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Rotating plasmas have the potential to offer unique capabilities for isotope and mass
separation. Among the various electric and magnetic field configurations offering mass
separation capabilities, rotating plasmas produced through static or oscillating fields
are shown to be a leading candidate for tackling the unsolved problem of large-scale
plasma separation. The successful development and deployment of industrial-scale
plasma separation technologies could, among many other applications, provide an
innovative path towards advanced sustainable nuclear energy. In this context, the
potential and versatility of plasma rotation induced by rotating magnetic fields is
uncovered and analysed. Analytical stability diagrams are derived from rotating ion
orbits as a function of ion mass. Based on these findings, the basic principles of a
rotating field plasma separator are then introduced. In light of these results, challenges
associated with this original separation process are underlined, and the main directions
for a future research program aimed at this important unsolved problem of applied
plasma physics are identified.
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1. Introduction
Among the various unsolved problems of plasma physics, controlled thermonuclear

fusion remains the most challenging one, both with respect to its complexity and to
the forthcoming critical energy transition. All projections of future energy consumption
converge towards a doubling, at the very least, of the world’s energy demand by
the end of this century. Today’s consumption is approximately 1020 J yr−1. Given the
increasing evidence of the dramatic impact of oil and coal energy sources on our
environment, thermonuclear fusion and advanced nuclear fission are the only energy
sources providing a straightforward development path toward a long term, sustainable,
post-industrial society for which the energy demand is foreseen to, at least, double.

Nuclear fission, in particular with the deployment of fourth generation fast breeders,
has the potential to ensure a soft energy transition. However, the management of

† Email address for correspondence: rgueroul@pppl.gov

https://doi.org/10.1017/S0022377816000878 Published online by Cambridge University Press

mailto:rgueroul@pppl.gov
https://doi.org/10.1017/S0022377816000878


2 J.-M. Rax and R. Gueroult

nuclear fuel cycle remains an open problem. Further to nuclear fusion, plasma physics
and technologies could provide novel and unique solutions in this context as well.
Indeed, plasmas offer a wide range of possibilities for isotope and mass separation
(Grossman & Shepp 1991; Timofeev 2007, 2014; Gueroult, Hobbs & Fisch 2015).
However, despite experimental demonstrations in the form of plasma centrifugation
(Krishnan, Geva & Hirshfield 1981; Hole & Simpson 1999), ion cyclotron resonance
(Dawson et al. 1976; Dolgolenko & Muromkin 2009) and the historical calutron
configuration; plasma isotope and mass separation are not to date used at industrial
scale. In this respect, plasma separation remains an unsolved problem of plasma
physics.

Plasma separation could be particularly useful for reprocessing burned nuclear fuel
and ashes, with the objective of closing the nuclear cycle (Timofeev 2007; Gueroult
& Fisch 2014). Two choices can be made with nuclear energy. First, an open cycle,
where the downloaded burned fuel is not reprocessed. Second, a closed cycle, where
reprocessing provides new fuel, both as fissile and fertile materials, and reduces the
volume of high-level waste, particularly through the separation of minor actinides
(Timofeev 2007; Gueroult & Fisch 2014).

It is commonly accepted that closing the nuclear cycle with the fourth generation
of fast breeders would increase the energy extracted from uranium by a factor of
approximately 50 to 60.

Closed cycle reprocessing is generally based on hot chemistry with a large number
of steps in large-scale facilities. Besides the inventory problem associated with the
large number of steps, particularly for minor actinides, huge volumes of organic
solvent and acids are used for extraction. In addition, large volumes of nuclear waste
are transported, for separation and then storage, through the countries who made the
closed cycle choice (France, Japan, China, Russia and the UK). In contrast, plasma
separation has the potential to offer efficient reprocessing in a single step. A small
footprint plasma based facility located near each nuclear power station, providing in
situ efficient reprocessing, hence appears particularly attractive for the development
of advanced nuclear energy.

Each 235U fission releases an energy of the order of 200 MeV, and the ratio
235U/238U is of the order of a few per cent. Each nucleus in the irradiated nuclear
fuel to be processed is thus associated with an energy deposited in the reactor core of
the order of a few MeV. Plasma reprocessing cost can be roughly estimated based on
the following assumptions. First, each atom of the burned fuel will have to be ionised.
This ionisation cost is a few tens of eV per atom. Second, an electron temperature
of the order of 10 eV has to be maintained to ensure suitable plasma parameters.
Third, a selected minority of ions have to be accelerated or heated to be separated.
Corresponding energy losses are expected to be up to a few 100 eV per selected
ion. Fourth, the background ion temperature will be brought from room temperature
to a fraction of an eV. Summing up these contributions, an energy cost of a few
keV per atom seems like a safe upper bound for the whole plasma process. With
these estimates, the power requirement to achieve a closed fuel cycle with plasma
separation technologies will be below one per cent of the reactor power, far below
the projected gain of 50–60.

