1, . . . , 8, then n1 + n2 ∈ ⟨d j⟩,
j = 1, . . . , 8, i.e., it has no components among the generators of A3

1 . So we can assume
that n2 ∶= d9+d11+m2,m2 ∈ ⟨d j⟩, j = 1, . . . , 8. We observe that n1+n2 = d10+d11+m3,
m3 ∈ ⟨d j⟩, j = 1, . . . , 8. But now there is no way to choose n3 is such a way that all the
elements in ⟨n1 , n2 , n3⟩ have components among the curves generating A3

1 . Indeed,
every pair of elements in {d9 , d10 , d11} appears with a nontrivial coeõcient in n1 or in
n2 or in n1+n2. _is proves that if there is conûguration of nineteen rational curves on
a K3 surface Y that span the lattice FD′8 , then the lattice KD′8 is primitively embedded
in NS(Y), and so Y is the minimal resolution of the quotient of an Abelian surface B
by the group D′

8. _is concludes the proof in the unique remaining case G = T.

Remark 4.5 In [Be] the proof of the previous result is given in case G is a cyclic
group of order greater than 2. _e proof given in the case where ρ(XG) is the min-
imal possible coincides with our proof. In case ρ(XG) is greater (and indeed 20), in
[Be] it is observed that one can use a deformation argument as we did, but an alter-
native proof is given. Unfortunately, it is based on [Be, Lemma 3.2], which contains
a mistake. Indeed, using the notation of [Be, Lemma 3.2], it is true that there exists
an orthogonal embedding η of {Ak1 , . . . ,Akn} in a system of roots, Q, of typeA such
that (up to the action of the Weyl group), η(Ak i ) is contained in a chosen basis of
Q for every i = 1, . . . , n, but the same result is not necessarily true if the system of
roots Q is of typeD. A simple counterexample is given by the orthogonal embedding
of {A1 ,A1 ,A1 ,A1} in D4 given by {є1 + є2 , є1 − є2 , є3 + є4 , є3 − є4} that cannot be
contained in a basis of D4 (up to the action of the Weyl group of D4).

_e advantage of the result in _eorem 4.4 is that one relates a purely geometric
property with a purely lattice theoretic property. _is is what is needed in order to
describe the lattice polarizedmoduli space of the K3 surfaces with a certain geometric
property, so we immediately obtain the following corollary.

Corollary 4.6 Let LG be the set of lattices LG satisfying the following:
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(i) LG has rank 1 + rank(KG);
(ii) LG is hyperbolic;
(iii) LG admits a primitive embedding in ΛK3;
(iv) there exists a primitive embedding of KG in LG .
A K3 surface is the desingularization of the quotient of an Abelian surface by G if and
only if it is an LG-polarized K3 surface for an LG ∈ LG .

In particular, the coarse moduli space of the K3 surfaces that are desingularization of
the quotient A/G for an Abelian surface A has inûnitely many components of dimension
19 − rank(KG).

Proof As a direct consequence of _eorem 4.4, one has that a K3 surface is (ratio-
nally) G-covered by an Abelian surface if and only if it is LG-polarized. It remains
only to show that the components of the moduli space of the K3 surfaces that are
(rationally) G-covered by an Abelian surface A are inûnitely many. _is depends on
the possible choices for the lattice LG . Generically LG is the Nèron–Severi group of an
LG-polarized K3 surface and its orthogonal group in ΛK3 is the transcendental group.

Let us consider ûrst the cyclic groups G, in particular, the case where G /= Z/2Z
(since the case Z/2Z is very well known). _e transcendental lattice of a generic K3
surface X that is (rationally) G covered by an Abelian surface A is determined by that
of A. With the notation introduced in [MTW, Section 5.2], an Abelian surface A ad-
mits a symplectic action ofG if and only if the transcendental lattice TA is primitively
embedded in T(Gσ) ≃ H2(A,Z)G . If G /= Z/2Z, then T(Gσ) has signature (3, 1).
In order to identify a possible choice for TA, it suõces to deûne TA as the orthogonal
complement to a vector, say va with a positive self intersection in T(Gσ). So it suõces
to show that there are inûnitely many choices for v, which determine inûnitely many
lattices TA. By [MTW, Section 4] for every cyclic group G, the lattice T(Gσ) splits in
the direct sum of a copy of U and another lattice, say RG . Let us assume that va has
nontrivial components only in U and that these components are of the form (1, a).
_en v2

a = 2a and TA is isometric to

⟨−2a⟩ ⊕ RG ≃ v⊥T(Gσ)
a .

Since we have inûnitely many possible choices for a, we have inûnitely many choices
for TA and thus for TX .

