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1. Introduction and summary. The set of all adjacency-preserving 
automorphisms of the vertex set of a graph form a group which is called the 
(automorphism) group of the graph. In 1938 Frucht (2) showed that every 
finite group is isomorphic to the group of some graph. Since then Frucht, 
Izbicki, and Sabidussi have considered various other properties that a graph 
having a given group may possess. (For pertinent references and definitions 
not given here see Ore (4).) The object in this paper is to treat by similar 
methods a corresponding problem for a class of oriented graphs. It will be 
shown that a finite group is isomorphic to the group of some complete oriented 
graph if and only if it has an odd number of elements. 

2. Definitions. A (round-robin) tournament, or a complete oriented graph, 
consists of a finite set of vertices p, q, . . . such that each pair of distinct 
vertices is joined by an arc oriented towards one of the vertices. If the arc 
joining p and q is oriented towards q, we say that up defeats g" or, symbolically, 
p —» q. Let d(p) denote the degree of p, i.e., the number of vertices q such that 
p —» q. Suppose that a is an orientation-preserving permutation of the vertices 
of a tournament so that a(p) —» a(q) if and only if p —> q. It is readily verified 
that the set of all such permutations forms a group, the (automorphism) group 
of the tournament. 

In the next section we answer the following question. Which finite groups 
are isomorphic to the group of some tournament? 

3. Constructing a tournament with a given group. We first observe 
that no tournament T has a group G of even order. For if G is of even order, 
then it contains at least one self-inverse element a not equal to the identity 
element. Hence, there exist two distinct vertices p and q in T such that a(p) 
= q and a(q) = p and if, as we may suppose, p —» qy then a(q) —> a(p). This 
is contrary to the definition of G. Thus, a necessary condition for a finite group 
to be isomorphic to the group of some tournament is that it be of odd order. 
We now show that this condition is also sufficient. 

Let G be a group of odd order whose elements are gh g2, . . . , gn. Suppose 
that gi, g2, • . . , gn form a minimal set of generators, i.e., every element of 
G can be expressed as a finite product of powers of these h elements and no 
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smaller set has this property. We shall temporari ly assume t h a t h > 2 and 
t rea t the cyclic groups later. 

In constructing a tournament whose group is isomorphic to G, we begin, as 
could be expected, by forming wha t is essentially the Cayley colour graph T* 
of G] see Coxeter and Moser (1 , pp. 21-23) . T h e vertices of T* correspond to 
the elements of G. For convenience we use the same symbol for a vertex and 
its corresponding group element. Wi th each generator g< we associate a certain 
set of arcs in T* which are said to have colour j . There is an arc of colour 7, 
j = 1, 2, . . . , h, going from p to q in 7"* if and only if pgj = q. At each vertex 
there is now one incoming and one outgoing arc for each generator. No vertex 
is joined by an arc to itself since the identi ty element is not one of the genera
tors. No two vertices are joined by two arcs, one oriented in each direction, 
since the colours of these arcs would correspond to group elements which are 
the inverses of each other and no such elements are in the set of generators. 

If two distinct vertices p and q are not joined by an arc in the above pro
cedure we introduce one of the Oth colour which is oriented towards q or p 
according as the element p~~lq or q~lp has the larger subscript in the original 
listing of the elements of G. I t is clear t h a t these products are not equal. If an 
arc of the 0th colour goes from p to q, then it is easily seen t h a t an arc of the 
Oth colour goes from q' = pq~lp to p. Each pair of dist inct vertices of 7"* is 
now joined by a coloured arc and the orientat ions are such t h a t d(g) = \{n — 1) 
for each g. 

T h e group of orientation- and colour-preserving automorphisms of 7"* is 
isomorphic to G. Our problem is to maintain this proper ty while transforming 
T* into a tournament T whose arcs all have the same colour, or ra ther none a t 
all. W7e accomplish this by introducing j new vertices for each arc of colour 7, 
for j = 0, 1, . . . , h. 