In addition to this favourable basic power balance, estimates of plasma processing
throughput are consistent with the need of a typical fission reactor. Typical
ion current density in plasmas is given by the relation nCs where Cs is the
ion acoustic velocity, Cs ∼ 105 cm s−1 and n the plasma density. In advanced
helicons and Electron Cyclotron Resonance (ECR) plasma sources, plasma density
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can be as large as 1012–1013 cm−3. The continuous processing of a beam with
cross-section S ∼ 103 cm2 during one year, that is to say τ ∼ 107 s, is thus
equivalent to approximately nCsSτ ∼ 1028 nuclei. This is to be compared with
the 1024 nuclei contained in 1 kg of irradiated fuel. Based on these simple
estimates, about 104 kg of irradiated fuel can be processed per year. Interestingly,
this is about the amount of burned fuel downloaded from a typical reactor
per year.

Among the numerous separation mechanisms one can envision in a magnetised
plasma column, classical electric field-driven centrifugation (Ohkawa & Miller 2002;
Rax et al. 2015), advanced magnetic centrifugal mass filter (Fetterman & Fisch 2011a;
Gueroult & Fisch 2012; Gueroult, Rax & Fisch 2014), ion cyclotron resonances
(Dawson et al. 1976; Dolgolenko & Muromkin 2009), auto-resonant ion cyclotron
resonance (Rax, Robiche & Fisch 2007) and wave-driven centrifugation (Fetterman &
Fisch 2009, 2011c) have been proposed and deemed promising for isotope and mass
separation. In this study, after briefly reviewing rotating plasma separation schemes
in the next section, we identify and analyse a new scheme: the use of a rotating
magnetic field for isotope and mass separation in a plasma column.

That a rotating magnetic field should drag a fluid plasma rotation is a direct
consequence of the Alfvén frozen in law, but (i) the dynamics at the single particle
level is far more complex than a simple rotation (Soldatenkov 1966; Fisch &
Watanabe 1982; Hugrass & Jones 1983), and (ii) each choice of different driving
external currents, for the very same magnetic field, provide new classes of orbits. This
unexplored versatility offers several pathways for optimisation. In § 2, the different
possible methods for spinning a magnetised plasma for the purpose of mass separation
are reviewed. Moving on to rotating magnetic fields, in § 3, three different rotating
vector potentials providing the same magnetic field are introduced. The associated,
external or internal, currents are analysed and shown to be physically realisable.
Then in §§ 4–6 we present an analysis of the orbital stability for these three rotating
configurations. The relative advantages and drawbacks of these configurations for
plasma mass separation are discussed in § 7. Finally, § 8 gives a summary of these
new results pertaining to one of the most challenging unsolved problem of plasma
physics: isotope and mass separation in rotating plasmas.

2. Angular momentum conversion and rotating plasmas for mass separation

To assess the originality of rotating magnetic fields for isotope and mass separation,
let us briefly review the principles of other rotating plasma configurations. As per
usual in plasma physics, the analysis of the physical processes must be performed
both at the macroscopic fluid level and at the microscopic single particle level.
Isotope separation with rotating plasmas offers a clear illustration of this rule. At the
fluid level the description can be reduced to a uniform rotation with a steady state
vorticity. On the other hand, at the single particle level, the orbits always display
more complex behaviours than a simple rotation, leading to the occurrence of orbital
instabilities. These instabilities can in turn be put at work for mass discrimination.
The macroscopic averaging of these mass-dependent complex orbits is responsible
for the emerging simple uniform rotation at the fluid level. In this study we will
concentrate on a microscopic analysis and on the identification of orbital instabilities
under various rotating fields configurations.

The Brillouin limit associated with the rigid body rotation of a magnetised plasma
column has been explored both theoretically and experimentally for nuclear waste
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FIGURE 1. Classical axially magnetised plasma configuration for mass separation. The
azimuthal rotation can be induced through any angular momentum deposition process
around the z axis.

management. Consider an ion, with mass m and charge q, interacting with a static
radial linear electric field E and an axial uniform magnetic field B0

q
m
[E(x, y),B0] = [Ω2

Ex ex +Ω2
Ey ey, Ωc ez], (2.1)

as depicted in figure 1. Here, [ex, ey, ez] is a Cartesian basis and [x, y, z] is the
associated Cartesian coordinates. In this configuration, ion orbits are radially confined
if the Brillouin condition (Rax et al. 2015),

Ωc >
√

2ΩE, (2.2)

is fulfilled. For Ωc <
√

2ΩE ions are ejected radially from the plasma column. As
the cyclotron frequency is given by Ωc = qB0/m and ΩE ∼ 1/

