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Abstract
We compute the integral Chow ring of the moduli stack of smooth elliptic curves with n marked points for
3 ≤ 𝑛 ≤ 10.
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1. Introduction

1.1. Contents

The main result of this paper is the following:

Theorem 1.1. Let 𝜆1 be the first Chern class of the Hodge bundle. Then over a field of characteristic
not equal to 2 or 3,

(a) CH(M1,3) = Z[𝜆1]/(12𝜆1, 6𝜆2
1)

(b) CH(M1,4) = Z[𝜆1]/(12𝜆1, 2𝜆2
1)

(c) CH(M1,𝑛) = Z[𝜆1]/(12𝜆1, 𝜆
2
1), for 𝑛 = 5, . . . , 10.
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2 M. Bishop

We open by reviewing some essential background: the Weierstrass form for elliptic curves, the
Chow rings of M1,1 and M1,2, and higher Chow groups with ℓ-adic coefficients. We then compute the
integral Chow rings of M1,𝑛 for 3 ≤ 𝑛 ≤ 10 over a (not-necessarily algebraically closed) field k with
char 𝑘 ≠ 2, 3 by using higher Chow groups with ℓ-adic coefficients in the base case 𝑛 = 3, and then
leveraging this information for larger n. This extends Belorousski’s computation of the rational Chow
ring of these stacks [2]. Along the way, we also prove the rationality of M1,𝑛 for 3 ≤ 𝑛 ≤ 10, which was
previously only known in the case k = k̄, chark = 0, and analyze the notion of the integral tautological
ring of M1,𝑛.

1.2. History

In [16], Mumford introduced the study of the intersection theory of the coarse moduli space of genus g
curves, 𝑀𝑔. This space is singular, and its Chow ring cannot be defined with integer coefficients, but the
singularities are mild enough that it can be defined with rational coefficients (the rational Chow ring).
Extending this notion, the rational Chow rings of the moduli stacks of genus g stable (resp. smooth)
n-pointed curves, denoted M𝑔,𝑛 (resp. M𝑔,𝑛), have been computed for many (𝑔, 𝑛) [2, 5, 9, 10, 13,
16, 17].

However, using rational coefficients eliminates all torsion, and so ignores a rich part of the structure
of the space. Enabled by the extension of the definition of integral Chow rings to quotient stacks by
Totaro [20] and Edidin-Graham [8], Vistoli and Edidin-Graham computed the integral Chow rings of
M2 [21], M1,1 and M1,1 [8]. Then progress froze until the recent development of new techniques for
computing with integral coefficients, such as the patching lemma of [7] and the higher Chow groups
with ℓ-adic coefficients of [15]. See the below table for a list of currently known values.

Table 1. All currently known integral Chow rings ofM𝑔,𝑛

and M𝑔,𝑛.

genus moduli reference

𝑔 = 0 M0,𝑛, 𝑛 ≥ 3 classical
M0,𝑛, 𝑛 ≥ 3 [14]

𝑔 = 1 M1,1 [8]
M1,1 [8]
M1,2 [12]
M1,2 [6, 12]
M1,3 [1, 3]
M1,4 [1]

M1,𝑛, 3 ≤ 𝑛 ≤ 10 [–]
𝑔 = 2 M2 [21]

M2 [7, 15]
M2,1 [18]
M2,1 [6]

1.3. The patching problem

One powerful tool for computing Chow rings is the excision exact sequence. Given a closed substack
𝑝 : 𝑍 → 𝑋 with complement U, there is an exact sequence

CH(𝑍)
𝑝∗
−−→ CH(𝑋) → CH(𝑈) → 0.

This sequence allows one to compute the Chow ring of an open locus when the Chow ring of its
complement and of the whole space are known. However, we frequently find ourselves in the opposite
situation: when dealing with complicated objects stratified by simpler ones, we may be able to compute
the Chow rings of Z and its complement U, and need to patch these together to get the Chow ring of X.
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This may be referred to as the patching problem, and solving it is the crux of many Chow computa-
tions. The above-mentioned new techniques, the patching lemma and higher Chow groups with ℓ-adic
coefficients, give methods for solving the patching problem and have fueled the recent explosion in
progress in computing integral Chow rings.

1.4. Conventions

For the remainder of this paper, all schemes and stacks are over a fixed field k of characteristic not equal
to 2 or 3.

2. The M1,1 and M1,2 cases

Our analysis of M1,𝑛 for higher n depends in multiple places on M1,1 and M1,2, so we first review
their structure, which is essentially a corollary of the Weierstrass form for elliptic curves. The Chow
ring of M1,1 was first computed in [8] and M1,2 in [12].

2.1. The Weierstrass form

We open with the classically known Weierstrass form for elliptic curves.

Theorem 2.1 (Weierstrass). Any one-pointed smooth elliptic curve over a field k of characteristic not
equal to 2 or 3 can be written in the form 𝑦2𝑧 = 𝑥3 + 𝑎𝑥𝑧2 + 𝑏𝑧3, where the marked point is the point at
infinity [0 : 1 : 0]. Moreover, if we denote such a curve by 𝐶(𝑎,𝑏) , then

𝐶(𝑎,𝑏) � 𝐶(𝑎′,𝑏′) if and only if (𝑎′, 𝑏′) = (𝑡−4𝑎, 𝑡−6𝑏).

The isomorphism between these curves is given by

[𝑥 : 𝑦 : 𝑧] ↦→ [𝑡−2𝑥 : 𝑡−3𝑦 : 𝑧] .

An elliptic curve is smooth if and only if 𝐷 = 4𝑎3 + 27𝑏2 ≠ 0, nodal if and only if 𝐷 = 0 and
(𝑎, 𝑏) ≠ (0, 0), and cuspidal if and only if (𝑎, 𝑏) = (0, 0). Lastly, we have

𝐻0(𝜔𝐶 ) =

〈
𝑑𝑥

𝑦

〉
.

Rephrasing this gives the following corollaries:

Corollary 2.2. The Weierstrass form gives an isomorphism

M1,1 �
[
A

2 \𝑉 (𝐷)

G𝑚

]
,

where the G𝑚 action has weight (−4,−6) and 𝐷 = 4𝑎3 + 27𝑏2.

Corollary 2.3. We have that M1,2 is isomorphic to an open substack of a vector bundle over 𝐵G𝑚.

Proof. From the Weierstrass form, a two-pointed smooth elliptic curve is determined, up to scaling, by
a choice of (𝑎, 𝑏) and (𝑥, 𝑦) such that

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 and 𝐷 ≠ 0.