If G is not cyclic, we did not explicitly compute the lattice H2(A,Z)G where A
is the Abelian surface that (rationally) G-covers X. Hence, in this case we compute
the possible lattice LG directly. By deûnition, LG is an overlattice of a ûnite index of
Zvb ⊕ KG , where vb is a vector with a positive self intersection 2b in K⊥ΛK3

G . Since
KG is negative deûnite of rank 19, K⊥ΛK3

G is positive deûnite. Hence, the number of
vectors in K⊥ΛK3

G with a given length is ûnite. Since the number of vectors in K⊥ΛK3
G is

clearly inûnite, there are inûnitely many choices for the length of vb and thus for the
overlattice of ûnite index of Zvb ⊕ KG .

We observe that the conditions (i), (ii), and (iv) in Corollary 4.6 imply that LG is
an overlattices of ûnite index lG of Zh ⊕ KG , where h is a vector with a positive self
intersection h2. Condition (iii) implies that h2 is even and imposes several restriction
to lG . _e concrete possibilities for the lattices in LG are classically known for G =
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Z/2Z (see, for example, [GS2, _eorem 2.7] for a recent reference) and for G = Z/3Z
(see [Ba2]).

In [N1], it is proved that it is not necessary to check the existence of a primitive
embedding of KZ/2Z in the Néron–Severi group of a K3 surface to conclude that it is
a Kummer surface. It suõces to know that it contains sixteen disjoint smooth irre-
ducible rational curves. We underline that from the point of view of the description
of the moduli space this result is not very useful, because we have no a way to trans-
late the condition “certain −2 classes correspond to irreducible curves” in the context
of the lattice polarized K3 surfaces. On the other hand this result is very nice from a
geometric point of view, since it can also be stated in the following way. If a K3 surface
admits a model with sixteen nodes, then it is a Kummer surface (for example, this can
be used to conclude that a quartic with sixteen nodes is a Kummer surface). A similar
result was generalized to the group G = Z/3Z by Barth [Ba1]. Here we generalize this
result to all the other admissible groups.

_eorem 4.7 Let G be one of the groups Z/nZ, n = 2, 3, 4, 6, D8, D′

8, D12, and T,
and let FG be the lattice deûned above. _en a K3 surface is the minimal model of A/G
for some Abelian surface A if and only if FG is embedded in NS(XG) and there exists a
basis of FG that represents irreducible smooth curves on XG .

Proof _is result is known if G = Z/2Z (see [N1]) and if G = Z/3Z (see [Ba1]). In
the proof of the_eorem 4.4 we proved the statement in the case whereG = D′

8. Here
we give a complete proof in the case G = Z/4Z. _e other cases are very similar. _e
lattice FZ/4Z has rank 18 and length 10. Since the length of a lattice of rank 18 primi-
tively embedded in ΛK3 is at most 4, we know that FZ/4Z is not primitively embedded
in ΛK3 and so there is an overlattice of ûnite index of FZ/4Z, called RZ/4Z, which is
primitively embedded in ΛK3. In order to construct an overlattice RZ/4Z of FZ/4Z we
have to add to FZ/4Z certain elements that are nontrivial in the discriminant group of
FZ/4Z and that have an even self intersection. Moreover, we have to recall that if the
sum of m disjoint rational curves is divided by 2, then m is either 16 or 8.

Let us consider the lattice FZ/4Z = A4
3 ⊕ A6

1 . We denote the basis of the j-th copy
of A3 by a( j)i , i = 1, 2, 3, j = 1, 2, 3, 4 and the generator of the ( j − 4)-th copy of A1 by
a( j), j = 5, 6, 7, 8, 9, 10. _e discriminant of FZ/4Z is generated by

d j ∶=
1
4
( a( j)1 + 2a( j)2 + 3a( j)3 ) , j = 1, 2, 3, 4, d j ∶=

a( j)

2
, j = 5, 6, 7, 8, 9, 10.

