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Oort groups and lifting problems

T. Chinburg, R. Guralnick and D. Harbater

Abstract

Let k be an algebraically closed field of positive characteristic p. We consider which finite
groups G have the property that every faithful action of G on a connected smooth pro-
jective curve over k lifts to characteristic zero. Oort conjectured that cyclic groups have
this property. We show that if a cyclic-by-p group G has this property, then G must be
either cyclic or dihedral, with the exception of A4 in characteristic two. This proves one
direction of a strong form of the Oort conjecture.

1. Introduction

The motivation for this paper is the following conjecture made by Oort in [Oor87, § I.7].

Conjecture 1.1 (Oort conjecture). Every faithful action of a cyclic group on a connected smooth
projective curve Y over an algebraically closed field k of positive characteristic p lifts to characteristic
zero.

With k as above, we call a finite group G an Oort group for k if every faithful action of G
on a smooth connected projective curve Y over k lifts to characteristic zero. By such a lifting we
mean an action of G on a smooth projective curve Y over a complete discrete valuation ring R of
characteristic zero and residue field k together a G-equivariant isomorphism between Y and the
special fiber Y ×R k. Thus Oort’s conjecture is that cyclic groups are Oort groups. The object of
this paper is to make a precise prediction about which G are Oort groups and to prove one direction
of this prediction, namely that all Oort groups are on the list we predict.

Grothendieck’s study of the tame fundamental group of curves in characteristic p (see [Gro71,
Exposé XIII, § 2]) relies on the fact that tamely ramified covers can be lifted to characteristic
zero. Oort groups over k can equivalently be characterized as groups G such that every connected
G-Galois cover of k-curves lifts to characteristic zero (see § 2). This fact and Grothendieck’s result
imply that prime-to-p groups are Oort groups for k.

It was proved by Oort, Sekiguchi and Suwa in [OSS89] (respectively by Green and Matignon
in [GM98]) that a cyclic group G is an Oort group if the order of G is exactly divisible by p
(respectively by p2). The dihedral group of order 2p is an Oort group for all k of characteristic p,
by a result shown in [Pag02] for p = 2 and in [BW06] for odd p (see Example 2.12(c), (f) below).
By another result stated in [BW06], the alternating group A4 is an Oort group in characteristic two
(see Example 2.12(g)). All of the above groups are cyclic-by-p (i.e. extensions of a prime-to-p cyclic
group by a p-group), which is the form of an inertia group associated to a cover of k-curves.

The above results suggest the following strengthening of the Oort conjecture concerning cyclic
groups.
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Conjecture 1.2 (Strong Oort conjecture). If k is an algebraically closed field of characteristic p, and
if G is a cyclic-by-p group, then G is an Oort group for k if and only if G is either a cyclic group,
or a dihedral group of order 2pn for some n, or (if p = 2) G is the alternating group A4.

By Corollary 2.8 below, an arbitrary finite group G is an Oort group for k if and only if every
cyclic-by-p subgroup of G is. So Conjecture 1.2 would also determine precisely which finite groups
are Oort groups, namely those whose cyclic-by-p subgroups are of the above form. In a forthcoming
paper on ‘global’ Oort groups we give a detailed description of this class of groups.

In this paper, we show the forward direction of Conjecture 1.2: if a cyclic-by-p group G is an
Oort group for an algebraically closed field k of characteristic p, then it must be of the asserted
form. This is shown in odd characteristic in Corollary 3.4, and in characteristic two in Theorem 4.5.

We also consider a local version of the above problem, in which actions of G on Spec k[[x]] are
considered, along with the corresponding notion of a local Oort group (see § 2). This notion is in fact
closer to the focus of study in [OSS89], [GM98], [Pag02] and [BW06]. In this paper we also prove
results that are local analogs of our global results; see Theorems 3.3 and 4.4. The local result in
odd characteristic is the natural analog of the global version. In characteristic two our local result
is somewhat more complicated. We prove in [CGH08] a stronger local result concerning a lifting
obstruction defined by Bertin in [Ber98], and we also take up the question of when some faithful
local G-action lifts to characteristic zero.

Notation and terminology

In this paper, k denotes an algebraically closed field of characteristic p > 0. A curve X over a field
F is a normal scheme of finite type over F such that dim(OX,x) = 1 for all closed points x of X. If R
is a Dedekind ring, a curve X over R is a normal scheme together with a separated, flat morphism
X → Spec(R) of finite type whose fibers are curves.

Suppose that G is a finite group, B is a field or a Dedekind ring, and V is a connected curve
over B. A G-Galois cover over V consists of a faithful action of G on a curve U over B and
isomorphism over B of V with the quotient curve U/G. We do not require U to be connected.
The resulting finite morphism U → U/G = V is G-equivariant when we let G act trivially on V .
If H is a subgroup of G, and U ′ → V is an H-Galois cover of curves over B, then IndG

HU ′ → X
denotes the induced G-Galois cover obtained by taking (G : H) disjoint copies of U ′ indexed by
coset representatives of H in G. If B is an algebraically closed field k, the fact that U and V are
normal and V is connected forces U to be the normalization of V in V ×U Spec(k(V )) = Spec(D),
where k(V ) is the function field of V and D is an étale G-algebra over k(V ).

Given groups N,H, we denote by N.H the semi-direct product of N with H, relative to some
action of H on N . We denote the cyclic group of order n by Cn (multiplicatively) or Z/n (additively).
So a cyclic-by-p group is of the form P.Cn for some n prime to p, where P is a p-group. The dihedral
group of order 2n (and of degree n) is denoted here by D2n. So D4 denotes the Klein four group,
and D2 the cyclic group of order two. For a prime-power q, SL(n, q) denotes the group SLn(Fq),
and similarly for GL and PGL.

The Frattini subgroup of a finite group G (namely the intersection of the maximal subgroups
of G) is denoted by Φ(G). (If G is a p-group, Φ(G) is also the subgroup of G generated by pth
powers and commutators.) Given subgroups E,H of a group G, the centralizer of H in E is the
subgroup CE(H) = {e ∈ E | (∀h ∈ H)eh = he} ⊂ E and the normalizer H in E is the subgroup
NE(H) = {e ∈ E | eHe−1 = H} ⊂ E.

850

https://doi.org/10.1112/S0010437X08003515 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003515


Oort groups and lifting problems

2. Oort groups and local Oort groups

Let X be a smooth complete k-curve, and let R be a mixed characteristic complete discrete valuation
ring with residue field k. There is a unique continuous algebra homomorphism from the ring W (k)
of Witt vectors over k into R which induces the identity map on residue fields, and R is a finite
extension of W (k). By [Gro71, III, Corollaire 7.4], there is a smooth complete R-curve X with closed
fiber isomorphic to X; we call this a model of X over R. Let Y → X be a G-Galois cover. We say
that the G-Galois cover Y → X lifts to X if there is a smooth complete R-curve Y on which G
acts and an isomorphism between X and the quotient scheme Y/G such that the resulting G-Galois
cover Y → X has closed fiber Y → X (as a G-Galois cover). The general fiber of Y is Y ×R F where
F is the fraction field of R, and the geometric general fiber of Y is Y ×R F̄ where F̄ is an algebraic
closure of F . These are smooth complete curves over F and F̄ , respectively.

Later we will need the following well-known result. Parts (a) and (b) are special cases of [Dej97,
Proposition 4.2] (see also the proof of [Ray90, Proposition 5] and its corollary). Part (c) is then
immediate from the constancy of the arithmetic genus in a connected flat family (see [Hrt77, ch. III,
Corollary 9.10]).

Proposition 2.1. With the above notation, suppose H is a subgroup of G.

(a) The morphism Y → Y/H is an H-Galois cover of smooth complete curves over R that lifts
the H-Galois cover of smooth complete curves Y → Y/H over k.

(b) If H is normal in G, then Y/H → X = Y/G is a G/H-Galois cover of smooth complete
curves over R that lifts the G/H-Galois cover Y/H → X = Y/G of smooth complete curves over k.

(c) The genera of Y/H, of the general fiber of Y/H, and of the geometric general fiber of Y/H,
are equal.