T h e additional vertices are labelled xjtk
{i) (where i — 1, 2, . . . , n; j = 1, 

2, . . . , h; and k — 1, 2, . . . , j). Consider any vertex gt. If there is an arc 
oriented from q to gt of colour j in T*, i.e., if q = gf gfl, then in T q —» xJ>k

(i) 

—> ^^ if 2 < k < j bu t xjti
{i) defeats both q and g7> All the coloured arcs in T* 

are replaced by their corresponding uncoloured arcs in T. T h e orientat ion of 
the arcs between the remaining pairs of vertices is determined as follows. All 
the vertices xJik

{l) for a given i are said to l'belong" to gt. Also, gt belongs to 
itself. If the vertices x and y belong to p and q, respectively, where p ^ q, 
then x —-> y if and only if p —» q. For dist inct new vertices belonging to the same 
vertex we let .xij7.(î) —» xUm

{i) if and only if j > / or j = I and k > m. 
This completes the definition of the tou rnamen t T. Appealing to the method 

of construction and recalling the exceptional character of the vertices xj}i
(i), 

it is not difficult to verify the following equalit ies: 

d{g) = (1 + 2 + . . . + h)h + \{n - 2h - 1)[(1 + 2 + . . . + h) + 1] 
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for each of the vertices associated with an element of G\ 

d{x]%) = d(g) + (£)+h + k, if 2 < k < j , 

and 

d(x)lX) = ^ ( x ^ ) , for all i and j . 

T h e impor tan t fact here is t ha t d(x) > d(g) for every new vertex x and tha t 

dyXjjc) ~ d(xi>m) 

if and only if j = /, and k = m or km = 2. Since d(^) = d(a(p)) for any 
admissible automorphism a of T1, it follows, in particular, t h a t the ident i ty 
of the sets of original vertices g and new vertices x is preserved by a. 

We now prove t h a t the automorphism group of T is isomorphic to G. Let 
a be any automorphism which leaves some vertex gt fixed, i.e. a(g{) = gt. 
First we show tha t this implies t ha t a leaves every vertex of T fixed. 

Consider any vertex x = xjfk
(i) belonging to gt where k > 2. At least one 

such vertex exists since h > 2. We recall t ha t x —> gf\ hence a(x) could belong 
to a vertex gi in a(T) such tha t gi^> gi only if 

a(x) = Xjti. 

If this happens, there exists a vertex 3/—take 

y = * $ 

if j = 1 or 

J — XJ,2 

if j F^ 1—such tha t gf —* 3/ —-> a(x) . But there exists no such corresponding 
pa th from gt to x in T, so this possibility is excluded. If a(x) belongs to a 
vertex gi in a(T) such t ha t gz—* gu then a(x) -^gz—> gj. But, again, there 
is no corresponding path of length two from x to gj in T whose intermediate 
vertex is one of the vertices g. The only al ternative is t ha t a(x) belongs to gt 

itself, and considering the degrees of such vertices and the types of pa ths of 
length two from x to ^ when k = 2 leads to the conclusion t h a t a(x) = x. 

Now consider any remaining vertex 

belonging to gt. By the same argument as t ha t given above, it follows t ha t 
a(x) cannot belong to a vertex gi in a(T) such tha t gi —» gi. But if a(x) belongs 
to g 1 where gz—> gu then 

a(x) —> a(xj;%) = Xn% 

contradict ing the fact t ha t a preserves the orientation of the arc going from 
xhj2

{i) to x. Hence, a(x) belongs to gu and considering the degrees involved and 
the results in the preceding paragraph leads again to the conclusion t h a t 
a(x) = x. 
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For any j = 1, 2, . . . , h consider the vertex g = gt gj l. Since 

(this is where the exceptional property of xjfi
{i) is needed) it must be that 

**!ï->a(g) ->gi 

since x'^i^ and gt are fixed under a. But g itself is the only vertex associated 
with an element of G which has this property. Hence, a(g) = g for each such g. 