Since l(FZ/4Z) − l(RZ/4Z) has to be at least six, we have to add at least three divis-
ible vectors to FZ/4Z in order to obtain RZ/4Z. First, suppose we add three vectors,
v1 , v2 , v3 such that ⟨v1 , v2 , v3⟩ = (Z/2Z)3 in the discriminant group (i.e., no vectors
among v1, v2 ,v3 has order 4 in the discriminant group of FZ/4Z). Every vector that
generates Z/2Z in the discriminant group of FZ/4Z is a linear combination of 2d j
for j = 1, 2, 3, 4 and dk for k = 5, . . . , 10. _e curves that appear with a nontrivial
coeõcient in each of these linear combinations are among the fourteen disjoint ra-
tional curves {a( j)1 , a( j)3 , a(k)} for j = 1, 2, 3, 4 and k = 5, . . . , 10. We recall that it
is possible to add three independent divisible 2-classes starting from fourteen dis-
joint rational curves, but it is not possible to add four independent divisible classes
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using only fourteen rational curves. So we can add exactly the three vectors v1, v2,
and v3. Up to permutations of the indices the unique possibility for the three vec-
tors v1, v2, and v3 is v1 ∶= 2(d1 + d2 + d3 + d4), v2 ∶= 2d1 + 2d2 + d5 + d6 + d7 + d8,
v3 ∶= 2d1+2d3+d7+d8+d9+d10. _e lattice RZ/4Z obtained adding the vectors v1, v2

and v3 to FZ/4Z is an overlattice of index 23. One can directly compute its discriminant
group, and one ûnds that the discriminant group of this lattice is (Z/4Z)2×(Z/2Z)4.
But the length of this lattice is 6, which is not admissible.

We conclude that there is at least one vector, say v1, in FZ/4Z/RZ/4Z that generates
a copy of Z/4Z in the discriminant group of FZ/4Z. We recall that (v1)2 has to be an
even number, that (d j)2 = −3/4 if j = 1, 2, 3, 4, and that (dk)2 = −1/2 if k = 5, . . . , 10.
Moreover, 2v1 mod FZ/4Z has to be the sum of eight disjoint rational curves divided
by 2 (since the sum of n rational curves cannot be divided by 2 if n ≤ 14 and n /= 8).
So there are only the following two possibilities modulo FZ/4Z (up to a permutation
of the indices)
(a) v1 ∶= d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d10 or
(b) v1 ∶= d1 + d2 + d3 + d4 + d5 + d6.
In case (a) one can construct a 4 ∶1 cover of X whose branch divisor is v1. So we have
a map Y → X that is 4 ∶1. By construction, the minimal model of Y has a trivial
canonical bundle and its Euler characteristic is 0, so this surface is an Abelian surface,
and we conclude the proof. We remark that it suõces to observe that the divisor v1
in case (a) is the one described by Bertin in [Be, p. 270] where it was proved that
the minimal model of a 4 ∶1 cover of a K3 surface whose branch locus has a certain
property has to be an Abelian surface.

In case (b) the 4 ∶1 cover associated with the vector v1 produces a K3 surface, and
not anAbelian surface. _uswehave to analyze not only the vector v1, but also the vec-
tors v2 and v3 in order to show that RZ/4Z coincides with KZ/4Z. We now consider the
vectors v2 and v3. Up to replacing, possibly, v2 (resp. v3) with 2v2 (resp. 2v3), we have
that v2 (resp. v3) generates a copy ofZ/2Z and consists of the sum of eight disjoint ra-
tional curves divided by 2; four of these curves have to be chosen among {a( j)1 , a( j)3 },
j = 1, 2, 3, 4, since these are the eight disjoint rational curves of the divisible vector 2v1.
Up to a permutation of the indices, we can assume that v2 = 2d1+2d2+d5+d6+d7+d8
and v3 = 2d1 + 2d3 + d7 + d8 + d9 + d10. Now we consider the vector v1 + v3 (which
is surely contained in RZ/4Z). It is 3d1 + d2 + 3d3 + d4 + d5 + d6 + d7 + d8 + d9 + d10.
Modulo FZ/4Z and a change of the indices of the generators of A3, this coincides with
the vector v1 in case (a). So theminimal model of 4 ∶1 cover of X whose branch divisor
is v1 + v3 is an Abelian surface and we conclude the proof as before.

_e other cases are similar (but easier). One checks that the length of FG is greater
than 22−rank(FG); one deduces that one has to add some divisible classes in order to
construct the lattice RG , which is the minimal primitive sublattice of ΛK3 containing
FG . One identiûes these classes (recalling the condition that they are linear combi-
nations of elements of the discriminant group of FG and the conditions imposed by
Proposition 2.9). _en one compares the lattice RG with KG or one explicitly con-
structs a certain cover of X in order to show either that RG = KG (which implies
that X is the desingularization of A/G by_eorem 4.4) or directly that there exists an
Abelian surface A such that X is the resolution of A/G.
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Corollary 4.8 Let G be one of the groups Z/nZ, n = 2, 3, 4, 6, D8, D′

8, D12, and T,
and let FG be the lattice deûned above. Let HG be the minimal primitive sublattice of
ΛK3 that contains FG and such that the root lattice of FG coincides with the one of HG .
_en HG ≃ KG .