We say that a G-Galois cover of smooth complete k-curves Y → X lifts to characteristic zero if
it lifts to a model X of X over some discrete valuation ring R as above. If ξ is a point of X, then we
say that Y → X lifts locally near ξ if for some R and X as above, and for every point η of Y over
ξ, there is an I-Galois cover Ŷη → X̂ξ := Spec ÔX ,ξ whose closed fiber is isomorphic to the pullback
of Y → X to X̂ξ := Spec ÔX,ξ as an I-Galois cover; here I is the inertia group of Y → X at η. This
property holds trivially if ξ is not a branch point.

Theorem 2.2. Let X be a smooth complete k-curve, and let Y → X be a G-Galois cover. Then
the following are equivalent:

(i) Y → X lifts to characteristic zero;

(ii) for every mixed characteristic complete discrete valuation ring R with residue field k and every
model X of X over R, there is a complete discrete valuation ring R′ which is a finite extension
of R such that Y → X lifts to the induced model X ′ of X over R′;

(iii) Y → X lifts locally near each branch point.

Proof. The implications (ii) ⇒ (i) ⇒ (iii) are trivial, so it suffices to prove the implication (iii) ⇒
(ii). Let S = {ξ1, . . . , ξr} be a non-empty finite set of points containing the branch locus of Y → X.
By part (iii), the cover lifts locally near each point of S. The lift near ξi is defined with respect to
some model Xi of X over some finite extension Ri of W (k). Since Xi is smooth over Ri and since
the residue field k of Ri is algebraically closed, it follows that ÔXi,ξi

is isomorphic to Ri[[ti]], where
ti is a uniformizer of Xi over Ri, lifting a uniformizer t̄i of X at ξi.

With R and X as in the hypothesis of part (ii), let R′ be a complete discrete valuation ring in
the algebraic closure of the fraction field of R into which all of the Ri embed over R. Let X ′ be the
R′-model of X induced by X . Then the complete local rings of X ′ at the points ξi are of the form
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R′[[ti]], and the local liftings on the Ri-curves Xi induce local liftings on X ′. Inducing each of these
from Ii to G (by taking a disjoint union of copies indexed by the cosets of Ii in G), we obtain local
(disconnected) G-Galois covers Ŷi of X̂ ′

i := Spec ÔX ′,ξi
for each i.

Let U be the complement of S in X. So U is an affine k-curve, say U = SpecA, for some k-
algebra A of finite type. Let V = SpecB be the inverse image of U under Y → X; this is G-Galois
and finite étale over U . Choose an affine open subset Ũ = Spec Ã of X ′ that contains U ; let A
be the completion of Ã with respect to the ideal generated by the maximal ideal of R′; and let
U ′ = SpecA. By [Gro71, I, corollaire 8.4], there is a G-Galois finite étale cover V → U ′ that lifts
V → U .

For each i, let ξ◦i be the generic point of X̂i := Spec ÔX,ξi
, and let Ûi = Spec ÔX ′,ξ◦i . There

are thus natural morphisms Ûi → X̂ ′
i and Ûi → U ′ (and we regard Ûi as the ‘overlap’ of X̂ ′

i with
U ′ in X ′). Pulling back Ŷi → X̂ ′

i via Ûi → X̂ ′
i yields a G-Galois cover of Ûi, and so does pulling

back V → U ′ via Ûi → U ′. For each of these two pullbacks, the fiber over ξ◦i is equipped with an
isomorphism to the fiber of Y → X over ξ◦i (as a G-space). The induced isomorphism between these
fibers of the two pullbacks lifts to a unique isomorphism between these two pullbacks as G-Galois
covers, by [Ser79, III, § 5, Theorem 2].

We now apply formal patching (e.g. [HS99, Corollary to Theorem 1] or [Pri00, Theorem 3.4]) to
the proper R′-curve X ′ and the above data. So there is a G-Galois cover Y → X ′ whose restriction
to X̂ ′

i is isomorphic to Ŷi; whose restriction to U ′ is isomorphic to V; and whose closed fiber is
isomorphic to Y → X. So part (ii) holds.

Remark. A similar argument, using rigid patching, was used in the proof of [GM98, III, Lifting
Theorem 1.3], in the case of covers whose inertia groups are cyclic of order not divisible by p3, where
p = char k. The equivalence of parts (i) and (iii) was proved using deformation theory in [BM06,
théorème 4.6].

Consider a local G-Galois cover Ŷ → X̂ := Speck[[x]]. Let R be a discrete valuation ring which
is a finite extension of the ring of Witt vectors W (k), and let X̂ = SpecR[[x]]. We say that the
given cover lifts to X̂ if there is a G-Galois cover Ŷ → X̂ whose closed fiber is Ŷ → X̂ as a G-Galois
cover. Similarly, we say that the G-Galois cover Ŷ → X̂ lifts to characteristic zero if it lifts to
X̂ = SpecR[[x]] for some discrete valuation ring which is a finite extension of W (k).

We may identify X̂ = Spec k[[x]] with Spec ÔX,∞, where X = P1
k. Let G = P.C be a cyclic-by-p

group, that is, a semi-direct product of a p-group P with a cyclic group C = Cm of order m prime
to p. Recall that given any G-Galois cover Ŷ → X̂ = Spec k[[x]], there is a unique G-Galois cover
Y → X := P1

k whose restriction to Spec ÔX,∞ agrees with Ŷ → X̂, which is tamely ramified over
zero with ramification index equal to m, and which is unramified elsewhere [Kat86, Theorem 1.4.1].
Here Y → X is called the Katz–Gabber cover associated to Ŷ → X̂ .

Theorem 2.2 then has the following corollary.

Corollary 2.3. Let G be a cyclic-by-p group and let Ŷ → X̂ = Speck[[x]] be a connected G-Galois
cover. Let Y → X be the associated Katz–Gabber cover.

(a) The cover Y → X lifts to characteristic zero if and only if Ŷ → X̂ lifts.

(b) Let g be the genus of Y . If there is no connected genus g curve Y ◦ over an algebraically
closed field of characteristic zero together with a faithful action of G such that Y ◦/G has genus
zero, then Ŷ → X̂ does not lift to characteristic zero.

(c) Suppose Y has genus zero. If there is no algebraically closed field L of characteristic zero
such that G embeds into PGL2(L), then Ŷ → X̂ does not lift to characteristic zero.

Proof. (a) If Y → X lifts to characteristic zero, then it lifts locally by Theorem 2.2, so Ŷ → X̂ lifts
to characteristic zero.
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Conversely, suppose that Ŷ → X̂ lifts to characteristic zero. Then Y → X lifts locally near
the branch point ∞. However, Y → X also lifts locally near the branch point 0 since it is tamely
ramified there, and tame covers lift [Gro71, Exposé XIII, § 2]. So by Theorem 2.2, Y → X lifts to
characteristic zero.

(b) If Ŷ → X̂ lifts to characteristic zero, then so does Y → X, by part (a). Let Y → X be
a lift to characteristic zero, with geometric generic fiber Y ◦ → X◦. Since k is algebraically closed
and Y is connected, Y ◦ must be connected. By Proposition 2.1, X and Y have the same genera as
their generic fibers, namely 0 and g, respectively. Hence, the same is true for X◦ and Y ◦. However
X◦ = Y ◦/G. This contradicts the hypothesis.

(c) Let g = 0 in part (b), so that if Ŷ → X̂ lifts to characteristic zero there is a connected genus
zero curve Y ◦ over an algebraically closed field L of characteristic zero for which G acts faithfully
on Y ◦. This Y ◦ must be isomorphic to P1

L, so G embeds into AutL(Y ◦) = PGL2(L), which proves
part (c).

Let G be a finite group. We say that G is an Oort group for k if for every smooth connected
complete k-curve X, every connected G-Galois cover Y → X lifts to characteristic zero. (If the field
k is understood, we will sometimes omit the words ‘for k’. As Pop has noted to us, it is a very
interesting question whether the set of Oort groups for k depends only on the characteristic of k.)
Recall that every finite group is the Galois group of some connected cover of X (and, moreover,
the absolute Galois group of the function field of X is free profinite of rank card k; cf. [Har95] and
[Pop95]). So this condition on G is not vacuous. Note also that Y → X = Y/G lifts to characteristic
zero if and only if we may lift the action of G on Y to an action of G on a smooth complete curve
Y over a complete discrete valuation ring R of characteristic zero and residue field k. For if such a
Y exists, the curve X = Y/G over R will have special fiber (Y ×R k)/G = Y/G = X.