We can solve for b to see that 𝑎, 𝑥, 𝑦 vary freely, provided that 𝐷 ≠ 0, where

𝐷 = 4𝑎3 + 27𝑏2 = 4𝑎3 + 27(𝑦2 − (𝑥3 + 𝑎𝑥))2.
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Since G𝑚 acts with weights −4,−2,−3 on 𝑎, 𝑥, 𝑦, we conclude that M1,2 is open in
[
A

3
𝑎,𝑥,𝑦

G𝑚

]
, where G𝑚

acts with the above weights. �

Corollary 2.4. The rings CH(M1,1) and CH(M1,2) are both quotients of Z[𝑥]/(12𝑥).

Proof. This follows from Corollaries 2.2 and 2.3, along with the fact that D has weight 12 under the
G𝑚 action. �

Corollary 2.5. The generator of the Chow ring of M1,1 and M1,2 is 𝜆1, the first Chern class of the
Hodge bundle.

Proof. Since G𝑚 acts with weights −2 and −3 on x and y, respectively, we see that 𝑑𝑥
𝑦 has weight 1

under the G𝑚 action. Hence, under the pullback map CH(𝐵G𝑚) → CH(M̃1,1), we have 𝑥 ↦→ 𝜆1. Since
by the previous Corollary CH(M1,1) and CH(M1,2) are generated by the pullback of x, we see that
they are generated by 𝜆1. �

Corollary 2.6. The pullback of 𝑥 ∈ CH(𝐵G𝑚) to the moduli stacks of pointed elliptic curves used in
this paper (M̃𝑟

1,𝑛, X , U3, U ′
2, 𝑈𝑛, 𝑈 ′

𝑛, 𝑉𝑛 and 𝑉 ′
𝑛, most of which are defined later) is 𝜆1.

Proof. Let Z be any of the above stacks. Then Z admits a morphism to M̃2
1,1 given by forgetting all

but the first marked point, which yields the following diagram:

Z M̃2
1,1 𝐵G𝑚.

As noted in the proof of Corollary 2.5, 𝑥 ∈ CH(𝐵G𝑚) pulls back to 𝜆1 ∈ CH(M̃2
1,1). Since the

Hodge bundle pulls back to the Hodge bundle, we see that the pullback of x to Z is 𝜆1. �

Theorem 2.7. Let 𝜆1 be the first Chern class of the Hodge bundle. Over a field of characteristic not
equal to 2 or 3,

(a) CH(M1,1) � Z[𝜆1]/(12𝜆1)
(b) CH(M1,2) � Z[𝜆1]/(12𝜆1).

Proof. From Corollaries 2.4 and 2.5, we know that CH(M1,1) and CH(M1,2) are both quotients
of Z[𝜆1]/(12𝜆1). Now consider any two-pointed elliptic curve with 𝜇3 automorphisms, such as
(𝐶(0,1) ,∞, [0 : 1 : 1]), and with 𝜇4 automorphisms, such as (𝐶(1,0) ,∞, [0 : 0 : 1]). These induce
residual gerbes

𝐵𝜇𝑛 M1,2

𝐵G𝑚

for 𝑛 = 3, 4. The previous diagram induces the following diagram

CH(𝐵𝜇𝑛) CH(M1,2)

CH(𝐵G𝑚)

at the level of Chow rings.
Since CH(𝐵G𝑚) → CH(𝐵𝜇𝑛) is surjective, we see that CH(M1,2) surjects onto Z[𝑥]/(𝑛𝑥) for

𝑛 = 3, 4. Therefore, CH(M1,2) = Z[𝜆1]/(12𝜆1). Considering these curves as one-pointed elliptic
curves shows that CH(M1,1) � Z[𝜆1]/(12𝜆1) as well. �
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3. Aside 1: Higher Chow groups with ℓ-adic coefficients

In [4], Bloch introduced higher Chow groups, which complete the excision exact sequence into a
long exact sequence. They are defined as the homology of a certain complex named 𝑧∗(𝑋, •) and are,
unfortunately, usually rather difficult to compute. In [15], Larson used higher Chow groups with ℓ-adic
coefficients to remedy this. Without getting into too much detail, we list here some important properties
that higher Chow groups with ℓ-adic coefficients possess, along with some important computations.

Definition 3.1. Define the 𝑛th higher Chow group with ℓ-adic coefficients to be

CH(𝑋, 𝑛;Zℓ) = 𝐻𝑛

(
lim 𝑧∗(𝑋k̄ , •) ⊗

𝐿
Z/ℓ𝑚Z

)
.

In the case where each CH(𝑋, 𝑛;Z/ℓ𝑚Z) := 𝐻𝑛 (𝑧
∗(𝑋k̄ , •) ⊗ Z/ℓ

𝑚
Z) is finitely generated, we have

CH(𝑋, 𝑛;Zℓ) = lim CH(𝑋, 𝑛;Z/ℓ𝑚Z).

Proposition 3.2. If 𝑍 → 𝑋 is closed with complement U and

◦ CH(𝑍) and CH(𝑈) are finitely generated,
◦ CH(𝑍) → CH(𝑍k̄ ) is injective,
◦ there exists at least one ℓ for which CH(𝑈, 1;Zℓ) = 0,
◦ and CH(𝑈, 1;Z𝑙) = 0 whenever CH(𝑍) has ℓ-torsion,

then the excision sequence is exact on the left.

Proof. Notice that, at first glance, ℓ-adic higher Chow groups tell us about the injectivity of the excision
sequence with all spaces base-changed to k̄. However, we can infer the injectivity of CH(𝑍) → CH(𝑋)
via the following diagram:

CH(𝑍) CH(𝑋)

CH(𝑍k̄ ) CH(𝑋k̄ ).

Let 𝛼 ∈ CH(𝑍), and, abusing notation, refer to its image in CH(𝑍k̄ ) as 𝛼 as well. Pick an ℓ such that
𝛼 is ℓ-torsion (if 𝛼 is not torsion, then pick any ℓ where U’s first ℓ-adic higher Chow group vanishes).
This gives

CH(𝑍) ⊗ Zℓ ↩→ CH(𝑍k̄ ) ⊗ Zℓ ↩→ CH(𝑋k̄ ) ⊗ Zℓ ,

and so the image of 𝛼 under CH(𝑍) → CH(𝑋) cannot vanish. �

Proposition 3.3. Suppose ℓ is coprime to chark (later we will always have ℓ = 2 or 3). Then

(a) CH(Spec 𝑘, 1;Z𝑙) = 0.
(b) CH(A𝑛, 1;Z𝑙) = 0.
(c) CH(P𝑛, 1;Z𝑙) = 0.
(d) CH(𝐵G𝑚, 1;Z𝑙) = 0.
(e) CH(𝐵𝜇𝑛, 1;Z𝑙) = 0.