√
m, for a given

configuration, the heavy elements are expelled from a rotating plasma mixture and
the light ones remain confined. It is to be noted that this simple configuration can be
used in another way if we sustain an electrostatic potential with two radial minima
rather than one with a parabolic potential associated with a linear field (Gueroult
et al. 2014). Beside these two simple E cross B configurations, more sophisticated
fields configurations have been identified and analysed for isotope processing. The
auto-resonant interaction (Rax et al. 2007) between an ion beam with axial velocity
V and the helical magnetic field associated with the vector potential A,

q
m

A(x, y, z)=
[

qA
m

cos
∫ z

0
k(u) du− Ωc

2
y
]

ex +
[

qA
m

sin
∫ z

0
k(u) du+ Ωc

2
x
]

ey, (2.3)

also provides a very efficient separation process if the periodic transverse field, with
local wave vector k(z), is tapered according to the cyclotron auto-resonance relation

k(z)V =Ωc

[
cos

(
2qAΩc

mV2
z+

+∞∑
n=1

Jn(n)
n

sin
(

4nqAΩc

mV2
z− nπ

))]−1

. (2.4)
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Here, Jn is the ordinary Bessel function of order n. Such a tapered helical wiggler
configuration ensures that the resonant conversion of the linear momentum mV , along
z, into an angular momentum, around z, is only efficient for a given mass, and
inefficient for all other masses.

In between the simple radial E cross axial B configurations, and this complex
tapered helical wiggler configuration, a variety of electric and magnetic geometries
and topologies have been studied, and should be explored in order to solve the open
problem of plasma isotope and mass separations. Another very elegant and efficient
way to sustain plasma rotation was recently identified and analysed (Fetterman
& Fisch 2011c): angular momentum injection through resonant waves–particle
interactions. A cylindrical plasma wave whose electric (and/or magnetic) potential Φ
varies according to

Φ(x, y, z, t)= φ(r) cos(lθ + kz−ωt), (2.5)

with r2 = x2 + y2 and θ the polar coordinates (as illustrated in figure 1), l an integer
and φ(r) an appropriate solution of the radial Maxwell equations, interacting with
a cylindrical plasma column, is able to transfer to magnetised particles (i) energy,
(ii) axial linear momentum along z, and (iii) azimuthal angular momentum around z.
For this transfer to happen, the velocity V = dz/dt of the particles must satisfy the
Doppler shifted cyclotron resonance condition, kV = nΩc + ω where n is any integer.
If an amount of energy δW is transferred from this wave to the particles, an amount of
axial linear momentum δP=mδVez and an amount of angular momentum δL appear
in the plasma,

δP = k
ω
δW ez, (2.6)

δL = l
ω
δW ez. (2.7)

The plasma column will respond to this linear momentum deposition through a z
acceleration and to this angular momentum deposition through a rotation. The energy
deposition profile δW(r), the collisional dissipation and the plasma column inertia
tensor will determine the value of the angular velocity.

The frozen in law with a transverse rotating magnetic field b(t)
q
m

b(t)=ωc cosΩt ex +ωc sinΩt ey, (2.8)

provides yet another original mechanism to spin a magnetised plasma column around
the z axis. The potential of such a configuration for mass separation will be presented
and analysed here. Compared to current generation applications (see, for example,
Fisch & Watanabe (1982)) for which Ω is chosen such that ωci <Ω < ωce to drive
an azimuthal electron current, the regime envisioned here is the one for which the
entire plasma column (both ions and electrons) rotates, with zero or limited associated
azimuthal current. The realisation of this new configuration for mass separation is not
straightforward because a magnetised plasma column will always accept a radial static
electric field E(x, y) strictly perpendicular to the static magnetic field B0 or a plasma
wave belonging to one of its dispersion branches, but it will always screen out a time
varying magnetic field b(t). The screening length depends on collisionality and is in
between the collisionless and diffusive limits λL = c/ωpe and λK = (µ0σω)

−1/2, which
are respectively the London and Kelvin characteristic lengths. Here, ωpe is the plasma
frequency, c is the speed of light, µ0 is the vacuum permittivity, σ is the plasma
electric conductivity and ω is the wave frequency. Since the potential of this type of
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(a) (b) (c)

FIGURE 2. Angular momentum injection in an axially magnetised plasma column,
(a) E(x, y) crossed fields drift, (b) rotating b(θ −Ωt) magnetic field, (c) rotating cylindrical
φ cos(lθ −ωt) wave.

rotating plasma configuration for mass separation and nuclear waste management has
never been explored, we will analyse the orbit at the single particle level, for various
schemes, to evaluate the potential for mass separation.