A finite group G is the Galois group of a connected cover of Spec(k[[x]]) if and only if it is cyclic-
by-p. So if G is a cyclic-by-p group, we say that G is a local Oort group for k if every connected
G-Galois cover of Spec k[[x]] lifts to characteristic zero.

Theorem 2.4. Let G be a finite group. Then the following are equivalent:

(i) G is an Oort group for k;

(ii) every G-Galois cover of P1
k lifts to P1

R, for some finite extension R of W (k) (depending on the
cover);

(iii) every cyclic-by-p subgroup of G is a local Oort group for k.

The key step in proving this result is the following lemma.

Lemma 2.5. Let G be a finite group, and let I ⊂ G be a cyclic-by-p subgroup. Let ξ be a closed
point of X := P1

k, and let Ŷ → X̂ be a connected I-Galois cover of X̂ := Spec ÔX,ξ. Then there

is a connected G-Galois cover Y → X := P1
k whose pullback over X̂ is isomorphic to IndG

I Ŷ as a
G-Galois cover.

Proof. By [Kat86, Theorem 1.4.1], there is an I-Galois cover f : X1 → X whose pullback to X̂ is
isomorphic to X̂1 → X̂ . In particular, X1 → X is totally ramified over ξ. Consider the conjugation
action of I on G, and form the corresponding semi-direct product Γ = G.I. By[Pop95, Theorem A],
there is a connected Γ-Galois cover Z → X that dominates f : X1 → X, such that f(B) is disjoint
from the branch locus of X1 → X, where B ⊂ X1 is the branch locus of Z → X1. In particular,
the inertia group of Z at some point ζ over ξ ∈ X is 1.I ⊂ Γ, and the complete local ring there is
isomorphic to that of X1 at the unique point ξ1 ∈ X1 over ξ.

Now there is a surjective homomorphism Γ → G given on the first factor of Γ by the identity on
G, and given on the second factor by the inclusion of I into G. The kernel is the normal subgroup
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N := {(i−1, i) | i ∈ I} ⊂ G.I = Γ, which meets 1.I trivially. Let φ : Z → Y := Z/N be the
corresponding quotient map. Then h : Y → X is a connected G-Galois cover, whose inertia group
at η := h(ζ) is I ⊂ G (namely the image of 1.I under Γ → Γ/N = G), and whose complete local
ring at η is isomorphic to that of Z at ζ, or equivalently to that of X1 at ξ1, as an I-Galois extension
of ÔX,ξ. So Y is as desired.

Remark. A related result appears as [GS02, Theorem 3.4].

Proof of Theorem 2.4. The implication (iii) ⇒ (i) is immediate from Theorem 2.2, since each inertia
group is a cyclic-by-p subgroup of G. The implication (i) ⇒ (ii) is trivial. So it remains to prove
(ii) ⇒ (iii). So let I = P.C ⊂ G be a cyclic-by-p subgroup of G, and let Ŷ → X̂ be any I-
Galois cover of X̂ := Speck[[x]]. We may identify X̂ with the spectrum of the complete local
ring of the affine k-line at a point ξ. Applying the lemma, we obtain a connected G-Galois cover
Y → X := P1

k whose pullback to X̂ is IndG
I Ŷ . By part (ii), the G-Galois cover Y → X lifts to a

G-Galois cover Y → X := P1
R for some finite extension R of W (k). Pulling back to the spectrum

of ÔX,ξ ≈ R[[x]], and restricting to the identity component of the cover (i.e. the component whose
closed fiber corresponds to the identity coset of I in G), we obtain a lifting of X̂ to an I-Galois
cover Ŷ → X̂ := SpecR[[x]]. This shows that I is a local Oort group, proving part (iii).

Corollary 2.6. If a cyclic-by-p group G is an Oort group for k, then G is a local Oort group for k.

Proof. Since G is an Oort group, Theorem 2.4 implies that every cyclic-by-p subgroup of G is a
local Oort group of k. In particular, G is a local Oort group of k.

Corollary 2.7. If G is an Oort group for k, and if H is a subquotient of G, then H is an Oort
group for k.

Proof. It suffices to show that every subgroup, and every quotient group, of an Oort group for k is
also an Oort group for k.

If H is a subgroup of an Oort group G, then every cyclic-by-p subgroup of G is a local Oort
group by (i) ⇒ (iii) of Theorem 2.4. In particular, this is the case for every cyclic-by-p subgroup of
H. So (iii) ⇒ (i) of Theorem 2.4 implies that H is an Oort group.

If, instead, H = G/N is a quotient group of G, then consider any connected H-Galois cover
Y → P1

k. According to the geometric Shafarevich conjecture (cf. [Har95] and [Pop95]), the absolute
Galois group of the function field k(x) of P1

k is free of infinite rank; so there is a connected G-Galois
(branched) cover Z → P1

k that dominates Y → P1
k. Since G is an Oort group, the G-Galois cover

Z → P1
k lifts to characteristic zero, say to Z → P1

R. Let Y = Z/N . By Proposition 2.1(b), Y → P1
R

is an H-Galois cover that lifts Y → P1
k. This shows that H is an Oort group.

Corollary 2.8. Let G be a finite group. Then G is an Oort group if and only if every cyclic-by-p
subgroup I ⊂ G is an Oort group.

Proof. The forward implication is immediate from Corollary 2.7. For the reverse implication, sup-
pose that every cyclic-by-p subgroup I ⊂ G is an Oort group. Then each such I is a local Oort
group, by Corollary 2.6. So the implication (iii) ⇒ (i) of Theorem 2.4 concludes the proof.

Note that this shows that the latter condition in Corollary 2.8 is equivalent to the three conditions
appearing in Theorem 2.4 (i.e. we may omit the word ‘local’ in part (iii) of Theorem 2.4).

Corollary 2.8 reduces the study of Oort groups to the study of cyclic-by-p Oort groups.

Proposition 2.9. Let n � 1. If the cyclic group of order pn is an Oort group for k, then so is the
cyclic group of order pnr for every r not divisible by p.

Hence, the Oort conjecture holds provided that it holds for cyclic p-groups.
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Proof. In order to show that Cpnr is an Oort group, it suffices by Theorem 2.4 to show that every
subgroup is a local Oort group; each of those is of the form Cpms for m � n and s|r. Suppose that
Ẑ → X̂ := Speck[[x]] is a connected Cpms-Galois cover. Let Ŷ → X̂ be the associated quotient Cpm-
Galois cover. Since we assume that Cpn is an Oort group, Cpm is a local Oort group by Corollaries 2.7
and 2.6. So there is a Cpm-Galois cover Ŷ → X̂ := SpecR[[x]] which lifts Ŷ → X̂ for some discrete
valuation ring R which is a finite extension of W (k). Let η be the closed point of Ŷ (and of Ŷ ). Since
Ŷ is smooth over k, its lift Ŷ is smooth over R and, hence, regular (at η). We want to dominate
this by a Cpms-Galois cover that lifts Ẑ → X̂ .

After enlarging R, we may assume that all of the codimension one branch points and ramification
points of Ŷ → X̂ are defined over R. Suppose that Ŷ → X̂ is not totally ramified over an R-point
of X̂ . Since the subgroups of Cpn are totally ordered, there would then be a proper subgroup H
of Cpn such that Ŷ/H → X̂ is unramified in codimension one. By purity of the branch locus,
Ŷ/H → X̂ would then be a non-trivial connected étale cover, and hence so would be its special
fiber Ŷ /H → X̂ . This is impossible by Hensel’s lemma because the residue field k is algebraically
closed. Therefore, there is an R-point P ⊂ X̂ that totally ramifies in Ŷ. Let Q ⊂ Ŷ be the unique
R-point over P , and let y ∈ ÔŶ,η be an element defining the codimension one subscheme Q (which
exists since Ŷ is regular). Since ÔŶ ,η is complete, it is thus isomorphic to R[[y]].