Proof. As noted in [15], (a) is a consequence of motivic cohomology. Then (b) and (c) follow from the
vector and projective bundle formulas, and (d) follows from computing equivariantly. The last follows
from the excision sequence

0 → CH(𝐵G𝑚) → CH([A1/G𝑚]) → CH(𝐵𝜇𝑛) → 0. �
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4. Aside 2: 𝐴𝑟 -singularities

Definition 4.1. A (proper and reduced) n-pointed connected curve C over an algebraically closed field
K is said to be 𝐴𝑟 -stable if

1. C has at worst 𝐴𝑟 singularities; that is, each closed point 𝑝 ∈ 𝐶 has

Ô𝐶,𝑝 �
𝐾 [[𝑥, 𝑦]]

(𝑦2 − 𝑥ℎ+1)

for 0 ≤ ℎ ≤ 𝑟 ,
2. the 𝑝𝑖 are distinct and lie in the smooth locus of C, and
3. 𝜔𝐶 (𝑝1 + · · · + 𝑝𝑛) is ample.

Definition 4.2. A morphism C → 𝑆 with n sections 𝑝𝑖 : 𝑆 → C is a family of n-pointed 𝐴𝑟 -stable
genus g curves if C → 𝑆 is proper, flat and finitely presented, and each geometric fiber is an n-pointed
𝐴𝑟 -stable genus g curve.

Definition 4.3. Denote by M̃𝑟
𝑔,𝑛 the stack whose objects over a scheme S are families of n-pointed

𝐴𝑟 -stable genus g curves and whose morphisms are defined in the natural way.

For more about 𝐴𝑟 -stable curves, see [19].

Definition 4.4. Denote by M̃𝑟 ,irr
𝑔,𝑛 the open substack of M̃𝑟

𝑔,𝑛 consisting of irreducible curves.

In the next section, while computing the Chow ring of M1,3, we will work with an enlargement of
M̃2,irr

1,3 . More specifically, we will allow the second and third marked points to overlap with the node/cusp
of a nodal/cuspidal rational curve, but we will not allow both the second and third marked points to
overlap with the node/cusp (as we still insist on the marked points being distinct).

Definition 4.5. Let X be the stack whose objects over a scheme S are proper, flat and finitely presented
morphisms C → 𝑆 with three sections 𝑝𝑖 : 𝑆 → C where the geometric fibers over each 𝑠 → 𝑆 satisfy:

◦ (C𝑠 , 𝑝1) is an irreducible 𝐴2-stable elliptic curve and each 𝑝𝑖 is distinct.

We then see M1,3 inside of X as the complement of the locus of singular curves. Before we can
move on and perform computations with X using the equivariant intersection theory of [8], we must
see that it is a smooth quotient stack.

Proposition 4.6. The stack X is smooth.

Proof. Observe that X is a union of two opens

X = M̃2,irr
1,3 ∪ U3,

with U3 as defined in Lemma 5.8. Since both of these are smooth (M̃2,irr
1,1 by [19] and U3 by the quotient

description of Lemma 5.8), we see that X is smooth as well. �

Proposition 4.7. The stack X is a quotient stack.

We will first include a quick lemma.

Lemma 4.8. Suppose W � [𝑊/𝐺] is a quotient stack in the sense of [8], and consider the following
diagram of algebraic stacks:

W ×Z Y W

Y Z .
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If the morphism Y → Z is representable by algebraic spaces, then the fiber product W ×Z Y is also a
quotient stack.

Proof of Lemma 4.8. Consider the following diagram:

𝑉 𝑊

W ×Z Y W

Y Z .

Since 𝑊 → W is a principal G-bundle, so is 𝑉 → W ×Z Y , and since Y → Z is representable by
algebraic spaces, so is 𝑉 → 𝑊 . Therefore, since W is an algebraic space, V must also be an algebraic
space. Hence, W ×Z Y � [𝑉/𝐺] is a quotient stack. �

Proof of Proposition 4.7. Observe that X is naturally open inside of

C̃2
1,1 ×M̃2

1,1
C̃2

1,1.

Since C̃2
1,1 is a quotient stack and C̃2

1,1 → M̃2
1,1 is representable by algebraic spaces (by schemes, in

fact), the above fiber product is a quotient stack by Lemma 4.8. �

5. The M1,𝑛 case for 𝑛 = 3, . . . , 10

We will now compute the integral Chow rings of M1,𝑛 for 𝑛 = 3, . . . , 10. The overall structure of the
computation is to stratify M1,𝑛 into an open whose complement stratifies into closed substacks which
are isomorphic to opens inside of M1,𝑛−1.

5.1. The integral Chow ring of M1,3

Definition 5.1. For an elliptic curve (𝐸,∞), we denote by 𝜄 : 𝐸 → 𝐸 the unique hyperelliptic involution
that fixes ∞. Note that the involution extends uniquely to families of elliptic curves.

We first stratify M1,𝑛 into the open locus where 𝑝2 ≠ 𝜄(𝑝3) and the divisor where 𝑝2 = 𝜄(𝑝3).

Definition 5.2. For 𝑛 ≥ 2,

(a) Let 𝑈𝑛 ⊆ M1,𝑛 be the locus where 𝑝2 ≠ 𝜄(𝑝3).
(b) Let 𝑈 ′

𝑛 ⊆ M1,𝑛 be the locus where 𝑝2 ≠ 𝜄(𝑝𝑖) for any i.

Note 5.3. Note that the condition for 𝑈2 is ill-defined. We use the convention that this is an empty
condition, so that 𝑈2 = M1,2.

Observation 5.4. If 𝜋 is, as usual, the map 𝜋 : M1,𝑛 → M1,𝑛−1 forgetting the last marked point, we
always have 𝜋(𝑈𝑛+1) ⊆ 𝑈𝑛 and 𝜋(𝑈 ′

𝑛+1) ⊆ 𝑈 ′
𝑛, and for 𝑛 ≥ 4, we have 𝜋−1 (𝑈𝑛−1) = 𝑈𝑛.

Therefore, we have induced pullback maps on Chow rings given by 𝜋∗. Since 𝜋∗(𝜆1) = 𝜆1, we see
that 𝜋 pulls relations back to relations: if 𝑎𝜆1 = 0 in CH(𝑈𝑚) or CH(𝑈 ′

𝑚) for some m, then 𝑎𝜆1 = 0 on
that same locus for all 𝑛 ≥ 𝑚.

Definition 5.5. For 𝑛 ≥ 3, define the morphism of stacks 𝜎𝑛−1 : 𝑈 ′
𝑛−1 → M1,𝑛 by

(𝐶, 𝑝𝑖) ↦→ (𝐶, 𝑝1, 𝑝2, 𝜄(𝑝2), 𝑝3, . . . , 𝑝𝑛−1).

Notice that while we defined this morphism on points, it extends to families by extending the involution.
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8 M. Bishop

This map sheds light on why the loci in Definition 5.2 were defined: the defining conditions for 𝑈 ′
𝑛

are precisely the conditions needed to insure that this map exists.