Proof By hypothesis, HG is a negative deûnite lattice primitively embedded in ΛK3
and rank(HG) = rank(FG). Let D be a vector in ΛK3 that is orthogonal to HG and
has a positive self intersection. By the Torelli theorem, there exists a K3 surface, X,
whose transcendental lattice is the orthogonal complement to ZD ⊕HG in ΛK3. _e
Néron–Severi group of X is an overlattice of ûnite index of ZD⊕HG such that HG is
primitively embedded in it, and, without loss of generality, we can assume that D is
pseudoample. Under our assumptions on HG , we can apply Proposition 3.2 to h = D,
L = HG and R = FG . So the lattice FG is spanned by irreducible rational curves on
X. By _eorem 4.7, it follows that X is the desingularization of the quotient A/G
for a certain Abelian surface A. In this case the minimal primitive sublattice that
contains the curves of the lattice FG isKG , but by the hypothesis theminimal primitive
sublattice of NS(X) ⊂ ΛK3 which contains FG is HG , so KG coincides with HG .

Remark 4.9 _e hypothesis that the roots of HG coincide with the ones of FG in
Corollary 4.8 is essential. Indeed, let us consider the case G = Z/2Z. _e lattice FG is
A16

1 ; let us denote by K i , i = 1, . . . , 16 the generators of this lattice. Let us consider the
vectors

v j ∶= (
4

∑
i=1

K4 j+i)/2, j = 0, 1, 2, 3,

w1 ∶= (K1 + K2 + K5 + K6 + K9 + K10 + K13 + K14)/2,
w2 ∶= (K1 + K3 + K5 + K7 + K9 + K11 + K13 + K15).

Let us denote by HZ/2Z the lattice obtained adding the vectors v i , i = 0, 1, 2, 3 andwh ,
h = 1, 2 to FG . It is an overlattice (of index 26) of FG that admits a primitive embedding
in ΛK3, but it is not isometric to the Kummer lattice (which, in fact, is an overlattice
of index 25 of FG). In this case, v1 is a root of HG that is not contained in FG .

4.5 K3 Surfaces (Rationally) Z/3Z-covered by Abelian Surfaces

In [GS2] it was observed that every Kummer surface Km(A) (i.e., every K3 surface
that is the desingularization of A/(Z/2Z)) admits the group (Z/2Z)4 as group of
symplectic automorphisms. Moreover, Km(A) is also the quotient of a K3 surface by
the symplectic action of (Z/2Z)4. _is result is based on the observation that if a K3
surface is a Kummer surface Km(A), then the translations by the two torsion points
of A induce symplectic automorphisms on Km(A).
A similar result can be obtained if the K3 surface XG is the (desingularization of)

quotient of an Abelian surface by an action of the group Z/3Z.
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Proposition 4.10 Let X be the desingularization of the quotient of an Abelian surface
A by the group Z/3Z. _en X admits a symplectic action of the group (Z/3Z)2. More-
over, there exists a K3 surface Y that admits a symplectic action of (Z/3Z)2 such that
X is the desingularization of Y/(Z/3Z)2.

Proof Let A be an Abelian surface admitting an automorphism αA of order 3 such
that X is the desingularization of A/αA. Let A[3] be the group of three torsion points
of A and let ⟨P,Q⟩ ⊂ A[3] be the set of points ûxed by αA. Let us denote by tP and tQ
the translation on A by the points P and Q, respectively. _en (Z/3Z)2 ≃ ⟨tP , tQ⟩ ⊂
Aut(A), and the automorphisms tP and tQ commute with αA. So tP and tQ induce
two automorphisms of order 3 on A/αA that li� to two automorphisms, τP and τQ ,
on X. _e period of X (i.e., the generator of H2,0(X)) is induced by the generator of
H2,0(A), which is preserved by the translations. So τP and τQ are symplectic auto-
morphisms of X. _is gives a symplectic action of (Z/3Z)2 on X.

On the other hand, X contains nine disjoint A2-conûgurations of rational curves
(which generate the lattice FZ/3Z) and the minimal primitive sublattice KZ/3Z that
contains all these curves also contains several divisible classes. In particular, let us
denote by a( j)i , i = 1, 2, j = 1, . . . , 9 basis of the j-th copy of A2. Up to a choice of the
indices, KZ/3Z also contains the classes (mod FZ/3Z)

v1 ∶=
1
3
(

6

∑
i=1
a( j)1 −a( j)2 ) , v2 =

1
3
(

2

∑
j=1

(a( j)1 −a( j)2 )−
4

∑
h=3

(a(h)1 −a(h)2 )+
8

∑
k=7

(a(k)1 −a(k)2 )) ,

as shown in [Be, p. 269] with a slightly diòerent notation. But the presence of these
divisible classes allows one to reconstruct a (Z/3Z)2 cover of X (one ûrst constructs
the 3 ∶1 cover associated with the class v1 as in Section 2.1, and then one considers
the pull back of the class v2, which allows one to construct another 3 ∶1 cover). Using
this process, one obtains a non minimal surface, whose minimal model Y is a K3
surface that is a (rational) (Z/3Z)2-cover of X, hence X is the desingularization of
the quotient of the K3 surface Y by the group (Z/3Z)2.