By Kummer theory (and since k is algebraically closed), the cover Ẑ → Ŷ is given by z̄s = ȳ; here
we write ȳ ∈ ÔŶ ,η for the residue class of y ∈ ÔŶ ,η modulo the ideal generated by a uniformizing

parameter in R. Let Ẑ → Ŷ be the normal Cs-Galois cover given by zs = y. Since s is prime to p,
this is the unique Cs-Galois cover of Ŷ which lifts Ẑ → Ŷ and is ramified precisely along Q (again
by Kummer theory). So the composition Ẑ → X̂ is Galois, with group Cpms, and it lifts Ẑ → X̂.

Remark. Another approach to Proposition 2.9 would be to use that a Cpnr-Galois cover is the
normalized fiber product of a Cpn-Galois cover and a Cr-Galois cover. Namely, if Cpn is an Oort
group, then one can lift the unique Cpn-Galois quotient cover of a Cpnr-Galois cover to a mixed
characteristic complete discrete valuation ring R; and one can also lift the unique Cr-Galois quotient
cover using a Kummer extension. One would then show that if the branch locus of the lift of the Cr-
Galois cover is chosen suitably (namely as in the above proof), then the normalized fiber product
of the two lifts is a smooth cover of R-curves, and hence provides the desired lift. In the cases
n = 1, 2, this strategy was carried out explicitly in [GM98, II, § 6] by examining equations and
relative differents.

In the case of local Oort groups, we have a weaker analog of Corollary 2.7. First we prove a
lemma.

Lemma 2.10. Let G = P.C be a cyclic-by-p group, with quotient G′ = P ′.C ′, where P,P ′ are
p-groups and C,C ′ are cyclic prime-to-p groups. Then every connected local G′-Galois cover Z ′ →
X = Spec k[[x]] is dominated by a connected local G-Galois cover Z → X, compatibly with the
quotient map G � G′.

Proof. Consider the semi-direct product G′′ = P ′.C, with C acting on P ′ through C ′. As a first
step, we show that Z ′ → X is dominated by a G′′-Galois cover. Namely, let Y ′ → X be the
intermediate C ′-Galois subcover of Z ′ → X. By Kummer theory, there is a cyclic C extension k(W )
of the function field k(X) = k((x)) which contains k(Y ′). Let Z ′′ be the normalization of Z ′ in the
compositum of k(W ) and k(Z ′) in an algebraic closure of k(X). Since C acts on P ′ ⊂ G′′ through
C ′, we have that Z ′′ → X is a connected G′′-Galois cover dominating Z → X.

To complete the proof, we will dominate the G′′-Galois cover Z ′′ → X by a connected G-Galois
cover. Namely, by [Kat86, Theorem 1.4.1], Z ′′ → X extends to a Katz–Gabber cover, that is, a

855

https://doi.org/10.1112/S0010437X08003515 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003515


T. Chinburg, R. Guralnick and D. Harbater

G′′-Galois cover Ỹ → P1
k whose restriction to X = Spec Ô

P1k,∞ is Z ′′ → X; whose restriction to

Spec Ô
P
1
k,0 is a disjoint union of connected C-Galois covers; and which is unramified elsewhere. Since

the kernel of G → G′′ is a p-group, it follows by [Har00, Theorem 5.14] (applied to the affine line)
that Ỹ → P1

k is dominated by a connected G-Galois cover Z̃ → P1
k such that Z̃ → Ỹ is tamely

ramified except possibly over ∞ and is étale away from 0,∞.
Let I ⊂ G be an inertia group of Z̃ → P1

k over ∞. Since I has G′′ as a quotient, I = P ′′.C for
some P ′′ ⊂ P . If P ′′ is a proper subgroup of P , then it is contained in a proper normal subgroup
N ⊂ P (since P is a p-group); and then Z̃/N is an unramified Galois cover of Z̃/P . However, Z̃/P
is a C-Galois cover of P1

k ramified just at 0,∞; hence its genus is zero and it has no unramified
covers. This is a contradiction. So actually P ′′ = P , I = G, and Z̃ → X̃ is totally ramified over ∞.
(Thus, Z̃ → X̃ is a G-Galois Katz–Gabber cover.) Let ζ ∈ Z̃ be the unique point over ∞. Taking
Z = Spec ÔZ̃,ζ , we have that Z → X is a connected G-Galois cover that dominates Z ′′ → X (and,
hence, also Z ′ → X).

Proposition 2.11. If G is a local Oort group for k, then every quotient of G is a local Oort group
for k.

Proof. Say G = P.C is an Oort group, with quotient G′ = P ′.C ′. By Lemma 2.10, any connected
local G′-Galois cover Z ′ → X = Spec k[[x]] is dominated by a connected local G-Galois cover
Z → X. Since G is a local Oort group for k, the G-Galois cover Z → X lifts to characteristic zero;
and taking the corresponding quotient, we obtain a lifting of the given G′-Galois cover.

We conclude this section with some examples.

Examples 2.12. As above, k is an algebraically closed field of characteristic p > 0, and we consider
Oort groups and local Oort groups for k.

(a) Groups of order prime to p are Oort groups for k, because all tamely ramified covers lift to
characteristic zero [Gro71, Exposé XIII, § 2]. Cyclic prime-to-p groups are also local Oort groups
(e.g. by Corollary 2.6, or by [Gro71, Exposé XIII, § 2] applied locally).

(b) By [OSS89], the cyclic group Cp is an Oort group, as is Cpr with (p, r) = 1. By [GM98], Cp2

is an Oort group, as is Cp2r with (p, r) = 1. Since these groups are cyclic-by-p groups, they are also
local Oort groups, by Corollary 2.6. It is unknown whether Cpn is an Oort group for any n � 3.

(c) It was shown in [GM98, I, Example 5.3] that Cp×Cp is not a local Oort group if p > 2. Hence,
it is also not an Oort group, by Corollary 2.6 above. By Corollary 2.7 and Proposition 2.11, it then
follows that the elementary abelian group Cn

p is neither an Oort group nor a local Oort group for
n > 1 if p > 2. Here is a simpler argument, which avoids the machinery of [GM98]: Cn

p acts on the
affine line by translation by Fpn , and hence it acts on the projective line with one fixed point (∞).
Taking the quotient by this group, we obtain a genus zero Galois cover of the line in characteristic p,
with precisely one branch point, where it is totally ramified. By Corollary 2.3(c), this cover cannot
be lifted since Cn

p is not isomorphic to a subgroup of PGL2 = Aut(P1) in characteristic zero [Suz82,
Theorem 6.17]; so Cn

p is not an Oort group. Applying Theorem 2.2 to the above Cn
p -Galois cover

shows that Cn
p is also not a local Oort group. (However, for every n there exists a local Cn

p -cover
that lifts [Mat99].)

(d) For every odd prime p, the dihedral group D2p of order 2p is a local Oort group [BW06,
Theorem 1.2]. By examples (a) and (b) above, every subgroup of G is a local Oort group. So by
Theorem 2.4, D2p is an Oort group.

(e) The Klein group C2
2 is an Oort group if p = 2 (see the thesis of Pagot [Pag02]) and, hence,

a local Oort group. However, Cn
2 is not an Oort group for n > 2 if p = 2. This follows as in

example (c), since Cn
2 acts on the projective k-line with one fixed point, but it is not a subgroup of
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PGL2 = Aut(P1) in characteristic zero [Suz82, Theorem 6.17]. (On the other hand, C2
2 is a subgroup

of PGL2 in characteristic zero.)
(f) The quaternion group Q8 of order eight is not a local Oort group if p = 2, nor is SL(2, 3).

Namely, the group SL(2, 3) = Q8.C3 and its subgroup Q8 act faithfully on a supersingular elliptic
curve E over k, each corresponding to a Katz–Gabber cover of P1

k, with the origin of E as the
totally ramified point. (In [Sil86, Appendix A], see the proof of Proposition 1.2 and Exercise A.1.)
However, Q8 and SL(2, 3) do not act faithfully on any elliptic curve in characteristic zero; so the
assertion follows from Corollary 2.3(b). By Corollary 2.6, these two groups are also not Oort groups
for k.