Proposition 5.6. For 𝑛 ≥ 3, the map 𝜎𝑛−1 : 𝑈 ′
𝑛−1 → M1,𝑛 is a closed immersion.

Proof. Let 𝜋3 : M1,𝑛 → M1,𝑛−1 be the morphism which forgets the third marked point, and consider
the following Cartesian diagram:

𝜋−1
3 (𝑈 ′

𝑛−1) ⊆ M1,𝑛

𝑈 ′
𝑛−1 ⊆ M1,𝑛−1,

𝜋3 𝜋3
𝜎𝑛−1

where 𝜋3 ◦ 𝜎𝑛−1 = id. Therefore, 𝜎𝑛−1 : 𝑈 ′
𝑛−1 → M1,𝑛 factors as a closed immersion followed by an

open immersion into M1,𝑛. Since its image in M1,𝑛 is the closed locus of curves with 𝑝3 = 𝜄(𝑝2), we
see that 𝜎𝑛−1 : 𝑈 ′

𝑛−1 → M1,𝑛 is a closed immersion. �

Corollary 5.7. For 𝑛 ≥ 3, the stack M1,𝑛 stratifies into the disjoint union

M1,𝑛 = 𝑈𝑛 � im𝜎𝑛−1 � 𝑈𝑛 �𝑈 ′
𝑛−1.

Lemma 5.8. The stack 𝑈3 is isomorphic to an open substack of a vector bundle U3 over 𝐵𝜇2.

Proof. A smooth three-pointed elliptic curve is determined, up to scaling, by a choice of (𝑎, 𝑏),
𝑝2 = (𝑥2, 𝑦2), and 𝑝3 = (𝑥3, 𝑦3) such that

𝑦2
𝑖 = 𝑥3

𝑖 + 𝑎𝑥𝑖 + 𝑏 and 𝐷 ≠ 0.

Solving for b and then a gives

𝑎 =
(𝑦2

3 − 𝑥3
3) − (𝑦2

2 − 𝑥3
2)

𝑥3 − 𝑥2
.

Therefore, we see that 𝑥2, 𝑥3, 𝑦2, 𝑦3 may vary freely, provided 𝑥2 ≠ 𝑥3 and 𝐷 ≠ 0. But the condition
that 𝑥2 ≠ 𝑥3 is precisely the condition that 𝑝2 and 𝑝3 do not overlap and are not exchanged by the
hyperelliptic involution (the defining condition for 𝑈3), and so 𝑈3 is open inside of

U3 :=

[
A

2
𝑦𝑖 × (A2

𝑥𝑖 \ Δ)

G𝑚

]
,

where Δ is the diagonal and G𝑚 acts with weight −2 on 𝑥𝑖 and −3 on 𝑦𝑖 . This is a vector bundle over[
A

2
𝑥𝑖 \ Δ

G𝑚

]

which is a vector bundle over [
A

1 \ 0
G𝑚

]
� 𝐵𝜇2

since G𝑚 acts with weight −2 on 𝑥𝑖 . �

Lemma 5.9. The stack im𝜎2 is isomorphic to an open substack of a vector bundle U ′
2 over 𝐵𝜇3.
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Proof. Since im𝜎2 is isomorphic to the locus 𝑈 ′
2 in M1,2, we just need to analyze two-pointed elliptic

curves where 𝜄(𝑝2) ≠ 𝑝2. Recall from Corollary 2.3 that M1,2 is open inside of a vector bundle over
𝐵G𝑚. More specifically, M1,2 is open inside of [A3/G𝑚] with coordinates 𝑎, 𝑥, 𝑦. The condition that
𝜄(𝑝2) ≠ 𝑝2 is equivalent to the condition 𝑦 ≠ 0, since 𝜄(𝑝2) = 𝜄([𝑥 : 𝑦 : 𝑧]) = [𝑥 : −𝑦 : 𝑧]. Therefore,
𝑈 ′

2 is open inside of

U ′
2 :=

[
A

3 \ {𝑦 = 0}
G𝑚

]
�

[
A

2
𝑎,𝑥 × (A1

𝑦 \ 0)
G𝑚

]

which is a vector bundle over [
A

1
𝑦 \ 0
G𝑚

]
� 𝐵𝜇3,

since G𝑚 acts with weight −3 on y. �

Now we compute the integral Chow ring of M1,3 by first observing that the vector bundles U3 and
U ′

2 of the previous section naturally live inside of X , the enlargement of M1,3 from Definition 4.5. In
fact, we have X = U3 � U ′

2, since U3 contains curves where the second and third marked points are not
exchanged by the involution, while U ′

2 contains curves where the second and third marked points are
exchanged by the involution. We patch these vector bundles together inside of X using higher Chow
groups with ℓ-adic coefficients, and from there deduce CH(M1,3).

Lemma 5.10. With X defined as in Definition 4.5, we have

CH(X ) =
Z[𝑥]

(6𝑥2)
and CH(X , 1;Zℓ) = 0

for ℓ coprime to chark.

To show this, we will use the following Theorem.

Theorem 5.11 [11]. The Picard group of M1,𝑛 is isomorphic to Z/12 for all n, generated by the Hodge
bundle.

Proof of Lemma 5.10. Recall that because U3 and U ′
2 are both quotients by G𝑚 and vector bundles over

𝐵𝜇2 and 𝐵𝜇3, respectively, that their first higher Chow groups with ℓ-adic coefficients vanish for ℓ
co-prime to chark (by Proposition 3.3) and that their Chow rings are

CH(U3) =
Z[𝑥]

(2𝑥)
and CH(U ′

2) =
Z[𝑥]

(3𝑥)
,

where in both rings x, denotes the pullback of the generator 𝑥 ∈ CH(𝐵G𝑚) = Z[𝑥].
Consider the following diagram

U ′
2 X U3

𝐵G𝑚,

𝜎2

𝜋2
𝜋

𝑗

𝜋3

where 𝜋 : X → 𝐵G𝑚 is defined by the Hodge bundle. Denote the pullback of 𝑥 ∈ CH(𝐵G𝑚) to CH(X )

by x as well, so that the pullback of x along any map is again x. We make the important note here
that since each morphism to 𝐵G𝑚 is determined by the Hodge bundle, the generator x is really 𝜆1 (see
Corollary 2.6).
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Since CH(U3, 1;Zℓ) vanishes for ℓ co-prime to chark, the excision sequence for U3 and U ′
2 gives

0 → CH(U ′
2)

𝜎2∗
−−−→ CH(X ) → CH(U3) → 0

0 → Z[𝑥]/(3𝑥)
𝜎2∗
−−−→ CH(X ) → Z[𝑥]/(2𝑥) → 0.