The tournament T is strongly connected, i.e., it is possible to reach any 
vertex from any other vertex by passing along a sequence of similarly oriented 
arcs. This follows from the method of constructing T from T*, which itself 
is strongly connected (4, p. 243). Hence, by repeating the above argument as 
often as is necessary, we eventually conclude that if a(gt) = gu then a(p) — p 
for every vertex p in T. 

The rest of the argument is standard. We have seen that if a is not the 
identity element, then a(g) ^ g for every vertex associated with an element of 
G. From this it follows that for any two such vertices gu and gv there can be at 
most one automorphism a of T such that a(gu) = gv. But, the group element 
a = gvgu~

l induces such an automorphism defined as follows: a(g) = ag for 
all vertices of T associated with an element of G, and 

where gt = a(gi), for all i, j , and k. From these results it follows that the 
automorphism group of T is isomorphic to G. 

It remains to treat the case where G = Cn, the cyclic group of (odd) order n. 
It is not difficult to see that Cn is isomorphic to the group of the tournament 
whose vertices are pi, p2, . . . , pn and in which pt —> p0 if and only if 0 < j — i 
< \(rt — 1), where the subtraction is (mod n). Alternatively, if the tourna
ment arising from letting h = 1 in the general construction given before is 
modified so that 

( i ) 

if and only if g = gt or gt -—> gy for each i, then a simple argument shows that 
Cn is also isomorphic to the group of this tournament. 

In constructing T from T*, j new vertices were introduced for each arc of 
colour j . This procedure can easily be extended to form other tournaments 
having the same non-trivial group by introducing mj new vertices for each 
arc of colour j for any integer m > 2. There exist tournaments with an arbit
rary number of vertices whose group consists only of the identity element, 
e.g., the tournament whose vertices are pi, p2, . . . , pn and in which pi —> pn 

but pj —> pi if and only if j > i otherwise. It is clear that all of these tourna
ments are strongly connected. Combining these results completes the proof 
of the following theorem. 
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THEOREM. If G is a group of odd order, then there exist infinitely many strongly 
connected tournaments whose group is isomorphic to G. 

4. Concluding remarks. If G is a group of odd order n generated by h 
of its elements, then the construction in §3 yields a tournament with 

(h + l \ , 
n \ 2 ) + n 

vertices whose group is isomorphic to G. The smallest tournament with this 
property undoubtedly has far fewer vertices in general. For example, let G 
be the smallest odd non-abelian group. In this case n = 21 and h = 2 (1, p. 
134). So the above construction gives a tournament with 84 vertices whose 
group is isomorphic to G. But there exists a tournament with only 7 vertices 
whose group is isomorphic to G, namely the tournament in which pi—>pj 
if and only if j — i is a quadratic residue (mod 7), for i, j = 1, 2, . . . , 7 and 
i 9* j . 

For abelian groups the original problem has an almost trivial solution, 
which in a sense is much more efficient than the one given. We have seen that 
every cyclic group of odd order n is isomorphic to the group of some tourna
ment with not more than n vertices. This statement can be extended to any 
odd abelian group upon recalling that any abelian group is isomorphic to the 
direct product of cyclic groups and observing that if A and B are two disjoint 
tournaments with groups G and H, respectively, then the group of the tourna
ment formed by joining every vertex in A to every vertex in B by an arc 
oriented towards the vertex in B is isomorphic to the direct product of G and H. 
Unfortunately, the tournaments obtained in this manner are not strongly con
nected except when the original group was itself cyclic. Hence, they are not 
very representative of tournaments in general as it is known (3) that the 
proportion of tournaments which are strongly connected tends rapidly to one 
as the number of vertices increases. 

I wish to thank Professor Leo Moser for suggesting the original problem 
to me. 
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