(g) Bouw announced that the alternating group A4 = C2
2 .C3 is a local Oort group if p = 2

(unpublished; see [BW06, § 1.3]). That implies that every subgroup of A4 is a local Oort group
(using examples (a) and (d) above), and hence that A4 is an Oort group in characteristic two, by
Theorem 2.4.

3. Oort groups in odd characteristic

The main result of this section is that in odd characteristic p, every local Oort group, and, hence,
every cyclic-by-p Oort group, is either a cyclic group Cn or else is a dihedral group of order 2pn

for some n. This also has consequences for the structure of arbitrary Oort groups. We begin with a
group-theoretic reduction result.

Proposition 3.1. Let p be an odd prime and let G be a finite group with a normal Sylow
p-subgroup S such that G/S = C is cyclic (of order prime to p). Assume that G has no quotient of
the following types:

(1) Cp × Cp;

(2) P.Cm, where P is an elementary abelian p group, p � m � 3, and Cm acts faithfully and
irreducibly on P ;

(3) C2
p .C2 where C2 acts on P := C2

p by inversion;

(4) D2p × C� for some prime number � > 2 (including the possibility that � = p);

(5) Cp.C4 where a generator of C4 acts on P := Cp by inversion.

Then either G is cyclic or it is dihedral of order 2pn for some n.

Proof. We proceed inductively, and we assume that the proposition holds for every group of order
less than #G. We may assume that p divides the order of G (else, otherwise, G ≈ C is cyclic). Since
S and G/S have relatively prime orders, G contains a subgroup isomorphic to G/S, which we again
denote by C. Set K = CC(S). Then every subgroup of K is normal in the cyclic group C and is
normalized by S, and hence is normal in G. In particular, K is normal in G.

Suppose that G has the property that it has no quotient of the form (1)–(5) and that H is a
quotient of G. Then H has a normal Sylow p-subgroup and the quotient of H by this subgroup
is cyclic of order prime to p. Furthermore, H can have no quotient of the form (1)–(5). So by the
inductive hypothesis, every proper quotient H of G is cyclic or is dihedral of order 2pm for some m.
Hence, if N is any non-trivial normal subgroup of G contained in S, then G/N is either cyclic or
else dihedral of order 2pn. In particular, this implies that S/N is cyclic.

The Frattini subgroup Φ(S) of S is normal in G since S is normal. Suppose that Φ(S) is non-
trivial. Then S/Φ(S) is cyclic, so S is cyclic by the Burnside basis theorem. If G = S, then G
is cyclic. If G �= S, then G/Φ(S) is a proper quotient of G that is not a p-group but which has
order divisible by p since Φ(S) �= S. Hence, G/Φ(S) is dihedral of order 2pm for some m > 0 and
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#(G/S) = 2. In this case an involution in G either centralizes S (and so G is cyclic) or acts as
inversion on S (and so G is dihedral). This completes the proof if Φ(S) is non-trivial.

We now suppose that Φ(S) is trivial or equivalently that S is elementary abelian. If S is central
in G, then G ≈ S × C, and G surjects onto S. Since G does not surject onto Cp × Cp, neither
does S. So the elementary abelian p-group S is isomorphic to Cp, and hence G ≈ S × C is cyclic.
So from now on we may assume that S is not central, that is, C does not commute with S. Thus,
a generator x for C induces an automorphism of order m > 1 on S, by conjugation.

Consider the case that m > 2. Then the action of C on S cannot be both faithful and irreducible,
since then G would be a group as in type (2), a contradiction. On the other hand, if C does not
act faithfully on S, then the normal subgroup K = CC(S) is non-trivial and, hence, the quotient
G/K is either cyclic or dihedral, which contradicts the assumption that m > 2. Finally, suppose
that C does not act irreducibly on S. Since S is an elementary abelian p-group and C is cyclic of
order prime to p, S is the product

∏t
i=1 Si of some number t > 1 of subgroups Si on which C acts

irreducibly by conjugation. For each 1 � j � t, Tj =
∏

i�=j Si is a non-trivial normal subgroup of G,
so G/Tj is either cyclic or dihedral. This means C acts trivially or by inversion on S/Tj ≈ Sj for
all j, which contradicts the assumption that m > 2.

Therefore, m = 2. Suppose that the elementary abelian p-group S is not cyclic. Then there
exists a C-invariant subgroup T of S having index p2. Since G/T contains a subgroup S/T that
is isomorphic to Cp × Cp, it is neither cyclic nor dihedral. It follows that the normal subgroup T
is trivial and so S ≈ C2

p . With K = CC(S) as above, since m = 2 we have that G/K is either
of the form (3) or (4) in the statement of the result, with � = p in the case of type (4). This is a
contradiction.

So we are reduced to the case that S is cyclic of order p, and m = 2. If K = CC(S) is non-trivial,
let K ′ be a maximal proper subgroup of K. Then K ′ is normal in G, and G/K ′ is of the form Cp.C2�

for some prime �, where the generator of C2� acts by inversion. Depending on whether � is odd or
is equal to two, G/K ′ is then of the form (4) (with � �= p) or (5). This is a contradiction. So in fact
K is trivial, hence G is dihedral of order 2p.

In order to apply Proposition 3.1, we show in the next result that certain groups are not local
Oort groups. In the proof, we use that for any polynomial f(u) of degree m prime to p, the genus
of the characteristic p curve wp −w = f(u) is (p− 1)(m− 1)/2. This formula follows from the tame
Riemann–Hurwitz formula, viewing the curve as a cover of the w-line.

Proposition 3.2. The groups listed in items (1)–(5) of Proposition 3.1 are not local Oort groups
for an algebraically closed field k of odd characteristic p.

Proof. The case of type (1) of Proposition 3.1 was shown in [GM98, I, Example 5.3]; see also
Example 2.12(c) above. So it remains to consider types (2)–(5).

In types (2) and (3), G is isomorphic to a subgroup of PGL(2, k) consisting of upper triangular
matrices, by [Suz82, Theorem 6.17]. So we obtain an action of G on Y := P1

k such that the G-
Galois cover Y → X = Y/G is totally ramified at infinity and only tamely ramified elsewhere.
Here X necessarily has genus zero; so we obtain a genus zero Katz–Gabber G-Galois cover of X :=
P1

k. However, G cannot be embedded into PGL2(K) for any field K of characteristic zero [Suz82,
Theorem 6.17]. So by Corollary 2.3(c), the local cover Ŷ → X̂ obtained by completing Y → X at
infinity cannot lift to characteristic zero.

In type (4), first consider the situation of � = p. Let X be the projective x-line over k and
let Y → X be the G-Galois Katz–Gabber cover given by t2 = x, up − u = t, vp − v = x. This
cover is totally ramified over x = ∞ and tamely ramified of index two over x = 0 (and unramified
elsewhere). Rewriting the equations by eliminating x and t, the curve Y is given by the equation
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vp − v = (up − u)2; or, equivalently, by wp − w = −2up+1 + 2u2 (setting w = v − u2). Applying
the genus formula given just before the statement of the proposition, we find that the genus of Y is
p(p− 1)/2. Let T → X be the quotient cover of Y → X given by t2 = x and let H = Gal(Y/T ). So
T → X is a degree two tame cover of genus zero, branched at two points.

Now suppose that there is a curve Y ◦ of genus p(p − 1)/2 in characteristic zero and a faithful
action of G on Y ◦ whose quotient X◦ := Y ◦/G has genus zero. Let T ◦ = Y ◦/H. So T ◦ → X◦ is a
degree two cover of genus zero (since the genus of T is zero) and, hence, T ◦ → X◦ is branched at
two points. Also, Y ◦ → T ◦ is a C2

p -Galois cover, say with n branch points; here n > 2 since the cover
Y ◦ → T ◦ is not cyclic. So over each of these n branch points, Y ◦ → T ◦ has p ramification points,
each with ramification index p. By the characteristic zero Riemann–Hurwitz formula, we have that
p(p− 1)− 2 = −2p2 + np(p− 1). Rearranging and dividing by p− 1 gives 2(p + 1) = (n− 1)p, which
is impossible since the odd prime p does not divide the left-hand side. So in this case the result
follows from Corollary 2.3(b).