Moreover, since CH(U ′
2, 1;Zℓ) = 0 for ℓ coprime to chark, we see that CH(X , 1;Zℓ ) = 0.

In all degrees 𝑘 ≥ 2, the above sequence looks like

0 → Z/3 → CH𝑘 (X ) → Z/2 → 0,

and so CH𝑘 (X ) � Z/6 for 𝑘 ≥ 2. Note that 𝑥𝑘 has order 6 in CH𝑘 (X ) since it pulls back to 𝑥𝑘 in each
of CH(U ′

2) � Z/3 and CH(U3) � Z/2, and so we may take 𝑥𝑘 as the generator of CH𝑘 (X ) for 𝑘 ≥ 2.
In degree one, the sequence looks like

0 → Z
𝜎2∗
−−−→ CH1(X )

𝑗∗

−→ Z/2 → 0.

We now have either CH1(X ) � Z or Z ⊕ Z/2, and we seek to show that CH1(X ) � Z.
We know that M1,3 ⊆ X is the complement of the locus of singular curves. From the diagram

X M̃2
1,1

𝐵G𝑚,

the fundamental class of this locus in X is the pullback of the fundamental class of this locus in M̃2
1,1

– that is, 12𝑥. Therefore,

Z/12 � 〈𝜆1〉 = CH1 (M1,3) � CH1(X )/〈12𝑥〉,

and so CH1(X ) = 〈𝑥〉 � Z. We conclude that, as groups,

CH(X ) �
Z[𝑥]

(6𝑥2)
.

To see that this holds on the level of rings, observe that there is a homomorphism 𝜑 : Z[𝑦] → CH(X )

given by 𝑦 ↦→ 𝑥. Since CH𝑘 (X ) =
〈
𝑥𝑘

〉
for all 𝑘 ≥ 0, 𝜑 is surjective. Moreover, the above group

isomorphism of CH(X ) with Z[𝑥]/(6𝑥2) shows that the kernel of 𝜑 must be (6𝑦2), which establishes
the isomorphism on the level of rings. �

Note 5.12.

(a) This argument has a very by-hand feel. There are alternate arguments, similar to those in [3], which
are less piecewise. We, however, choose to use this slightly clunkier argument simply because it is
possible and shows a low-information way of computing Chow rings.

(b) Our argument can also be modified to not use higher Chow groups, in a similar fashion as the
argument for M1,2 in Theorem 2.7. However, the argument presented here allows us to conclude
that the first higher Chow group of the stack X with ℓ-adic coefficients vanishes, a fact which is
important to later computations in [3].

Corollary 5.13. The Chow ring of M1,3 is a quotient of Z[𝜆1]/(6𝜆2
1).
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Proof. This follows from the excision sequence, since M1,3 is open in X – namely, it is the complement
of the locus of singular curves. The fact that it is generated by 𝜆1 is a consequence of Corollary 2.6. �

Theorem 5.14. The integral Chow ring of M1,3 is

CH(M1,3) =
Z[𝜆1]

(12𝜆1, 6𝜆2
1)
.

Proof. The inclusion of any three-pointed curve with 𝜇2 automorphisms, such as (𝐶(−1,0) ,∞, [1 : 0 :
1], [0 : 0 : 1]), or 𝜇3 automorphisms, such as (𝐶(0,1) ,∞, [0 : 1 : 1], [0 : −1 : 1]), shows that CH(M1,3)
surjects onto Z[𝑥]/(2𝑥) and Z[𝑥]/(3𝑥), respectively. Since Pic(M1,3) = Z/12, generated by 𝜆1, the
theorem is proven. �

5.2. The case 4 ≤ 𝑛 ≤ 10

We first make an analogous definition of the tautological ring in the integral case.

Definition 5.15. The integral tautological ring of M1,𝑛, written R(M1,𝑛), is the subring of the Chow
ring generated by 𝜆1.

The remainder of this section has the following structure: first, we compute the integral tautological
ring of M1,𝑛 for 𝑛 ≥ 4, and then we show that the full Chow ring is indeed generated by 𝜆1 for
4 ≤ 𝑛 ≤ 10.

Corollary 5.16. For 𝑛 ≥ 3:

(a) the integral tautological ring R(𝑈𝑛) is a quotient of Z[𝜆1]/(2𝜆1),
(b) CH(𝑈3) = Z[𝜆1]/(2𝜆1),
(c) the integral tautological ring R(𝑈 ′

𝑛) is equal to Z, and
(d) the element [𝜎𝑛−1 (𝑈

′
𝑛−1)] is tautological.

Proof. We showed in Lemma 5.8 that 2𝜆1 = 0 on 𝑈3, and so this relation holds on 𝑈𝑛 for all 𝑛 ≥ 3,
showing (a). Considering the three-pointed elliptic curve (𝐶(−1,0) ,∞, [1 : 0 : 1], [0 : 0 : 1]) and its
induced residual gerbe, following the proofs of Theorems 2.7 and 5.14 shows (b).

We also showed in Lemma 5.9 that 3𝜆1 = 0 on 𝑈 ′
2, and so this relation holds on 𝑈 ′

3 and hence on 𝑈 ′
𝑛

for all 𝑛 ≥ 3. Since 𝑈 ′
𝑛 ⊆ 𝑈𝑛 for all n, we see that for all 𝑛 ≥ 3, both relations 2𝜆1 = 0 and 3𝜆1 = 0 hold

on 𝑈 ′
𝑛. Therefore, 𝜆1 = 0 on 𝑈 ′

𝑛 for 𝑛 ≥ 3, which proves (c).
To see that [𝜎𝑛−1(𝑈

′
𝑛−1)] is tautological, just observe that it is a divisor and hence tautological by

Theorem 5.11. �

Lemma 5.17. The excision sequence for 𝑈 ′
𝑛−1 → M1,𝑛 and the later-defined (see Definition 5.22)

𝑉 ′
𝑛−1 → M1,𝑛 restricts to integral tautological rings as well. That is, we get exact sequences

R(𝑈 ′
𝑛−1) → R(M1,𝑛) → R(𝑈𝑛) → 0

and

R(𝑉 ′
𝑛−1) → R(M1,𝑛) → R(𝑉𝑛) → 0.

Proof. We prove this in the 𝑈 ′
𝑛−1 case, since the case for 𝑉 ′

𝑛−1 is identical. Note that it suffices to show
that any tautological element pushes forward to a tautological element.

The structure morphism to 𝐵G𝑚 exhibits the pushforward

CH(𝑈 ′
𝑛−1)

𝜎𝑛−1 ,∗
−−−−−→ CH(M1,𝑛)
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as a CH(𝐵G𝑚)-algebra homomorphism (that is, a Z[𝜆1]-algebra homomorphism). By Corollary 5.16,
the tautological ring of𝑈 ′

𝑛−1 is generated by 𝜆1. Therefore, the pushforward of any monomial is given by

𝜎𝑛−1,∗(𝜆
𝑘
1 ) = 𝜆𝑘

1𝜎𝑛−1,∗(1) = 𝜆𝑘
1 [𝜎𝑛−1 (𝑈

′
𝑛−1)] .