To conclude this discussion, let us summarise, and illustrate in figure 2, an emerging
classification of the physical processes aimed at rotating an axially magnetised plasma
for the purpose of isotope and mass separations: (i) the E cross B drift with a linear
radial electric field (see figure 2a), (ii) the use of the frozen in law with a rotating
magnetic field b(t) (see figure 2b), (iii) direct angular momentum absorption from
a cylindrical plasma wave displaying a high content of angular momentum (see
figure 2c). In this paper, we will consider three basic types of rotating magnetic fields
configurations leading to the same rotating magnetic field b(t) and focus the analysis
on the stability of ion orbits for the purpose of isotope and mass separation. We
will demonstrate that, for appropriate field strength and frequency, two neighbouring
masses display completely different behaviours, one performing a stable multi-periodic
oscillation near the z axis and the other being expelled radially far from the z axis.

3. The three basic rotating fields configurations
Plasma interaction with rotating magnetic fields has been investigated in the past for

the purpose of thermonuclear confinement (Soldatenkov 1966; Hugrass & Jones 1983),
current generation (Fisch & Watanabe 1982) and plasma acceleration (Shinohara et al.
2014), but the potential for separation technologies has never been considered.

Consider a homogeneous magnetic field b(t) rotating at an angular velocity Ω ,

b(t)= m
q
ωc(cosΩt ex + sinΩt ey). (3.1)

This magnetic field can be derived from any linear combination of the following
vector potentials: (i) As and Aa or (ii) As and Ac or (iii) Ac and Aa.

q
m

As =ωc(y cosΩt− x sinΩt)ez, (3.2)

q
m

Aa =ωcz(sinΩt ex − cosΩt ey), (3.3)

q
m

Ac = ωc

2
[z(sinΩt ex − cosΩt ey)+ (y cosΩt− x sinΩt)ez]. (3.4)
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To each of these three magnetic vector potentials corresponds a different electric field
E=−∂A/∂t. For completeness, these electric fields read

q
m

Es =ωcΩ(x cosΩt+ y sinΩt)ez, (3.5)

q
m

Ea =−ωcΩz(cosΩt ex + sinΩt ey), (3.6)

q
m

Ec =−ωc

2
Ω[z(cosΩt ex + sinΩt ey)− (x cosΩt+ y sinΩt)ez]. (3.7)

The rotating magnetic field configuration is thus not unique and must be viewed as
a two-dimensional vector space, but the orbit in a given combination of As and Aa
is not a simple combination of the orbit in As and Aa. This is a simple consequence,
as it will become clear, of the fact that the determinant of the sum of two matrices
is different from the sum of their determinants. It is worth noting that most of the
plasma literature on rotating magnetic fields for thermonuclear confinement or current
generation is restricted to As, while the simplest configuration is arguably the one
described by Ac, which corresponds to two phased coils. These three vector potentials,
As, Aa and Ac, cannot be reduced to the same function through a gauge transformation
and these different expressions are associated with different boundary conditions, that
is to say with different external and plasma currents.

As is the most popular expression and can be produced with an axial surface current
on a cylinder aligned along z. The current amplitudes are proportional to cos(θ −Ωt)
where θ is the polar angle around the z axis. Aa is the vector potential describing
the vicinity of the electric node of an l = 1 standing surface Alfvén wave along a
cylindrical plasma column, where l is the Fourier mode number associated with exp jlθ .
Finally, Ac is the vector potential describing the classical synchronous rotating field
generated by two coils whose axes are oriented along x and y and whose currents are
out of phase by an angle π/2.

These three field configurations As, Aa and Ac provide a convenient and tractable
theoretical framework to illustrate mass separation effects in rotating magnetic fields.
However, these configurations only describe an idealised plasma. Practically, various
effects could limit the range of plasma parameters and device dimensions for which
the simple picture derived in this paper will hold true. Although the full study of
these practical effects is beyond the scope of this paper, possible challenges towards
the implementation of these three configurations are briefly discussed for completeness
in the remaining of this section.

First, Aa appears a priori to be the best candidate since it is a normal mode of a
plasma mixture. As a result, it does not suffer from plasma screening. However, the
main limitation of this configuration stems from the fact that Aa only describes the
local field of a standing wave in the vicinity of an electric node of this wave. The
full structure of the vector potential of a surface Alfvén wave, with wave vector kA
along a plasma cylinder, is given by A∗a,

q
m

A∗a =
ωc

kA
[sin(kAz) sin(Ωt) ex − sin(kAz) cos(Ωt) ey]. (3.8)

A full analysis of ion orbit stability would thus require considering A∗a in lieu of the
idealised vector potential Aa used in this study.

Then, Ac is to be considered because of the simplicity of the forcing currents
configuration. However, since it is not a normal mode of the plasma, penetration
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of the rotating field within the plasma column will depend on plasma parameters,
and Ac only describes the asymptotic limit corresponding to instantaneous field
penetration. Field penetration for similar coil configurations has been shown to be
a strong function of two dimensionless parameters (Milroy 1999): (i) the plasma
column radius a normalised by the Kelvin characteristic length λK and (ii) the
electron cyclotron frequency – computed for the rotating magnetic field – normalised
by the electron–ion collision frequency. For large devices (a � λK), electron–ion
collisionality has to be sufficiently small to ensure fast field penetration. For mass
separation purposes, this would translate into a trade-off between plasma density,
plasma dimensions and magnetic field intensity.