It now remains to consider the case in which G is of type (4) with � �= p or of type (5). Then
G is a semi-direct product Cp.C2� with a generator of C2� acting by inversion on Cp. Let T , X, Y
and Z be copies of the projective line P1

k with affine coordinates t, x, y and z, respectively. Define
cyclic covers X → T , Y → X and Z → X with groups C2, C� and Cp, respectively, by t = x2,
x = y� and x = zp − z. Then Y → T is defined by t = y2� and is a Katz–Gabber C2�-Galois
cover, while Z → T is a Katz–Gabber D2p-Galois cover. We find that if W is the normalization of
Z ×X Y , then W → T is a Katz–Gabber G-Galois cover. Since W → Y is defined by zp − z = y�,
the formula in the paragraph just prior to the statement of Proposition 3.2 shows that W has genus
gW = (p − 1)(� − 1)/2.

Suppose now that the G-Galois cover W → T lifts to characteristic zero. By taking the base
change of such a lift to an algebraically closed field L, we obtain a G-Galois cover W ◦ → T ◦ of
L-curves with the following properties. By Proposition 2.1, gW = gW ◦ and the curves Z◦ = W ◦/C�,
Y ◦ = W ◦/Cp and T ◦ = W ◦/G have genus zero since this is true of the corresponding quotients
of W . Since L is algebraically closed, Y ◦ is isomorphic to P1

L. Because char(L) = 0, each non-trivial
element of Aut(P1

L) = PGL2(L) of finite order is conjugate to the class of a diagonal matrix, and
thus fixes exactly two points of P1

L. Hence, the branch locus of the C2�-Galois cover πY ◦ : Y ◦ → T ◦

consists of two totally ramified points {Q1, Q2} ⊂ T ◦. The inertia group in G of each point of
W ◦ over Qi is cyclic, since char(L) = 0, and of order divisible by 2�. So these inertia groups have
order 2�. There are now 2(#G)/(2�) = 2p points over {Q1, Q2} in W ◦, which all ramify in the tame
C�-Galois cover π : W ◦ → Z◦ as C� is normal in G. The Riemann–Hurwitz formula for π now gives

gW ◦ � 1 + �(gZ◦ − 1) + p(� − 1) = (−1 + p)(� − 1) > (p − 1)(� − 1)/2 = gW

since gZ◦ = 0 and gW > 0. This contradicts gW ◦ = gW , which completes the proof.

As a consequence, we obtain the following.

Theorem 3.3. Suppose that p = char k > 2 and G is a local Oort group for k. Then G is either
cyclic or is isomorphic to a dihedral group of order 2pn for some n.

Proof. If G is a local Oort group for k, then so is every quotient of G, by Proposition 2.11. So
by Proposition 3.2, the groups listed as items (1)–(5) in Proposition 3.1 cannot be quotients of G.
Thus, by Proposition 3.1, G is of the asserted form.

By Corollary 2.6, this theorem implies the forward direction of the strong Oort conjecture in
odd characteristic p.

Corollary 3.4. Suppose that p = char k > 2 and G is a cyclic-by-p group. If G is an Oort group
for k, then G is isomorphic to some Cn or D2pn .
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By Corollary 2.8 this, in turn, implies the following.

Corollary 3.5. If G is an Oort group in odd characteristic p, then every cyclic-by-p subgroup of
G is isomorphic to some Cn or D2pn .

The consequences of Corollary 3.5 are explored further in a forthcoming paper on ‘global’ Oort
groups. For now we note the following corollaries of the above results.

Corollary 3.6. Let G be an Oort group for k, where k has characteristic p > 2. Then the Sylow
p-subgroups of G are cyclic.

Proof. Let P be a Sylow p-subgroup of G. By Corollary 2.7, the subgroup P ⊂ G is an Oort group
for k. Since p �= 2, a dihedral group D2pn is not a p-group, and so is not isomorphic to P . So
Corollary 3.4 implies that P is cyclic.

Corollary 3.7. Let G be an Oort group for k, where char k = p > 2. Let P ⊂ G be a p-subgroup
of G, and suppose that some g ∈ G normalizes P but does not centralize P . Then g has order two,
and g acts by inversion on P and on the abelian subgroup Z := CG(P ), where Z is also equal to
CG(S) for any Sylow p-subgroup S containing P .

Proof. Let C be the subgroup generated by g. Since g normalizes P , the subgroup I generated by
P and g is a cyclic-by-p subgroup of G. By Corollary 2.7, I is an Oort group for k. By Corollary 3.4,
I either is cyclic or is dihedral of order 2pn. The former case is impossible because g is assumed not
to centralize P . The latter case implies that g has order two and that the conjugation action of g
on P takes each element to its inverse.

If z ∈ Z, then gz normalizes but does not centralize P . So, by the previous paragraph, gz is
an involution. Since g is also an involution, gzg−1 = z−1, that is, g acts by inversion on Z. Since
inversion is an automorphism of Z, Z is abelian. Now P ⊂ S, so CG(S) ⊂ CG(P ) = Z. However, S
is abelian by Corollary 3.6, so S ⊂ CG(S) ⊂ Z and, hence, CG(Z) ⊂ CG(S). Since Z is also abelian,
Z ⊂ CG(Z) ⊂ CG(S) ⊂ Z, that is, all of these groups are equal.

4. Oort groups in characteristic two

The classification of Oort groups in characteristic two is more involved than in odd characteristic.
In this section we show that a cyclic-by-2 Oort group in characteristic two is either cyclic, or a
dihedral 2-group, or is the alternating group A4. We also show a corresponding result for local Oort
groups.

We begin by recalling some notation and facts about 2-groups. A generalized quaternion group
of order 2a, a � 3, is given by Q2a = 〈x, y | x2a−1

= 1, yxy−1 = x−1, y2 = x2a−2〉. It follows
from [Gor68, ch. 5, Theorem 4.10(ii)] that these are the only non-cyclic 2-groups that contain a
unique involution. The group Q8 is the usual quaternion group of order eight.

The semidihedral group of order 2a, a > 3, is denoted SD2a and has presentation 〈x, y | x2a−1
=

1, y2 = 1, yxy = x−1+2a−2〉. Note that if G is dihedral, semidihedral or generalized quaternion
then G/[G,G] is elementary abelian of order four. The next lemma shows that these groups are
characterized by this property.

Lemma 4.1. Let G be a finite 2-group with derived group D and whose abelianization G/D is a
Klein four group. Then G is dihedral, semidihedral or generalized quaternion. If in addition, Aut(G)
is not a 2-group, then G is either a Klein four group or is quaternion of order eight.

Proof. The first assertion is contained in [Gor68, ch. 5, Theorem 4.5]. Note that any such G has
a cyclic subgroup H of index two. Moreover, if #G > 8 or G is dihedral of order eight, then H is
unique and so invariant under any automorphism.
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For the second assertion, since Aut(G) is not a 2-group, G admits a non-trivial automorphism
σ of odd order n. Suppose that G is not a Klein 4-group or quaternion 8-group. Then σ fixes the
unique cyclic subgroup H of index two in G. The automorphism group of a cyclic 2-group is a
2-group, and so σ is trivial on H. If g ∈ G � H, then σ(g) = gh for some h ∈ H (since σ is trivial
on G/H); so g = σn(g) = ghn since σ(h) = h. Hence, hn = 1, so h = 1 since n is odd and H is a
2-group. So σ is trivial; a contradiction.

Using this lemma, we obtain the following group-theoretic reduction result, which is analogous
to Proposition 3.1.

Proposition 4.2. Let G be a finite group with a normal Sylow 2-subgroup S such that G/S = C
is cyclic (of odd order). Assume that G has no quotient of the following types:

(1) P.C, where P is an elementary abelian 2-group and C is a cyclic group of odd order at least
five that acts irreducibly on P ;

(2) C4
2 .C3, where C3 acts without fixed points on P := C4

2 ;
(3) C2

4 .C3, where C3 acts faithfully on P := C2
4 ;

(4) C3
2 .C, where C has order one or three and acts faithfully on E := C3

2 (i.e. G is isomorphic to
C3

2 or A4 × C2);

(5) C2
2 × C� for some odd prime �;

(6) C2
2 .C3�, where � is an odd prime and C := C3� acts non-trivially on P := C2

2 ;
(7) C4 × C2.