By Corollary 5.16(c), [𝜎𝑛−1(𝑈
′
𝑛−1)] is tautological, and so we see that the pushforward of any tauto-

logical element is itself tautological. �

Lemma 5.18. For all 𝑛 ≥ 4, the integral tautological ring of M1,𝑛 is a quotient of Z[𝜆1]/(12𝜆1, 2𝜆2
1).

Proof. Since by Corollary 5.16 the tautological ring of 𝑈𝑛 is a quotient of Z[𝜆1]/(2𝜆1), we can write

R(𝑈𝑛) =
Z[𝜆1]/(2𝜆1)

𝐼

for some ideal I. The excision sequence for im𝜎𝑛−1 � 𝑈 ′
𝑛−1 restricts to integral tautological rings by

Lemma 5.17 and hence gives

R(𝑈 ′
𝑛−1) → R(M1,𝑛) → R(𝑈𝑛) → 0

Z→ R(M1,𝑛) →
Z[𝜆1]/(2𝜆1)

𝐼
→ 0.

Since the image of the morphism lands in degree one and the Picard group of M1,𝑛 is known to be
Z/12, the lemma follows. �

Proposition 5.19. The integral tautological ring of M1,4 is

R(M1,4) =
Z[𝜆1]

(12𝜆1, 2𝜆2
1)
.

Proof. Observe that by Appendix A, there still exists four-pointed smooth elliptic curves with 𝜇2-
automorphisms: 𝑛 = 4 is the largest n for which such a curve exists, and all such curves have 𝜇2-
automorphisms, generated by the involution. Moreover, such a curve is necessarily contained inside of
𝑈4, the locus where the second and third points are not involutions of each other, since each marked
point is fixed by the involution. Therefore, we get a surjection

CH(𝑈4) � Z[𝑥]/(2𝑥).

However, since the degree one generator of CH(𝑈4) is 𝜆1, this morphism in fact factors as

R(𝑈4) CH(𝑈4) Z[𝑥]/(2𝑥),

and so R(𝑈4) = Z[𝜆1]/(2𝜆1). From the following facts,

◦ R(M1,4) → R(𝑈4) = Z[𝜆1]/(2𝜆1) is surjective;
◦ R(M1,4) is a quotient of Z[𝜆1]/(12𝜆1, 2𝜆2

1) (Lemma 5.18);
◦ the Picard group of M1,4 is isomorphic to Z/12, generated by 𝜆1 (Theorem 5.11),

we conclude that R(M1,4) = Z[𝜆1]/(12𝜆1, 2𝜆2
1). �

Before we can compute the integral tautological ring for 𝑛 ≥ 5, we must analyze M1,4 more
thoroughly.

Definition 5.20. Let 𝑍𝑛 ⊆ M1,𝑛 be the locus of curves with nontrivial automorphisms.
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Observation 5.21. Since M1,4 \ 𝑍4 is a four-dimensional variety, we must have 𝜆5
1 = 0 on this locus,

and hence on any locus inside of it. Moreover, observe that every curve in 𝑍4 must have 𝑝2, 𝑝3 and 𝑝4
colinear: the only four-pointed smooth elliptic curves with automorphisms are the ones where 𝑦𝑖 = 0
for 𝑖 = 2, 3, 4, and hence, 𝑝2, 𝑝3 and 𝑝4 lie on the line 𝑦 = 0 (see Appendix A).

We now give a second stratification of M1,𝑛 for 𝑛 ≥ 4 as follows:
◦ the open locus where 𝑝2, 𝑝3 and 𝑝4 are not colinear under the Weierstrass embedding.
◦ and the divisor where 𝑝2, 𝑝3 and 𝑝4 are colinear.
Definition 5.22. For 𝑛 ≥ 3,
(a) Let 𝑉𝑛 ⊆ M1,𝑛 be the locus where 𝑝2 + 𝑝3 ≠ 𝜄(𝑝4).
(b) Let 𝑉 ′

𝑛 ⊆ M1,𝑛 be the locus where 𝑝2 + 𝑝3 ≠ 𝜄(𝑝𝑖) for any 𝑖 = 1, . . . , 𝑛.
Note 5.23. Note that the condition for 𝑉3 is ill-defined. We use the convention that this is an empty
condition, so that 𝑉3 = M1,3.
Observation 5.24. As before, in Observation 5.4, 𝜋 pulls relations back to relations.
Definition 5.25. Define the morphism of stacks 𝜏𝑛−1 : 𝑉 ′

𝑛−1 → M1,𝑛 by

(𝐶, 𝑝𝑖) ↦→ (𝐶, 𝑝1, 𝑝2, 𝑝3, 𝜄(𝑝2 + 𝑝3), . . . , 𝑝𝑛−1).

Note that, as in Definition 5.5, the additive structure also extends to families of elliptic curves.
Proposition 5.26. The map 𝜏𝑛−1 : 𝑉 ′

𝑛−1 → M1,𝑛 is a closed immersion.
Proof. Similar to Proposition 5.6. �

Corollary 5.27. For 𝑛 ≥ 4, the stack M1,𝑛 stratifies into the disjoint union

M1,𝑛 = 𝑉𝑛 � im 𝜏𝑛−1 � 𝑉𝑛 �𝑉 ′
𝑛−1.

Proposition 5.28. For 𝑛 = 2, . . . , 10, the stacks M1,𝑛 are rational. Moreover, for 𝑛 = 4, . . . , 10, the
open in M1,𝑛 which exhibits this rationality is 𝑈𝑛 ∩𝑉𝑛.
Proof. This was proven by Belorousski in the case where k is algebraically closed and characteristic
zero in [2] by constructing a bijective morphism between𝑈𝑛∩𝑉𝑛 and an open subset of P𝑛. He concludes
that it is an isomorphism since P𝑛 is normal. This proof does not work in arbitrary characteristic (for
example, the Frobenius morphism on P1 is a bijective morphism between normal varieties which is not
an isomorphism). However, Belorousski’s argument showing that the morphism is bijective is, in fact,
functorial and works in families, therefore directly establishing that the moduli stacks are isomorphic. �

Lemma 5.29. The element [𝜏𝑛−1 (𝑉
′
𝑛−1)] is tautological.