Corollary 4.11 _e 1-dimensional families of K3 surfaces that are desingularizations
of the quotients A/Z/3Z for certain Abelian surfaces A are contained in the intersec-
tion between the 3-dimensional families of the K3 surfaces that are (desingularization
of) quotients of K3 surfaces by a symplectic action of (Z/3Z)2 and the 3-dimensional
families of K3 surfaces that admit a symplectic action of (Z/3Z)2.

Remark 4.12 _e existence of the surface Y in Proposition 4.10 directly follows
by the primitive embedding of lattice M(Z/3Z)2 in the lattice KZ/3Z, a�er proving
_eorem 5.2. Similarly one obtains that if X is the minimal model of the quotient
A/(Z/4Z) for a certain Abelian surface, then it is also the minimal model of the quo-
tient Y/(Z/4Z) for a certain K3 surface Y , since MZ/4Z ⊂ KZ/4Z.

In Proposition 4.10 we proved that a K3 surface X that is (rationally)Z/3Z-covered
by an Abelian surface, necessarily admits certain symplectic automorphisms induced
by translation on the Abelian surface. Here we observe that there exists another au-
tomorphism on A that induces a symplectic automorphism on X.
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Proposition 4.13 Let X be a K3 surface such that KZ/3Z is primitively embedded in
NS(X); then X admits a symplectic involution ιX such that KZ/6Z is primitively embed-
ded in NS(W) where W is the K3 surface minimal model of X/ιX .

Proof Every Abelian surface admits an involution ιA∶A→ A that sends every point
to its inversewith respect to the group lawofA. Under the hypothesis on X there exists
an Abelian surface A with an automorphism αA ∈ Aut(A) of order 3 such that X is
the desingularization of A/αA. _e automorphisms ιA and αA commute and generate
an automorphism αA ○ ιA of order 6 that preserves the non-vanishing holomorphic
2-form of A. _e involution ιA induces an involution ιX on X. _e singular surface
A/(αA○ ι) is birational to X/ιX . Since theminimalmodel of A/(αA○ ι) is a K3 surface,
the minimal model of X/ιX is also a K3 surface, and these surfaces are isomorphic.
We call this surfaceW , and we observe that it is constructed as minimal model of the
quotient of an Abelian surface by the action ofZ/6Z = ⟨αA○ ι⟩, so KZ/6Z is primitively
embedded in NS(W).

A generalization of the previous result can be obtained by replacing (Z/3Z,Z/6Z)
with (D′

8 ,T).

Corollary 4.14 Let S be aK3 surface such that KD′8 is primitively embedded in NS(S);
then S admits an automorphism of order 3, γS , such that KT is primitively embedded in
NS(S̃/γS), where S̃/γS is the minimal resolution of S/γS .

Putting together the Propositions 4.10 and 4.13, one obtains the following corollary.

Corollary 4.15 Let X be a K3 surface that is (rationally) (Z/3Z)-covered by an
Abelian surface. _e group A3,3 acts symplectically on X.

Proof It suõces to prove that the involution ιA and the translations tP and tQ in-
troduced in proofs of Propositions 4.13 and 4.10 generate A3,3. _is can be easily
checked; for example, one can specialize the Abelian surface A to the product of
two elliptic curves with j-invariant equal to 0. _e order 3 automorphism αA (de-
ûned in proof of Proposition 4.10) ûxes the points (0, 0), P ∶= ( 1

3 (1 − ζ3), 0), and
Q ∶= (0, 1

3 (1 − ζ3)). _is identiûes the translation tP and tQ , and it is immediate
to verify that ⟨tP , ι⟩ ≃ ⟨tQ , ι⟩ is the dihedral group of order 6 and then ⟨tP , tQ , ι⟩ is
A(3,3).