Similarly, As is not a normal mode of the plasma column. In this configuration,
electron screening is expected to take place because the inductive electric field
−∂As/∂t is along the static field lines. For collisionless plasmas, one can solve
Maxwell–Faraday and Maxwell–Ampere equations taking into account the response
of the plasma electrons (mass me, charge qe) along z to find the screened vector
potential A∗s inside the plasma,

q
m

A∗s =
ωc

kp
[sinh(kpy) cos(Ωt)− sinh(kpx) sin(Ωt)]ez. (3.9)

Here k−1
p = λp is the London length, or inertial skin depth, defined as λ2

p=mec2ε0/nq2
e

(c is the velocity of light and ε0 the permittivity of vacuum). For plasma density
n ∼ 1012 cm−3, the inertial skin depth is of the order of a centimetre. The rotating
magnetic field will display a homogeneous structure near the z axis, and an
inhomogeneous one near the edge since cosh(x/λp) = 1 + x2/2λp

2 + O(x4/λp
4) and

cosh(y/λp)= 1+ y2/2λp
2 +O(y4/λp

4). As a result, the effect of plasma screening on
the orbit stability will mainly be important at the edge. Here again, a full analysis of
ion orbit stability would require using A∗s rather than the idealised vector potential As.

Let us conclude this discussion of possible limitations with a practical observation.
For minor actinides separation (Gueroult & Fisch 2014), if we choose to expel the
heavy part, the core will be cleaned up and the edge will be a mix of light and heavy
ions. However, the study of the stability diagram, taking into account the nonlinear
coupling terms associated with electron screening (A∗s in lieu of As), will make it
possible to modify the separation strategy using well-identified nonlinear stability
boundaries. This identification is left for a future study, and so is the identification of
the optimum combination of As and Ac, both from the standpoint of orbits and from
the standpoint of field penetration in the plasma. However, we note in passing that
a 1/1 combination of these vectors gives Aa, which is a natural mode of the plasma.
As a result, there is clearly a synergy for penetration between these vacuum modes.

In the following three sections, in order to address the open problem of mass
separation with rotating magnetic fields, we will compare ion orbits in the combination
of an axial static magnetic field B0 and a transverse rotating magnetic field ∇×A,

∇×A+B0 = m
q
ωc(cosΩt ex + sinΩt ey)+ m

q
Ωc ez, (3.10)

for the ideal potential vectors A=Aa (§ 4), A=Ac (§ 5) and finally A=As (§ 6). To
analyse the orbits we will consider Newton’s equations for an ion with mass m, charge
q and velocity V,

m
dV
dt
=−q

∂A
∂t
+ qV × (∇×A)+ qV ×B0, (3.11)
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and calculate the stability diagram in the (Ω/Ωc, ωc/Ωc) space as Ω , Ωc and ωc
are the three control parameters of these innovative separation schemes. In the last
sections, on the basis of these stability diagrams, we will consider the potential for
mass separation. To simplify the forthcoming studies, we define the control parameters
u and v and the normalised eigenfrequency w as follows,

u= Ω

Ωc
, (3.12)

v = ωc

Ωc
, (3.13)

w= ω

Ωc
, (3.14)

where ω, through a factor exp jωt, will be the generic pulsation of the ion periodic
motion. The position of w in the complex plane, as a function of (u, v), will decide
of the stability, or the instability, of the orbit.

4. Orbital stability with a surface Alfvén standing wave
Consider a standing low-frequency wave along a magnetised plasma column

belonging to the Alfvénic branch of the dispersion relation, the vector potential for
an l= 1 surface wave is given by Aa in the vicinity of an electric node. Then, let us
write down the dynamics of an ion, with mass m and charge q, on a Cartesian set
of axis where z is oriented along the static magnetic field B0:

d2x
dt2
= Ωc

dy
dt
−ωc

dz
dt

sinΩt−ωcΩz cosΩt, (4.1)

d2y
dt2
= −Ωc

dx
dt
+ωc

dz
dt

cosΩt−ωcΩz sinΩt, (4.2)

d2z
dt2
= ωc

dx
dt

sinΩt−ωc
dy
dt

cosΩt. (4.3)

We recognise a total time derivative in the first and second equation, so the order of
the first two equations can be lowered. We introduce the fixed guiding centres (xg, yg)
of the transverses oscillations and rewrite these two equations

dx
dt
−Ωc(y− yg)+ωcz sinΩt= 0, (4.4)

dy
dt
+Ωc(x− xg)−ωcz cosΩt= 0. (4.5)

