

Alexandroff Manifolds and Homogeneous Continua

A. Karassev, V. Todorov, and V. Valov

Abstract. We prove the following result announced by the second and third authors: Any homogeneous, metric ANR-continuum is a V_G^n -continuum provided dim_G $X = n \ge 1$ and $\check{H}^n(X;G) \ne 0$, where G is a principal ideal domain. This implies that any homogeneous *n*-dimensional metric ANR-continuum is a V^n -continuum in the sense of Alexandroff. We also prove that any finite-dimensional cyclic in dimension *n* homogeneous metric continuum *X*, satisfying $\check{H}^n(X;G) \ne 0$ for some group G and $n \ge 1$, cannot be separated by a compactum K with $\check{H}^{n-1}(K;G) = 0$ and dim_G $K \le n - 1$. This provides a partial answer to a question of Kallipoliti–Papasoglu as to whether a two-dimensional homogeneous Peano continuum can be separated by arcs.

1 Introduction

Cantor manifolds and stronger versions of Cantor manifolds were introduced to describe some properties of Euclidean manifolds. According to the Bing-Borsuk conjecture [2] that any homogeneous metric ANR-compactum of dimension n is an nmanifold, finite-dimensional homogeneous metric ANR-continua are supposed to share some properties with Euclidean manifolds. One of the first results in that direction established by Krupski [14] is that any homogeneous metric continuum of dimension *n* is a Cantor *n*-manifold. Recall that a space *X* is a *Cantor n-manifold* if any partition of X is of dimension at least n-1 [19] (a partition of X is a closed set $P \subset X$ such that $X \setminus P$ is the union of two open disjoint sets). In other words, X cannot be the union of two proper closed sets whose intersection is of covering dimension at most n - 2. Stronger versions of Cantor manifolds were considered by Hadžiivanov [9] and Hadžiivanov and Todorov [10]. But the strongest specification of Cantor manifolds is the notion of V^n -continua introduced by Alexandroff [1]: a compactum X is a V^n -continuum if for every two closed disjoint massive subsets X_0 , X_1 of X there exists an open cover ω of X such that there is no partition P in X between X_0 and X_1 admitting an ω -map into a space Y with dim $Y \leq n - 2$ ($f: P \rightarrow Y$ is said to be an ω -map if there exists an open cover γ of Y such that $f^{-1}(\gamma)$ refines ω). Recall that a massive subset of *X* is a set with non-empty interior in *X*.

More general concepts of the above notions were considered in [12]. In particular, we are going to use the following one, where C is a class of topological spaces.

Received by the editors August 27, 2012; revised March 18, 2013.

Published electronically May 26, 2013.

The first author was partially supported by NSERC Grant 257231-09. The third author was partially supported by NSERC Grant 261914-08.

AMS subject classification: 54F45, 54F15.

Keywords: Cantor manifold, cohomological dimension, cohomology groups, homogeneous compactum, separator, V^n -continuum.

Definition 1.1 A space X is an Alexandroff manifold with respect to \mathcal{C} (briefly, Alexandroff \mathcal{C} -manifold) if for every two closed, disjoint, massive subsets X_0 , X_1 of X there exists an open cover ω of X such that there is no partition P in X between X_0 and X_1 admitting an ω -map onto a space $Y \in \mathcal{C}$.

In this paper we continue investigating to what extent homogeneous continua have common properties with Euclidean manifolds. One of the main questions in this direction is whether any homogeneous *n*-dimensional metric *ANR*-compactum X is a V^n -continuum; see [18]. A partial answer to this question, when the Čech cohomology group $\check{H}^n(X)$ is non-trivial, was announced in [18]. One of the aims of the paper is to provide the proof of this fact; see Section 3. Our proof is based on the properties of (n, G)-bubbles and V_G^n -continua investigated in Section 2. We also provide a partial answer to a question of Kallipoliti–Papasoglu [11].

2 (n, G)-bubbles and V_G^n -continua

In this section we investigate the connection between (n, G)-bubbles and V_G^n -continua.

For every abelian group *G* let $\dim_G X$ be the cohomological dimension of *X* with respect to *G*, and let $\check{H}^n(X; G)$ denote the reduced *n*-th Čech cohomology group of *X* with coefficients in *G*.

Reformulating the original definition of Kuperberg [15], Yokoi [20] provided the following definition (see also [3] and [13]).

Definition 2.1 If G is an abelian group and $n \ge 0$, a compactum X is called an (n, G)-bubble if $\check{H}^n(X; G) \ne 0$ and $\check{H}^n(A; G) = 0$ for every proper closed subset A of X. Following [17] we say that a compactum X is a generalized (n, G)-bubble provided there exists a surjective map $f: X \rightarrow Y$ such that the homomorphism $f^*: \check{H}^n(Y; G) \rightarrow \check{H}^n(X; G)$ is nontrivial, but $f_A^*(\check{H}^n(Y; G)) = 0$ for any proper closed subset A of X, where f_A is the restriction of f over A.

We also need the following notion.

Definition 2.2 A compactum X is said to be a V_G^n -continuum [16] if for every two closed, disjoint, massive subsets X_0 , X_1 of X there exists an open cover ω of X such that any partition P in X between X_0 and X_1 does not admit an ω -map g onto a space Y with $g^* : \check{H}^{n-1}(Y; G) \to \check{H}^{n-1}(P; G)$ being trivial.