5 K3 Surface Quotients of K3 Surfaces

_e aim of this section is to extend some of the results proved for the K3 surfaces that
are (rationally) covered by an Abelian surface, to the K3 surfaces that are (rationally)
covered by a K3 surface. We will denote by YG a K3 surface that admits a symplectic
action of the group G and by SG the minimal resolution of the quotient YG/G. It is
well known that SG is a K3 surface (see [N3]).
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Proposition 5.1 Let YG be a K3 surface and let G ∈ Aut(YG) be a ûnite group. Let
SG be the minimal model of YG/G. _en SG is a K3 surface if and only if G acts sym-
plectically on YG . If G is Abelian, then it is one of the following fourteen groups Z/nZ,
n = 2, . . . , 8, (Z/mZ)2, m = 2, 3, 4, Z/2Z ×Z/tZ, t = 4, 6, (Z/2Z) j , j = 3, 4.

Let M i be the curves on SG arising from the resolution of the singularities of YG/G.
_en the lattices EG spanned by the curves M i is one of the following root lattices:

G Z/2Z /Z/3Z Z/4Z Z/5Z Z/6Z Z/7Z Z/8Z
EG A81 A6

2 A4
3 ⊕ A

2
1 A4

4 A2
5 ⊕ A

2
2 ⊕ A

2
1 A3

6 A2
7 ⊕ A3 ⊕ A1

G (Z/2Z)2 (Z/2Z)3 (Z/2Z)4 Z/2 × Z/4 Z/2 × Z/6 (Z/3Z)2 (Z/4Z)2
EG A12

1 A14
1 A15

1 A4
3 ⊕ A

4
1 A3

5 ⊕ A
3
1 A82 A6

3

Let MG be the minimal primitive sublattice of NS(SG) that contains the curves M i ;
then MG is an overlattice of ûnite index rG of EG and its properties are as follows:

G Z/2Z Z/3Z Z/4Z Z/5Z Z/6Z Z/7Z Z/8Z
rG 2 3 4 5 6 7 8

rank(MG) 8 12 14 16 16 18 18
M∨G/MG (Z/2Z)6 (Z/3Z)4 (Z/2Z × Z/4Z)2 (Z/5Z)2 (Z/6Z)2 (Z/7Z) Z/4Z × Z/2Z

G (Z/2Z)2 (Z/2Z)3 (Z/2Z)4 Z/2 × Z/4 Z/2 × Z/6 (Z/3Z)2 (Z/4Z)2
rG 22 23 24 8 12 32 42

rank(MG) 12 14 15 16 18 16 18
M∨G/MG (Z/2Z)8 (Z/2Z)8 (Z/2Z)7 (Z/2Z × Z/4Z)2 Z/2Z × Z/6Z (Z/3Z)4 (Z/4Z)2

_e roots of the lattice MG coincide with the roots of the lattice EG for all the abelian
groups G.
By construction, MG is a negative deûnite lattice primitively embedded in NS(SG),

and thus ρ(SG) ≥ 1 + rank(MG).

Proof _e classiûcation of the Abelian groups acting symplectically on a K3 surface
is given in [N3, _eorem 4.5], where it was also proved that SG is a K3 surface if and
only if G acts symplectically on YG . _e lattices EG andMG are described in [N3, § 6
and 7]. _e fact that the root lattices of MG and of EG coincide can be checked by a
Magma computation as in proof of Proposition 4.3.

We obtain an analogue of _eorem 4.4.

_eorem 5.2 Let G be one of the Abelian groups acting symplectically on a K3 surface.
A K3 surface SG is the desingularization of the quotient YG/G for a certain K3 surface
YG if and only if MG is primitively embedded in NS(SG).

Proof _e proof is similar to (but easier than) the one of _eorem 4.4. Since the
Abelian groups G acting symplectically on a K3 surface are either cyclic or free prod-
ucts of cyclic groups, there is a correspondence between the divisible classes of MG
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and covers of SG , given by Section 2.2. So it is immediate to reconstruct the cover-
ing surface and its minimal model YG from the following data: SG , the lattice MG ,
the knowledge that certain (−2) classes in MG represent smooth irreducible rational
curves on SG . _e latter condition is guaranteed by Lemma 3.1 and the fact that the
roots of EG coincide with those of MG ; see Proposition 5.1.

It is not possible to generalize _eorem 4.7 or Corollary 4.8 to all the Abelian
groups acting symplectically on a K3 surface. Indeed, for example, there exist K3 sur-
faces that contain a set of eight disjoint rational curves, but this set is not divisible by
2, hence these K3 surfaces are not necessarily desingularization of quotient of another
K3 surface by Z/2Z: an example is given by the K3 surface that is the minimal model
of the 2 ∶1 cover of P2 branched along a sextic with eight nodes. Indeed, the cover of
P2 is singular and has eight singularities of type A1. So on the K3 surface there are
eight disjoint rational curves arising from the desingularization of these singularities.
But these curves are not a divisible set: this can be checked considering that the ûxed
locus of the cover involution is a curve of genus 2, and this determines, by [N2], the
Néron–Severi group of the K3 surface. It is known that _eorem 4.7 can be extended
to the K3 surfaces that contain at least fourteen disjoint rational curves, see [GS2].

