Joint Irish Section and American Society for Nutrition Meeting, 15–17 June 2011, 70th anniversary: 'Vitamins in early development and healthy ageing: impact on infectious and chronic disease'

The influence of the extraction method on the DNA protective effects of seaweed extracts in Caco-2 cells

A. M. O'Sullivan¹, Y. C. O'Callaghan¹, M. N. O'Grady¹, M. Hayes², J. P. Kerry¹ and N. M. O'Brien¹ School of Food and Nutritional Sciences, University College Cork and ²Teagasc Ashtown Food Research Centre, Ashtown, Ireland

Brown seaweeds contain a variety of compounds such as phlorotannins, carotenoids, vitamins, phospholipids and peptides that may benefit human health⁽¹⁾. The extraction method and type of solvent used influences the nature of compounds extracted from seaweeds⁽²⁾. The solvents in the present study (water, ethanol and methanol) are of a polar nature and extract a range of hydrophilic compounds including the phlorotannins.

The objective of the present study was to determine the potential protective effect of extracts obtained from *Ascophyllum nodosum* (AN) and *Fucus serratus* (FS) against hydrogen peroxide (H_2O_2) and tert-butylhydroperoxide (tert-BOOH)-induced DNA damage in Caco-2 cells. Compounds were extracted using 100% H_2O , 60% ethanol (EtOH) or 60% methanol (MeOH). Caco-2 cells were pre-treated with each seaweed extract for 24 h followed by exposure to either 50 μ M H_2O_2 or 200 μ M tert-BOOH for 30 min. DNA damage was assessed by the comet assay.

	tert-BOOH (% tail DNA)		H ₂ O ₂ (% tail DNA)	
	Mean	SE	Mean	SE
Control	10.0	2.0	10.0	2.0
Positive control	30.0	3.5	55.0	3.0
AN (100% H ₂ O)	20.5	2.0	35.0#	6.0
AN (60% EtOH)	18.5#	1.0	46.0	3.0
AN (60% MeOH)	30.5	1.5	61.0	1.0
FS (100% H ₂ O)	17.5 [†]	1.5	47.0	5.5
FS (60% EtOH)	21.5	2.5	48.0	2.0
FS (60% MeOH)	26.0	1.5	45.0	5.5

#Denotes significant protection (P<0.05) compared to oxidant control. †Denotes significant protection (P<0.01) compared to oxidant control. N 4 individual experiments. Statistical analysis was by ANOVA followed by the Dunnett's test.

The addition of 50 μ M H₂O₂ and 200 μ M tert-BOOH increased the DNA damage in Caco-2 cells to 55 and 30%, respectively. Preincubation of Caco-2 cells with AN (60% EtOH) and FS (100% H₂O) extracts offered significant protection against tert-BOOH-induced DNA damage. Only the AN (100% H₂O) extract significantly reduced H₂O₂-induced DNA damage. The MeOH extracts of AN and FS did not protect against either H₂O₂ or tert-BOOH-induced DNA damage. The DNA protective effects of the seaweeds may indicate their potential use in the pharmaceutical and functional food industry. The presence of hydrophilic polysaccharide compounds may account for the antioxidant ability of the 100% H₂O extracts, whereas the antioxidant behaviour of the aqueous ethanol extracts may be due to the presence of a mixture of polar and less polar compounds.

Funding for this research was provided under NutraMara. The Marine Functional Foods Research Initiative (NutraMara project) is a programme for marinebased functional food development established by the Marine Institute and the Department of Agriculture, Fisheries and Food (DAFF). It is supported by funds provided under the Strategy for Science, Technology and Innovation 2006–2013 (SSTI) and the Food Institutional Research Measure (FIRM), to establish a Marine Functional Foods Research Programme.

1. Shahidi F (2009) Trends Food Sci Tech 20, 376-387.

2. Shanab SMM (2007) IJAB 9, 220-225.