We move from the laboratory frame (x, y) to a rotating frame (X, Y) through the
transformation

(x− xg)+ j(y− yg)= (X + jY) exp jΩt, (4.6)
and we get the following set of relations describing the dynamics in this rotating
frame

dX
dt
− (Ω +Ωc)Y = 0, (4.7)

dY
dt
+ (Ω +Ωc)X −ωcz = 0, (4.8)

d2z
dt2
+ΩωcX +ωc

dY
dt
= 0. (4.9)
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FIGURE 3. Stability regions, D2 > 0, F > 0, in the u=Ω/Ωc and v = ωc/Ωc plane, for
ion orbits in a surface Alfvén standing wave, the contour lines are labelled with the value
of D2(u, v).

A normal mode analysis can be performed as these equations are linear and
the coefficients are constant. Thus, we define the amplitudes (X0, Y0, z0) of the
multi-periodic motion,

[X(t), Y(t), z(t)] = (X0, Y0, z0) exp jωt. (4.10)

Introducing the control parameters (u, v) and the normalised eigenfrequency w=ω/Ωc,
the characteristic equation, resulting from the nullity of the characteristic determinant,
displays the simple form

w4 − ((1+ u)2 + v2)w2 + uv2(1+ u)= 0. (4.11)

For stability, the discriminant D2(u, v) of the associated algebraic second-order
equation with unknown w2 must be positive and the two real roots must be positive
and different. Two numbers are strictly positive if and only if their sum and product
are strictly positive, so the stability condition, ω = wΩc real, in the (u, v) plane
reduces to

D2(u, v) = (1+ u)4 + 2(1− u2)v2 + v4 > 0, (4.12)
F(u) = u(1+ u) > 0. (4.13)

The shaded regions in figure 3 are associated with unstable orbits and the contour
lines indicate the value of D2(u, v) which is proportional to the square of the growth
rate of the exponential instability of the unconfined orbits.
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5. Orbital stability with dephased orthogonal coils
Let us consider two solenoidal coils whose axes are oriented along x and y, in the

vicinity of the origin x= y= z= 0, the superposition of their vector potentials is given
by Ac. The dynamics of an ion on a Cartesian set of axis, where z is oriented along
the static magnetic field B0, is given by the solutions of

d2x
dt2
=Ωc

dy
dt
−ωc

dz
dt

sinΩt− Ωωc

2
z cosΩt, (5.1)

d2y
dt2
=−Ωc

dx
dt
+ωc

dz
dt

cosΩt− Ωωc

2
z sinΩt, (5.2)

d2z
dt2
=ωc

(
dx
dt

sinΩt− dy
dt

cosΩt
)
+ Ωωc

2
(y sinΩt+ x cosΩt). (5.3)

Then we move from the laboratory frame (x, y) to a rotating frame (X, Y) through
the transformation

x+ jy= (X + jY) exp jΩt, (5.4)

in order to obtain the following set of equations

d2X
dt2
−Ω(Ω +Ωc)X − (2Ω +Ωc)

dY
dt
+ Ωωc

2
z= 0, (5.5)

d2Y
dt2
−Ω(Ω +Ωc)Y + (2Ω +Ωc)

dX
dt
−ωc

dz
dt
= 0, (5.6)

d2z
dt2
+ Ωωc

2
X +ωc

dY
dt
= 0. (5.7)

The Ω2 factors are associated with the centrifugal force and the 2Ω terms with the
Coriolis one. A classical normal mode analysis, with the amplitudes (X0, Y0, z0) and
the eigenfrequency ω=wΩc,

[X(t), Y(t), z(t)] = (X0, Y0, z0) exp jωt, (5.8)

leads to the characteristic equation for the normalised eigenfrequency w=ω/Ωc

w6 − ((1+ u)2 + u2 + v2)w4 + u2

(
(1+ u)2 + 3v2

4

)
w2 − 1+ u

4
u3v2 = 0. (5.9)

For stability, both the discriminant D3(u, v) of the associated algebraic third-order
equation with unknown w2 and the three real roots must be positive. Three real
numbers are strictly positive if, and only if, their sum, product and sum of double
products are strictly positive, this reduces the stability condition, ω real, to the
relations:

D3(u, v) = u3
[
2u7v2 + 4u7 + 12u6v2 + 20u6 + u5v4/16+ 57u5v2/2

+ 41u5 + 5u4v4/8+ 71u4v2/2+ 44u4 − 9u3v6/16
− 21u3v4/16+ 21u3v2 + 26u3 − 27u2v6/8
− 79u2v4/8+ 3u2v2/2+ 8u2 − 7uv8/16
− 51uv6/8− 167uv4/16− 7uv2/2+ u
− v8 − 3v6 − 3v4 − v2

]
> 0 (5.10)

F(u) = u(1+ u) > 0 (5.11)
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FIGURE 4. Stability regions, D3 > 0, F > 0, in the u=Ω/Ωc and v = ωc/Ωc plane, for
ion orbits in a rotating field generated by dephased orthogonal coils.