Remark 5.3 _eorem 5.2 was proved for G = Z/2Z in [GS1, Proposition 2.3] us-
ing a diòerent method. _e approach used in [GS1] was strictly based on a careful
description of the action induced by a symplectic involution on ΛK3. _is allows one
to give stronger results, but a similar description of the action induced by a group of
symplectic automorphisms on ΛK3 is not known for groups G diòerent from Z/2Z.

_eorem 5.2 allows one to describe the moduli space of the K3 surfaces that are
covered by other K3 surfaces in terms of lattice polarized K3 surfaces:

Corollary 5.4 Let G be a ûnite abelian group acting symplectically on a K3 surface.
Let WG be the set of lattices WG satisfying
(i) WG has rank 1 + rank(MG);
(ii) WG is hyperbolic;
(iii) WG admits a primitive embedding in ΛK3;
(iv) MG is primitively embedded in WG .
_en a K3 surface is the desingularization of the quotient of a K3 surface by G if and
only if it is a WG-polarized K3 surface for a WG ∈WG .

In particular, the coarse moduli space of the K3 surfaces that are desingularization
of the quotient Y/G for a K3 surface Y has inûnitely many components of dimension
19 − rank(MG).

In the case where G = Z/2Z all the admissible lattices that appear in WZ/2Z are
described in [GS1, Proposition 2.1 and Corollary 2.1]. Here we obtain the analogous
result for G = Z/3Z. First we ûx the following notation. _e lattice EZ/3Z is isometric
to A6

2. We denote by M( j)i , i = 1, 2 the two curves that generate the j-th copy of A2
in EG and by d j ∶= (M( j)1 + 2M( j)2 )/3. We can assume that MZ/3Z is generated by the
generators of EZ/3Z and by the class∑6

j=1 d j .
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Proposition 5.5 Let YZ/3Z be a K3 surface that admits a symplectic action of Z/3Z.
Let SZ/3Z be the K3 surface desingularization of (YZ/3Z)/(Z/3Z). Let us assume that
ρ(SZ/3Z) = 13. _ere is a primitive embedding of MZ/3Z in NS(SZ/3Z). Let us denote
by H a generator of the 1-dimensional subspace of NS(SZ/3Z) orthogonal to MZ/3Z in
NS(SZ/3Z). So H2 = 2d for a positive integer d, and without loss of generality, we can
assume that H is pseudoample. _en there are the following possibilities, and all of them
appear:
● d /≡ 0 mod 3: in this case NS(SZ/3Z) ≃ ZH ⊕MZ/3Z;
● d ≡ 0 mod 3: in this case there are two possibilities, either NS(SZ/3Z) = ZH⊕MZ/3Z

or NS(SZ/3Z) is an overlattice of index 3 ofZH⊕MZ/3Z. In the latter case NS(SZ/3Z)
is generated by the generators of MZ/3Z and by a class v. Up to isometries the class v
(mod ZH ⊕MZ/3Z) is uniquely determined by d mod 9 and it is the following:
– if d ≡ 0 mod 9, then v ∶= H/3 +∑3

j=1 d j ;
– if d ≡ 3 mod 9, then v ∶= H/3 +∑2

j=1(d j) + 2∑4
h=3(dh);

– if d ≡ 6 mod 9, then v ∶= H/3 + d1 + 2d2.

Proof _e proof is based on the lattice theory and is analogous to that of [GS1,
Propositions 2.1, 2.2 and Corollary 2.1].

Let SZ/3Z be a K3 surface that is a desingularization of YZ/3Z/(Z/3Z) for a certain
K3 surface YZ/3Z. _en MZ/3Z is primitively embedded in NS(SZ/3Z) and its orthog-
onal complement is a positive deûnite sublattice of rank 1.

So NS(SZ/3Z) is an overlattice of ûnite index, s, ofZH⊕MZ/3Z whereH2 = 2d > 0.
_e discriminant group of the lattice ZH ⊕MZ/3Z is Z/2dZ× (Z/3Z)4, so the lattice
ZH⊕MZ/3Z has length 5 if d ≡ 0 mod 3, and 4 otherwise. A lattice of length at most
5 and of rank 13 admits a primitive embedding in ΛK3. _us, for each value of d there
are K3 surfaces SZ/3Z with NS(SZ/3Z) ≃ ZH ⊕MZ/3Z, and so for any value of d there
is a K3 surface obtained as quotient of YZ/3Z by Z/3Z and such that NS(SZ/3Z) ≃
ZH ⊕MZ/3Z.