Proof. Similar to Corollary 5.16(c). �

Proposition 5.30. The Chow ring of M1,𝑛 is tautological for 𝑛 = 1, . . . , 10.
Proof. We have already shown this for 𝑛 = 1, 2, 3. For 𝑛 ≥ 4, observe that im𝜎𝑛−1 and im 𝜏𝑛−1
are disjoint, since the image of 𝜎𝑛−1 consists of curves where 𝑝2 = 𝜄(𝑝3) and the image of 𝜏𝑛−1
consists of curves where 𝑝2 + 𝑝3 = 𝑝4. Any curve in the intersection of these loci would then satisfy
𝑝4 = 𝑝2 + 𝑝3 = 𝑝2 + 𝜄(𝑝2) = ∞ = 𝑝1, a contradiction. Therefore, we may stratify M1,𝑛 into M1,𝑛 =
(𝑈𝑛 ∩ 𝑉𝑛) � im𝜎𝑛−1 � im 𝜏𝑛−1. That is, M1,𝑛 is the union of the open locus where 𝑝2 and 𝑝3 are not
involutions and 𝑝2, 𝑝3 and 𝑝4 are not colinear along with the divisors where these conditions do hold.
But 𝑈𝑛 ∩ 𝑉𝑛 is isomorphic to an open in P𝑛 by the above Proposition and hence generated in degree
one, hence generated by 𝜆1, hence tautological. Since im𝜎𝑛−1 and im 𝜏𝑛−1 are isomorphic to opens
in M1,𝑛−1 and have tautological fundamental classes by Corollary 5.16(c) and Lemma 5.29, M1,𝑛 is
inductively built out of tautological pieces, and hence itself tautological. This breaks at 𝑛 = 11 since
𝑈11 ∩𝑉11 is not birational to an open in P11 by [2]. �
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Theorem 5.31. The integral Chow ring of M1,4 is given by

CH(M1,4) =
Z[𝜆1]

(12𝜆1, 2𝜆2
1)
.

Proof. Since M1,4 is tautological by the above Proposition, we have

CH(M1,4) = R(M1,4) =
Z[𝜆1]

(12𝜆1, 2𝜆2
1)

by Proposition 5.19. �

Proposition 5.32. The Chow ring of 𝑈4 is CH(𝑈4) = Z[𝜆1]/(2𝜆1).

Proof. By Theorem 5.31, the Chow ring of𝑈4 is generated by 𝜆1, and so by Corollary 5.16(a), CH(𝑈4)
is a quotient of Z[𝜆1]/(2𝜆1). Similarly to the proof of Corollary 5.16(b), the four-pointed elliptic
curve (𝐶(−1,0) ,∞, [1 : 0 : 1], [0 : 0 : 1], [−1 : 0 : 1]) induces a residual gerbe which shows that
CH(𝑈4) = Z[𝜆1]/(2𝜆1). �

Proposition 5.33. The Chow ring of𝑈4∩𝑉4 is CH(𝑈4∩𝑉4) = Z, and the Chow ring of𝑉 ′
4 is CH(𝑉 ′

4) = Z.

Proof. Note that the image of 𝜏3 is contained inside of 𝑈4, as points in im 𝜏3 are of the form
(𝐶, 𝑝1, 𝑝2, 𝑝3, 𝜄(𝑝2 + 𝑝3)) where 𝑝2 + 𝑝3 ≠ 𝜄(𝑝𝑖) for any i. In particular, 𝑝2 + 𝑝3 ≠ 𝜄(𝑝1) = ∞, and so
𝑝2 ≠ 𝜄(𝑝3), which is the defining property of 𝑈4. Therefore, we may consider the following excision
sequence:

CH(im 𝜏3) → CH(𝑈4) → CH(𝑈4 ∩𝑉4) → 0.

Since im 𝜏3 � 𝑉 ′
3 ⊆ 𝑈3 and 𝑉 ′

3 contains three-pointed curves inducing a residual gerbe (as in Theorem
5.14), this sequence is really

Z[𝜆1]

(2𝜆1)

𝜏3∗
−−→
Z[𝜆1]

(2𝜆1)
→ CH(𝑈4 ∩𝑉4) → 0.

Since by Observation 5.21 𝜆5
1 = 0 on 𝑈4 ∩𝑉4 and 𝜆5

1 ≠ 0 on 𝑈4, we see that 𝜆5
1 must be in the image of

𝜏3∗. Hence, 𝜏3∗(𝜆
4
1) = 𝜆5

1 in CH(𝑈4). But we also have 𝜏3∗(𝜆
4
1) = 𝜏3∗(𝜏

∗
3 (𝜆

4
1)) = 𝜆4

1𝜏3∗(1). Therefore,
we must have 𝜏3∗(1) = 𝜆1, and so CH(𝑈4 ∩𝑉4) = Z.

Note that, in particular, 𝑉 ′
4 describes curves where 𝑝2 and 𝑝3 are not exchanged by the involution,

and so 𝑉 ′
4 ⊆ 𝑈4; hence, 𝑉 ′

4 ⊆ 𝑈4 ∩𝑉4. Therefore, CH(𝑉 ′
4) = Z as well. �

Corollary 5.34. For 𝑛 ≥ 4,

(a) R(𝑈𝑛 ∩𝑉𝑛) = Z
(b) R(𝑉 ′

𝑛) = Z.

Proof. From Proposition 5.33, we see that we have the relation 𝜆1 = 0 on 𝑈4 ∩𝑉4 and 𝑉 ′
4, and hence on

𝑈𝑛 ∩𝑉𝑛 and 𝑉 ′
𝑛 for all 𝑛 ≥ 4. Therefore, R(𝑈𝑛 ∩𝑉𝑛) � R(𝑉 ′

𝑛) = Z. �

Proposition 5.35. For 𝑛 ≥ 5, the integral tautological ring of M1,𝑛 is

R(M1,𝑛) =
Z[𝜆1]

(12𝜆1, 𝜆
2
1)
.

Proof. We use the stratification

M1,𝑛 = (𝑈𝑛 ∩𝑉𝑛) � im𝜎𝑛−1 � im 𝜏𝑛−1
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from Proposition 5.30. Notice that im𝜎𝑛−1�im 𝜏𝑛−1 has tautological ringZ⊕Z, with both components in
degree zero, since it is isomorphic to the abstract disjoint union𝑈 ′

𝑛−1�𝑉
′
𝑛−1 andR(𝑈 ′

𝑛−1) � R(𝑉 ′
𝑛−1) = Z

by Corollaries 5.16 and 5.34.
The excision sequence restricts to integral tautological rings by Lemma 5.17 and hence gives

R(im𝜎𝑛−1 � im 𝜏𝑛−1) → R(M1,𝑛) → R(𝑈𝑛 ∩𝑉𝑛) → 0

Z ⊕ Z→ R(M1,𝑛) → Z→ 0.