Then G either is a cyclic group, or is isomorphic to A4 or SL(2, 3), or is a 2-group that is dihedral,
semidihedral or generalized quaternion.

Proof. As in Proposition 3.1, we proceed inductively by assuming that the proposition holds for
every group of order less than #G. Since G = S.C, we may view C as a subgroup of G. Let
K = CC(S) and note that every subgroup of K is normal in G (as in the proof of Proposition 3.1).
By the inductive hypothesis, every non-trivial quotient of G satisfies the conclusion of the theorem.
We consider various cases for S/Φ(S), where Φ(S) is the Frattini subgroup of S.

Case 1. If S/Φ(S) is cyclic, then so is S, by the Burnside basis theorem. Since every automorphism
of S has 2-power order, the odd-order cyclic group C acts trivially on S. Thus, G = S × C, which
is cyclic.

Case 2. If S/Φ(S) has order greater than four, then Φ(S) = 1 since otherwise, G/Φ(S) would be
a counterexample to the result, contradicting the inductive hypothesis. Thus, in this case, S is
elementary abelian of order at least eight. Similarly, K = 1, so C acts faithfully on S. Let T be
a non-trivial minimal normal subgroup of G contained in S. Then the quotient G/T satisfies the
hypotheses of the proposition and has order less than #G, so by the inductive hypothesis it has one
of the asserted forms. Since its Sylow 2-subgroup is elementary abelian, G/T must be A4, cyclic,
or D4 = C2

2 . If T = S, which is an elementary abelian 2-group of order at least eight, then C acts
irreducibly on S since T is minimal. In this case C has order at least five, so G is a group as in (1),
which is a contradiction. Alternatively, if T is strictly contained in S, then S = T × U with U
normal in G (by complete reducibility). Since #S � 8, and since #T � #U by minimality of T ,
we have that the elementary abelian 2-group U has order at least four. So U.C = G/T cannot be
cyclic, and hence must be isomorphic to C2

2 or A4. Thus, U is a Klein four group, #C = 1 or 3 and
the order of T is two or four. If the normal subgroup T has order two, then it is central in G, so G
is of type (4), a contradiction. If T has order four, then C acts irreducibly on T (by minimality of
T ), so G is of type (2), again a contradiction.
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Case 3. The remaining case is when the elementary abelian 2-group S/Φ(S) has order four (i.e. is
a Klein four group). We further subdivide this case.

Case 3(a): S is non-abelian. Let D be the derived subgroup of S. Then G/D is a proper quotient
of G; and so by the inductive hypothesis, it satisfies the conclusion of the proposition. Since G/D
has an elementary abelian Sylow 2-subgroup, G/D ≈ A4 or is a Klein four group. In particular,
S/D is a Klein four group. So by Lemma 4.1, S is dihedral, generalized quaternion or semidihedral.
Moreover, C = G/S has order at most three since G/D is isomorphic to A4 or C2

2 . So CC(S/D) = 1
in G/D, hence, K = 1 and C acts faithfully on S. If C is trivial, then G = S is a 2-group of rank
two with no quotient isomorphic to C4 × C2 (by type (7) of the assertion); hence, G is dihedral,
semidihedral or generalized quaternion and the result holds. The remaining possibility is that C has
order three and S admits an automorphism of order three, whence S is quaternion of order eight
and G = SL(2, 3). So again the result holds for G.

Case 3(b): S is abelian, necessarily of order at least four. If #S > 4, then K = 1 by the inductive
hypothesis applied to G/K. So C acts faithfully on S and, hence, on S/Φ(S); thus, #C � 3. If
C = 1, then G surjects onto C4 × C2, contradicting (7). If C has order three, then by modding out
by the subgroup generated by {s4 | s ∈ S}, we may assume that S has exponent four. So S is either
C4 × C4 or C4 × C2. The first case cannot occur because of (3) and the second case cannot occur
because that group has no automorphisms of order three. This is a contradiction.

So actually #S = 4. Thus, Φ(S) = 1 and S is a Klein four group. If K �= 1, then the inductive
hypothesis implies that K has prime order �, and G = S ×K or G/K = A4 (depending on whether
the image of C in Aut(S) is 1 or 3). However, this is impossible, because the former group is ruled
out by (5) and the latter group by (6). So, actually, K = 1 and C acts faithfully on S. Hence, G is
isomorphic to C2

2 = D4 or A4 and the result holds for G.

Analogously to Proposition 3.2, we have the following.

Proposition 4.3. Let k be algebraically closed of characteristic two. Then none of the groups of
type (1)–(7) in Proposition 4.2 are local Oort groups for k, nor are Q8 and SL(2, 3).

Proof. We consider each of these types of groups in turn.
If G is of type (1) or (2), or the first case of type (4), then G embeds into the upper triangular

matrices of PGL2(k), but it does not embed into PGL2(K) for K of characteristic zero [Suz82,
Theorem 6.17]. So G is the Galois group of a Katz–Gabber cover of genus zero over k, but it is not
a local Oort group by Corollary 2.3(c).

For the next several types of groups, we let Z and X be copies of the projective line over k, with
affine parameters z and x. Let F4 be the field with four elements, and fix an isomorphism of the
additive group of F4 with C2

2 . We consider the C2
2 -Galois cover Z → X given by x = z4 − z, with

α ∈ F4 = C2
2 acting on Z by z �→ z + α. Let t = x3, so that X → T is a C3-Galois cover branched

at t = 0,∞, where T is the t-line. Then the composition Z → X → T is a Galois cover with group
A4 = C2

2 .C3. Note that Z → T is a Katz–Gabber cover, and that Z has genus zero. The Sylow
2-subgroup PH of H = Gal(Z/T ) is C2

2 = F4. An element α ∈ F4 = PH sends the uniformizer z−1

at the unique point ∞Z of Z over t = ∞ to (z + α)−1 = z−1(1 + αz−1)−1. We see from this that
the second lower ramification group H2 associated to ∞Z is trivial. Thus, the lower ramification
group (PH)v is trivial if v > 1. Since PH = (PH)0 = (PH)1, this implies that the upper ramifica-
tion group P u

H is trivial for u > 1.
Suppose now that G is either a group of type (3) or a group of type (4) for which 3|#G. (We have

already treated the case of groups of type (4) for which 3 does not divide #G.) Then G is an extension
of A4 by a minimal normal group N isomorphic to either C2 or C2

2 . Identify H with G/N ≈ A4.
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By Lemma 2.10 there exists a local G-Galois cover dominating the completion of the above H-
Galois cover Z → T at its totally ramified point; and so there is also a corresponding G-Galois
Katz–Gabber cover S → T dominating Z → T . Let g denote the genus of S and let P be the Sylow
2-subgroup of G. We consider the upper and lower ramification groups of P and PH at the totally
ramified points of S → T and Z → T . By [Ser79, § IV.3, Proposition 14], (P u · N)/N = (P/N)u =
(PH)u for all u, and we have shown this is trivial for u > 1. Thus, P u ⊂ N for u > 1. Since N
is a minimal normal subgroup of G, P u is either equal to N or trivial for u > 1. Since P0 = P1,
this implies that Pv is either N or trivial for v > 1. By the Hasse–Arf theorem [Ser79, IV, § 3], the
number of i such that Pi = N is divisible by (P : N) = 4. It follows that the sequence of lower
ramification groups of P has the form P = P0 = P1, N = P2 = · · · = P1+4a for some 0 � a ∈ Z,
and Pi = {e} for i � 2+4a. Thus, the wild form of the Riemann–Hurwitz formula for the N -Galois
cover S → Z = S/N gives

2gS − 2 = #N(2gZ − 2) + (#N − 1)(2 + 4a) ≡ 2 mod 4

using gZ = 0. Thus, gS is even. Let D be the set of orders of non-trivial elements of G. Suppose
that S◦ → T ◦ is a G-Galois cover of smooth connected curves over an algebraically closed field of
characteristic zero and that T ◦ has genus zero. The tame Riemann–Hurwitz formula shows

2(gS◦ − 1) = #G

(
−2 +

∑
d∈D

bd(d − 1)/d
)

≡ 0 mod 4,

where bd is the number of branch points with (cyclic) inertia groups of order d and #G/d ≡ 0 ≡ 2#G
mod 4 for d ∈ D. So gS◦ is odd and cannot equal gS . Thus, the above Katz–Gabber cover S → T
cannot lift to characteristic zero. So by Corollary 2.3(a), this completes the proof that no group of
type (3) or (4) can be a local Oort group.