The shaded regions displayed in figure 4 are associated with unstable orbits in the
(u = Ω/Ωc, v = ωc/Ωc) plane, the ion orbits remain confined and periodic outside
these regions.

6. Orbital stability with squirrel cage axial currents
In the previous configuration, we have considered surface currents on two cylinders

with axes perpendicular to the z axis. Here, we consider axial surface currents on a
cylinder whose axis is along the z axis. These squirrel cage axial currents are along
z and distributed according to the relation cos(θ − Ωt) so that the resulting vector
potential is given by As. The dynamics of an ion is described by

d2x
dt2
=Ωc

dy
dt
−ωc

dz
dt

sinΩt, (6.1)

d2y
dt2
=−Ωc

dx
dt
+ωc

dz
dt

cosΩt, (6.2)

d2z
dt2
=ωc

(
dx
dt

sinΩt− dy
dt

cosΩt
)
+Ωωc(y sinΩt+ x cosΩt). (6.3)

Moving from the laboratory frame (x, y) to a rotating frame (X, Y),

x+ jy= (X + jY) exp jΩt, (6.4)

we end up with the set of equations

d2X
dt2
−Ω(Ω +Ωc)X − (2Ω +Ωc)

dY
dt
= 0, (6.5)
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d2Y
dt2
−Ω(Ω +Ωc)Y + (2Ω +Ωc)

dX
dt
−ωc

dz
dt
= 0, (6.6)

d
dt

(
dz
dt
+ωcY

)
= 0. (6.7)

The Ω2 factors are associated with the centrifugal force and the 2Ω terms with the
Coriolis one. Introducing Yg, a constant of integration, a normal mode analysis with
the eigenvectors (X0, Y0, z0),

[X(t), Y(t)− Yg, z(t)] = (X0, Y0, z0) exp jωt, (6.8)

leads to the characteristic equation for the normalised eigenfrequency w=ω/Ωc,

w4 − ((1+ u)2 + u2 + v2)w2 + u(1+ u)(u+ u2 − v2)= 0. (6.9)

For stability, both the discriminant of the associated algebraic second-order equation
with unknown w2 and the two real roots must be positive. This discriminant is given
by (1+ 2u)2(1+ 2v2)+ v4 and is obviously always positive, so the stability condition
(two numbers are strictly positive if, and only if, their sum and product are strictly
positive) reduces to HF > 0, where H = 0 is an hyperbola and F = 0 is a set of two
vertical lines

H(u, v) = (u+ 1
2

)2 − v2 − 1
4 , (6.10)

F(u) = u(1+ u). (6.11)

The eigenfrequencies ω of the periodic stables orbits (HF> 0) and of the growth rate
γ of the unstable escaping orbits (HF < 0, shaded regions in figure 5), are given by
the expressions:

√
2ω=±

√
Ω2 + (Ωc +Ω)2 +ω2

c ±
√
(Ωc + 2Ω)2(Ω2

c + 2ω2
c)+ω4

c , (6.12)

√
2γ =±

√
Ω2 + (Ωc +Ω)2 +ω2

c −
√
(Ωc + 2Ω)2(Ω2

c + 2ω2
c)+ω4

c . (6.13)

In figure 5 the contour lines indicate the value of HF which is proportional, for the
escaping orbits, to the growth rate of the exponential instability.

7. Principles of isotope separation with a rotating magnetic field
On the basis of figures 3, 4 and 5, we reach the important conclusion that the

stability diagram of ion orbits in the (u =Ω/Ω , v = ωc/Ωc) plane is very sensitive
to the currents driving the fields for the very same magnetic field configuration
ωc cos Ωt ex + ωc sin Ωt ey + Ωc ez. This sensitivity is due to the fact that, even
if a superposition principle can be established in the rotating frame, the determinant
of the sum of two matrices is different from the sum of their determinants, so
the characteristic equation is expected to be very different for every new linear
combination of the three basic potentials As, Aa and Ac, despite an interaction with
the same rotating magnetic field.

This sensitivity to the electric part of the field offers opportunities to design
dedicated configurations, but here, rather than addressing this optimisation issue, we
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FIGURE 5. Stability regions, HF> 0, in the u=Ω/Ωc and v=ωc/Ωc plane, for ion orbits
in a rotating field generated by squirrel cage axial currents; the contour lines are labelled
with the value of HF.

will focus the study on the most simple diagram associated with squirrel cage currents
along z, analysed and described in § 6.