Since the Z ⊕ Z has both components in degree zero, its image in the tautological ring of M1,𝑛 lands in
degree one. Hence, we see that the integral tautological ring of M1,𝑛 is concentrated in degrees 0 and
1, and so R(M1,𝑛) = Z[𝜆1]/(12𝜆1, 𝜆

2
1). �

Theorem 5.36. For 5 ≤ 𝑛 ≤ 10, the integral Chow ring of M1,𝑛 is

CH(M1,𝑛) =
Z[𝜆1]

(12𝜆1, 𝜆
2
1)
.

Proof. The Chow ring of M1,𝑛 is tautological for 5 ≤ 𝑛 ≤ 10 by Proposition 5.30, and the tautological
ring was computed in the above Proposition. �

A. Automorphisms of marked elliptic curves

In this Appendix, we note the following facts about automorphisms of marked elliptic curves.

Proposition A.1. Over a field k of characteristic not equal to 2 or 3, there exists

◦ one-pointed elliptic curves with automorphism groups 𝜇2, 𝜇4 and 𝜇6;
◦ two-pointed elliptic curves with automorphism groups 𝜇2, 𝜇3 and 𝜇4;
◦ three-pointed elliptic curves with automorphism groups 𝜇2 and 𝜇3;
◦ and four-pointed elliptic curves with automorphism group 𝜇2.

Every four-pointed elliptic curve with 𝜇2 automorphisms has 𝑝2, 𝑝3, 𝑝4 colinear, and every n-pointed
elliptic curve with 𝑛 ≥ 5 has no (nontrivial) automorphisms.

Proof. Recall the Weierstrass form for elliptic curves:

Theorem A.2 (Weierstrass). Any one-pointed smooth elliptic curve over a field k of characteristic not
equal to 2 or 3 can be written in the form 𝑦2𝑧 = 𝑥3 + 𝑎𝑥𝑧2 + 𝑏𝑧3, where the marked point is the point at
infinity [0 : 1 : 0]. Moreover, if we denote such a curve by 𝐶(𝑎,𝑏) , then 𝐶(𝑎,𝑏) � 𝐶(𝑎′,𝑏′) if and only if
(𝑎′, 𝑏′) = (𝑡4𝑎, 𝑡6𝑏). The isomorphism between these curves is given by [𝑥 : 𝑦 : 𝑧] ↦→ [𝑡2𝑥 : 𝑡3𝑦 : 𝑧].
Lastly, an elliptic curve is smooth if and only if 𝐷 = 4𝑎3 + 27𝑏2 = 0, nodal if and only if 𝐷 = 0 and
(𝑎, 𝑏) ≠ (0, 0), and cuspidal if and only if (𝑎, 𝑏) = (0, 0).

From this, we see that an elliptic curve with n marked points over k is determined by a choice of
(𝑎, 𝑏) and 𝑝2, . . . , 𝑝𝑛, 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖), and that the automorphisms of this curve are given by the 𝑡 ∈ G𝑚

such that 𝑡 · (𝑎, 𝑏) = (𝑡4𝑎, 𝑡6𝑏) = (𝑎, 𝑏) and 𝑡 · 𝑝𝑖 = (𝑡2𝑥𝑖 , 𝑡
3𝑦𝑖) = (𝑥𝑖 , 𝑦𝑖).

Now for each 𝑚 > 1, let 𝜁𝑚 denote a primitive 𝑚th root of unity. From (𝑡4𝑎, 𝑡6𝑏) = (𝑎, 𝑏), we see
that the automorphism group of every one-pointed elliptic curve contains a copy of 𝜇2 corresponding
to 𝑡 = 𝜁2 = −1, the involution. Additionally, the curves 𝐶(1,0) and 𝐶(0,1) are fixed by 𝜇4 = 〈𝜁4〉 and
𝜇6 = 〈𝜁6〉. Since any automorphism of an n-pointed elliptic elliptic curve (𝐶, 𝑝1, . . . , 𝑝𝑛) is in particular
an automorphism of (𝐶, 𝑝1), they must all correspond to elements of 𝜇2, 𝜇4, or 𝜇6.
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The element 𝜁2 is an automorphism of every elliptic curve and induces the map 𝜁2 : [𝑥 : 𝑦 : 𝑧] ↦→
[𝑥 : −𝑦 : 𝑧], and so for a point 𝑝𝑖 ≠ ∞ to be fixed by this, we must have 𝑝𝑖 = [𝑥 : 0 : 1]. Then we have

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

0 = 𝑥3 + 𝑎𝑥 + 𝑏,

which has at most three solutions. Therefore, the involution 𝜄 = 𝜁2 fixes at most four points in total. An
example of a four-pointed elliptic curve with automorphism group 𝜇2 is (𝐶(−1,0) ,∞, [1 : 0 : 1], [0 : 0 :
1], [−1 : 0 : 1]). Notice that any four-pointed elliptic curve fixed by the involution must have 𝑝2, 𝑝3, 𝑝4
colinear, as each point lies on the line 𝑦 = 0.

The element 𝜁4 is an automorphism of the curve corresponding to (1, 0) and induces the map
𝜁4 : [𝑥 : 𝑦 : 𝑧] ↦→ [−𝑥 : 𝜁3

4 𝑦 : 𝑧], and so for a point 𝑝𝑖 ≠ ∞ to be fixed by this, we must have
𝑝𝑖 = [0 : 0 : 1], which is indeed a point on the curve 𝐶(1,0) . Therefore, there is exactly one two-pointed
elliptic curve with automorphism group 𝜇4, the curve (𝐶(1,0) ,∞, [0 : 0 : 1]).

The element 𝜁6 is an automorphism of the curve corresponding to (0, 1) and induces the map
𝜁6 : [𝑥 : 𝑦 : 𝑧] ↦→ [𝜁3𝑥 : −𝑦 : 𝑧], and so for a point 𝑝𝑖 ≠ ∞ to be fixed by this, we must have
𝑝𝑖 = [0 : 0 : 1], which is not a point on the curve 𝐶(0,1) . Therefore, there is no n-pointed elliptic curve
with automorphism group 𝜇6 for 𝑛 ≥ 2.

Lastly, the element 𝜁2
6 = 𝜁3 is an automorphism of the curve corresponding to (0, 1) and induces

the map 𝜁3 : [𝑥 : 𝑦 : 𝑧] ↦→ [𝜁2
3𝑥 : 𝑦 : 𝑧], and so for a point 𝑝𝑖 ≠ ∞ to be fixed by this, we must have

𝑝𝑖 = [0 : 𝑦 : 𝑧]. Then we have

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑦2 = 1.

Therefore, an example of a three pointed elliptic curve with automorphism group 𝜇3 is (𝐶(0,1) ,∞,
[0 : 1 : 1], [0 : −1 : 1]).

This exhausts all possible automorphisms, and so there are no n-pointed elliptic curves with nontrivial
automorphisms for 𝑛 ≥ 5. �
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