To treat G as in cases (5) and (6), we first construct a C2
2 .C3�-Galois cover V → T of the

projective line T over k. Let Z → T be the A4 = C2
2 .C3-Galois cover constructed previously, with

quotient C3-Galois cover X → T defined by t = x3 on affine coordinates for the projective lines
X and T , respectively. Let Y → T be the C3�-Galois cover of projective lines defined on affine
coordinates by t = y3�. This has subcover Y → X defined by x = y�. The normalization V of the
fiber product Z ×X Y now gives a C2

2 .C3�-Galois cover V → T which has a C2 ×C�-Galois subcover
V → X. It will suffice to show that this subcover cannot be lifted to characteristic zero. If there
were such a lift, then after making a base change to an algebraically closed field L of characteristic
zero we would have a C2

2 × C�-Galois cover V ◦ → X◦ of smooth connected projective curves over
L such that gV ◦ = gV , gX◦ = gX = 0, gZ◦ = gZ = 0 when Z◦ = V ◦/C� and gY ◦ = gY = 0
when Y ◦ = V ◦/C2

2 . Since Z◦ → X◦ and Y ◦ → X◦ have groups C2
2 and C� of coprime orders and

G = C2 × C�, the branch locus B◦ of the C�-Galois cover V ◦ → Z◦ is the pullback via Z◦ → X◦

of the branch locus of Y ◦ → X◦. Thus, B◦ is taken to itself by the action of C2
2 = Gal(Z◦/X◦),

so since inertia groups in characteristic zero are cyclic we see that #B◦ is even. However, the same
argument shows that the branch locus B of V → Z is the pullback via Z → X of the branch locus
x ∈ {0,∞} of Y → X. Since Z → X was defined by the affine equation z4 − z = x, we see that
#B = 5, so #B◦ �= #B. However, this contradicts gZ = gZ◦ , gV = gV ◦ and the tame Riemann–
Hurwitz formulas for the C�-Galois covers V → Z and V ◦ → Z◦. The contradiction completes the
treatment of cases (5) and (6).

The group G = C4×C2, of type (7), acts on the genus two curve X : y2−y = x5 in characteristic
two, with commuting generators σ, τ , of orders four, two, respectively, given by σ(x, y) = (x+ζ, y+
ζ2x2 + ζx + ξ), τ(x, y) = (x + 1, y + x2 + x + ζ), where ζ is a primitive cube root of unity and
ξ2− ξ = ζ5. The quotient morphism X → X/G is a G-Galois cover with a unique ramification point
(the point at infinity), which is totally ramified. By the wild form of the Riemann–Hurwitz formula,
X/G has genus zero, that is, this is a Katz–Gabber cover of the line with group G. However, by
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the tame Riemann–Hurwitz formula, any G-Galois cover of the line in characteristic zero must have
odd genus (using that the number of branch points with ramification index four must be even). So
the Katz–Gabber cover cannot lift to characteristic zero, and Corollary 2.3(a) implies that C4 ×C2

is not a local Oort group.
The last assertion is contained in Example 2.12(f).

Remark. For groups G of type (5) in the above result, even more is true: no local G-Galois covers
lift to characteristic zero. This follows from a result of Green and Matignon (which appeared in a
paper of Green [Gre03, Corollary 3.3]), saying that for an abelian cover to lift, the group must be
cyclic or a p-group.

The above results yield the following analogs of Theorem 3.3 and its corollaries.

Theorem 4.4. Suppose that char k = 2 and G is a local Oort group for k. Then G is isomorphic to
one of the following: a cyclic group, a dihedral 2-group, the alternating group A4, or a semi-dihedral
or generalized quaternion group of order at least 16.

Proof. By Proposition 2.11, every quotient of G is also a local Oort group for k. So by Proposi-
tion 4.3, G is not isomorphic to SL(2, 3) or Q8, and no quotient of G is isomorphic to a group of
type (1)–(7) in the statement of Proposition 4.2. That latter proposition then implies the theo-
rem.

Remark. In [CGH08], we show that, in fact, semi-dihedral groups are not local Oort groups in
characteristic two; the status of generalized quaternion groups of order at least 16 as local Oort
groups remains open. See also the remark after Theorem 4.5.

The following theorem is the forward direction of the strong Oort conjecture in characteristic
two.

Theorem 4.5. Suppose that char k = 2 and G is a cyclic-by-2 group. If G is an Oort group for k,
then G is cyclic, isomorphic to a dihedral 2-group or isomorphic to A4.

Proof. If G is a cyclic-by-2 Oort group for k, then G is a local Oort group of k by Corollary 2.6.
Hence, G is one of the possibilities listed in Theorem 4.4. By Corollary 2.7, every subgroup of G
is also an Oort group. However, the quaternion group Q8 of order eight is not an Oort group,
by Example 2.12(f); and Q8 is a subgroup of each semi-dihedral group or generalized quaternion
group (e.g. by [Asc00, p. 115, Example 3(6)]). So G cannot be a semi-dihedral group or generalized
quaternion group, and the result follows.

Note that the Klein four group C2
2 , which is an Oort group and a local Oort group (see Exam-

ple 2.12(e)), is included in Theorems 4.4 and 4.5 as the dihedral group D4.

Remark. In odd characteristic, Theorem 3.3 and Corollary 3.4 give the same necessary condition for
being an Oort group or a local Oort group. However, in characteristic two, the necessary condition
in Theorem 4.4 to be a local Oort group is weaker than the corresponding condition to be an Oort
group in Theorem 4.5. These results suggest the question of whether, at least in odd characteristic,
a cyclic-by-p group is an Oort group if and only if it is a local Oort group. The forward direction
was shown in Corollary 2.6. The converse is open, but it would follow in odd characteristic from
Conjecture 1.1. Namely, by that conjecture and Theorem 3.3, we need only consider local Oort
groups D2pn . By Proposition 2.11, D2pm is a local Oort group for all m � n. By Conjecture 1.1 and
Corollary 2.6, every cyclic group is a local Oort group. So by Theorem 2.4, D2pn is an Oort group,
proving the converse for p odd, assuming Conjecture 1.1.
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Applying Corollary 2.8 to Theorem 4.5 we obtain the following.

Corollary 4.6. If G is an Oort group in characteristic two, then every cyclic-by-2 subgroup of G
is isomorphic to a cyclic group, a dihedral group, or A4.

Consequences of this result will be explored in a forthcoming paper on ‘global’ Oort groups.

Corollary 4.7. Let G be an Oort group for k, where k has characteristic two. Then the Sylow
2-subgroups of G are cyclic or dihedral.

Proof. We proceed as in the proof of Corollary 3.6. By Corollary 2.7, a Sylow 2-subgroup P ⊂ G is
an Oort group for k. Since P is a 2-group, it is not isomorphic to A4. So Corollary 4.5 implies that
P is cyclic or dihedral.

Corollary 4.8. Let G be an Oort group for k, where char k = 2. Let P ⊂ G be a 2-subgroup of
G, with Frattini subgroup Φ. Suppose that g ∈ G is an element of odd order that normalizes P
but does not centralize P . Then g has order three, P has rank two and the conjugation action of g
generates the automorphism group of P/Φ ≈ C2

2 .

Proof. Let C be the subgroup generated by g. Since g normalizes P , the subgroup I = P.C generated
by P and g is cyclic-by-p, and is an Oort group for k by Corollary 2.7. Since g does not centralize
P , it is not the identity element, and so I strictly contains P and is not a 2-group. Similarly, I is
not abelian. So by Theorem 4.5, I is isomorphic to A4 and the conclusion follows.
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