Let us now assume that the index s of the inclusion ZH ⊕MZ/3Z ↪ NS(SZ/3Z) is
not 1. _en there is a nontrivial vector v in (ZH⊕MZ/3Z)/NS(SZ/3Z). SinceMZ/3Z is
primitively embedded in NS(SZ/3Z), the vector v is of the form v ∶= 1

s (H+m), where
m ∈ MZ/3Z and m/s is a nontrivial element in the discriminant group of MZ/3Z. _is
forces s to be 3. _e condition vH = 2d/3 ∈ Z forces d to be a multiple of 3.

In order to identify v we describe the discriminant group of MZ/3Z. Let us recall
that MZ/3Z is an overlattice of index 3 of EZ/3Z ≃ A6

2. Since the lattice MZ/3Z is ob-
tained by EZ/3Z adding the vector ∑6

j=1 d j , the vectors in the discriminant group of
MZ/3Z are the vectors ∑6

j=1 α jd j with α i ∈ Z/3Z such that ∑6
i=1 α i ≡ 0 mod 3. So

the vector v is of the form H/3 + w, where w = ∑6
j=1 α jd j with α i ∈ Z/3Z such that

∑6
i=1 α i ≡ 0 mod 3. _e self intersection of v is 2d/9 + ∑6

i=1 α2
i (−2/3). We observe

that α2
i is either 0, if α i is 0, or 1. _e number k ∶= ∑6

i=1α2
i is the number of α i ∈ Z/3Z

which are diòerent from 0. _e condition v2 ∈ 2Z is then equivalent to 2d − 6k ≡ 0
mod 18 and so to d − 3k ≡ 0 mod 9. Since we already know that d ≡ 0 mod 3,
we have that d is equivalent to one of the values 0, 3, or 6 mod 9. If d ≡ 0 mod 9,
then 3k ≡ 0 mod 9, so k ≡ 0 mod 3. If k = 0, then the divisor H/3 is contained
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in NS(XZ/3Z), which is impossible, since by deûnition H is a generator of the sub-
lattice of NS(XZ/3Z), orthogonal to MZ/3Z. If k = 3, then, up to a permutation of
the indices, the unique choice for v is v ∶= H/3 + d1 + d2 + d3. We observe that in
this case the vector H/3 + 2(d1 + d2 + d3) + d4 + d5 + d6 is contained in NS(XZ/3Z),
because it is v + ∑6

i=1 d i . If k = 6 a priori, we have two possible choices for v: either
v ∶= H/3+d1+d2+d3+d4+d5+d6 or H/3+2(d1+d2+d3)+d4+d5+d6. _e ûrst is not
admissible, since it implies H/3 ∈ NS(XZ/3Z). _e second is equivalent to the choice
v ∶= H/3 + d1 + d2 + d3. So if d ≡ 0 mod 9, then NS(SZ/3Z) is generated by the gen-
erators ofMZ/3Z and by v = H/3+ d1 + d2 + d3. Similarly, if d ≡ 3 mod 9, then either
k = 1 or k = 4. Since∑6

i=1α i ≡ 0 mod 3, k = 1 is not admissible, so (up to a permuta-
tion of the indices) we can assume that v ∶= H/3+d1+d2+2d3+2d4. If d ≡ 6 mod 9,
then either k = 2 or k = 5. If k = 2, we can assume that v ∶= H/3+d1+2d2. In this case
we observe that the vector H/3 + 2d1 + d3 + d4 + d5 + d6 is contained in NS(XZ/3Z),
because it is the sum of v and∑6

i=1d i . But the vector H/3 + 2d1 + d3 + d4 + d5 + d6 is
the unique admissible choice for v (up to a permutation of the indices) with k = 5. So
if d ≡ 6 mod 9, we can assume that v ∶= H/3 + d1 + 2d2.

Remark 5.6 _ere is a clear geometric meaning ofH and d. Indeed, for every value
of d there is a projective model of SZ/3Z, given by ϕ∣H∣∶ SZ/3Z → P(H0(X ,H)∨). _e
image ϕ∣H∣(SZ/3Z) is a surface with six singularities of type A2, and it is in fact the
quotient surface YZ/3Z/Z/3Z. _e self intersection of H determines the dimension of
the ambient space of ϕ∣H∣(SZ/3Z), which is Pd+1. _is is the smallest projective space
in which one can describe the quotient YZ/3Z/Z/3Z.
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