The case As has been investigated within the context of thermonuclear confinement
and current generation but not for mass separation. In these studies, other normalised
control parameters have been defined, different from (u, v), and the emphasis was put
on confined orbits. Here, for the purpose of studying the potential for mass separation,
the choice of u and v is not only new, but particularly appropriate because v is a
structural parameter of the separator independent of the ion mass,

v = ωc

Ωc
= b

B0
, (7.1)

and u is a linear function of the mass. If we define the reference mass m∗ of the
separator, m∗ = qB0/Ω , then:

u= Ω

Ωc
= m

m∗
. (7.2)

The (u, v) plane can thus be viewed as an (m, b) plane. It is straightforward to
understand that the various masses m of an ion mixture, with lower and upper bounds
m1 <m2, will be distributed along a horizontal segment v = b/B0 in between

m1

m∗
< u<

m2

m∗
. (7.3)

On the basis of this picture, illustrated in figure 6, the squirrel cage currents
configuration As offers two different strategies for mass separation: (i) we can
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(a) (b)

FIGURE 6. Principles of rotating fields mass separation for a mass spectrum m1<m<m2:
(a) the light part is confined and the heavy one expelled or (b) the heavy part of the
spectrum is confined and the light one expelled.

confine the heavy part of the mass spectrum and expel the light one (figure 6b) or
(ii) confine the light part and expel the heavy one (figure 6a). These two choices
are associated with the fact that we have two choices for rotation ±Ωez for a given
static field B0ez, or two choices for the static field ±B0ez for a given angular velocity
Ωez. For the case (b), in order to understand the separation process, the reference m∗
is to be supplemented by

m∗∗(b)=m∗
(√

1
4
+ b2

B2
− 1

2

)
, (7.4)

as the curved boundary of the instability zone is given by the relation m=m∗∗(b). This
principle of mass and isotope separation is the same for all the stability boundaries
of figures 3–5 identified during the studies of the three basic cases As, Aa and Ac.

8. Conclusions
Despite these original promising conclusions, innovative mass separation with a

rotating magnetic field remains an open problem of plasma physics and further studies
are clearly needed.

This study was not intended to converge towards the final design of a mass separator
for burned nuclear fuel management, but was aimed at advocating rotating plasma
devices as promising candidates for closing the nuclear fuel cycle in next generation
nuclear power plants (Fetterman & Fisch 2011b; Timofeev 2014). In addition to a
short review of existing concepts and results given in section two, new classes of field
configurations and plasma processes for this strategic purpose were uncovered in this
paper, and a rotating plasma driven by a rotating magnetic field was identified as a
new candidate to solve the unsolved problem of plasma mass separation.

We showed that for a given rotating magnetic field b(t) there is an infinite number
of associated inductive electric fields or vector potentials which cannot be reduced to
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a smaller set through a gauge transformation. These vector potentials can be obtained
through any linear combination of: As and Aa, or As and Ac, or Ac and Aa. An analysis
of the orbital stability diagram for each of these basic fields was carried out, each of
them presenting drawbacks and advantages with respect to the others. In light of this
stability analysis, the general principles of mass separation using a rotating magnetic
field were introduced using the field configuration As as an illustration.

The Alfvén standing wave field Aa seems to be a very promising candidate for mass
separation since it is a normal mode of the plasma and does not suffer from plasma
screening. However, this result is weakened by the fact that Aa is restricted to the
vicinity of an electric node of the standing wave.

Although the two orthogonal dephased coils field Ac is probably the most widely
used field configuration in synchronous and asynchronous rotating electric devices, the
stability diagram associated with this configuration displays less opportunities for mass
separation than the other two basic fields. Furthermore, the field penetration problem
remains to be addressed in this configuration.

Finally, the squirrel cage axial currents configuration As exhibits the simplest
stability diagram. Although screening effects are expected to disturb the stability
diagram in this configuration, preliminary analysis seems to indicate that these effects
could be overcome for typical processing plasma densities and dimensions. In addition,
the nonlinearity brought by screening effects could, in some cases, be advantageous
to design advanced separation schemes.

Further to these open questions, yet another challenge in the way of developing
large-scale plasma separation lies in the extraction of ions after they have been
separated. This question has been considered for other rotating plasma separators, but
not answered in a fully satisfactory manner to date.

To conclude, we identified, described and analysed the principles, main advantages
and drawbacks of a new kind of rotating plasma separator based on a rotating
magnetic field. This new concept is free of the Doppler shift broadening which
hinders classical ion cyclotron isotope separation methods (Dawson et al. 1976;
Dolgolenko & Muromkin 2009). Preliminary estimates suggest that rotating plasma
separators could both satisfy the throughput requirement and be energetically attractive
for spent fuel reprocessing applications. This novel approach could be extremely
valuable for advanced closed nuclear fuel cycles. However, several challenges such
as optimisation, screening and extraction remain to be addressed in order to design
an industrial isotope and mass separator.
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