Since $\check{H}^{n-1}(Y;G) = 0$ for any compactum Y with $\dim_G Y \leq n-2$, V_G^n -continua are Alexandroff manifolds with respect to the class D_G^{n-2} of all spaces of dimension $\dim_G \leq n-2$. Moreover, if $X \in V_G^n$, then for every partition C of X we have $\check{H}^{n-1}(C;G) \neq 0$. The last observation implies that $\dim_G X \geq n$ provided X is a metric V_G^n -compactum such that either $X \in ANR$ or $\dim X < \infty$ and G is countable. Indeed, if $\dim_G X \leq n-1$, then each $x \in X$ has a local base of open sets U whose boundaries are of dimension $\dim_G \leq n-2$; see [6]. Hence, any such a boundary Γ is a partition of X with $\check{H}^{n-1}(\Gamma;G) = 0$.

The following theorem was established in [16, Theorem 3] for finite-dimensional metric (n, G)-bubbles. Let us note that, according to [20], the examples of Dranish-nikov [4] and Dydak–Walsh [7] show the existence of an infinite-dimensional (n, \mathbb{Z}) -bubble with $n \ge 5$.

Theorem 2.3 Any generalized (n, G)-bubble X is a V_G^n -continuum.

Proof Let $f: X \to Y$ be a map such that $f^*(\check{H}^n(Y;G)) \neq 0$ and $f^*_A(\check{H}^n(Y;G)) = 0$ for any proper closed set $A \subset X$. If ω is a finite open cover of a closed set $Z \subset X$, we denote by $|\omega|$ and p_{ω} , respectively, the nerve of ω and a map from Z onto $|\omega|$ generated by a partition of unity subordinated to ω . Furthermore, if $C \subset Z$ and $\omega(C) = \{W \in \omega : W \cap C \neq \emptyset\}$, then $p_{\omega(C)}: C \to |\omega(C)|$ is the restriction $p_{\omega}|C$. Recall also that p_{ω} generates maps $p^*_{\omega}: \check{H}^k(|\omega|;G) \to \check{H}^k(Z;G), k \geq 0$. Moreover, if $q_{\omega}: Z \to |\omega|$ is a map generating by (another) partition of unity subordinated to $|\omega|$, then p_{ω} and q_{ω} are homotopic. So, $p^*_{\omega} = q^*_{\omega}$.

Claim 1 For every pair of non-empty open sets U_1 and U_2 in X with $\overline{U}_1 \cap \overline{U}_2 = \emptyset$ there exist an open cover ω of $X \setminus (U_1 \cup U_2)$, a map $p_\omega \colon X \setminus (U_1 \cup U_2) \to |\omega|$ and an element $e \in \check{H}^{n-1}(|\omega|; G)$ such that $p^*_{\omega(C)}(i^*_C(e)) \neq 0$ for every partition C of Xbetween \overline{U}_1 and \overline{U}_2 , where i_C is the inclusion $|\omega(C)| \hookrightarrow |\omega|$.

Proof of Claim 1 To prove this claim we follow the arguments from the proof of [17, Theorem]. Let U_1 and U_2 be non-empty open subsets of X with disjoint closures, and $i_k: F_k \hookrightarrow X$ be the inclusion of $F_k = X \setminus U_k$ into X, k = 1, 2. Consider the Mayer-Vietoris exact sequence

$$\check{H}^{n-1}(F_1 \cap F_2; G) \xrightarrow{\delta} \check{H}^n(X; G) \xrightarrow{j} \check{H}^n(F_1; G) \oplus \check{H}^n(F_2; G)$$

with $j = (i_1^*, i_2^*)$, and choose a non-zero element $e_1 \in f^*(\dot{H}^n(Y; G)) \subset \dot{H}^n(X; G)$. For each k = 1, 2 we have the commutative diagram, where δ_k is the inclusion of $f(F_k)$ into Y:

So $i_k^*(e_1) = 0$, k = 1, 2, which yields $e_1 = \delta(e_2)$ for some non-zero element $e_2 \in \check{H}^{n-1}(F_1 \cap F_2; G)$. Then there exist an open cover ω of $F_1 \cap F_2 = X \setminus (U_1 \cup U_2)$, a map $p_\omega: F_1 \cap F_2 \to |\omega|$, and $e \in \check{H}^{n-1}(|\omega|; G)$ with $p_\omega^*(e) = e_2$.

Let *C* be a partition of *X* between \overline{U}_1 and \overline{U}_2 . So $X = P_1 \cup P_2$ and $C = P_1 \cap P_2$, where each P_k is a closed subset of *X* containing \overline{U}_k , k = 1, 2. Denote by $i: C \hookrightarrow$ $F_1 \cap F_2$, $in_1: P_1 \hookrightarrow F_2$ and $in_2: P_2 \hookrightarrow F_1$ the corresponding inclusions. Then we have the following commutative diagram, whose rows are Mayer-Vietoris sequences:

$$\begin{split} \check{H}^{n-1}(F_1 \cap F_2; G) & \stackrel{\delta}{\longrightarrow} \check{H}^n(X; G) & \stackrel{j}{\longrightarrow} \check{H}^n(F_2; G) \oplus \check{H}^n(F_1; G) \\ & \downarrow^{i*} & \downarrow^{id} & \downarrow^{in_1^* \oplus in_2^*} \\ \check{H}^{n-1}(C; G) & \stackrel{\delta_1}{\longrightarrow} \check{H}^n(X; G) & \stackrel{j_1}{\longrightarrow} \check{H}^n(P_1; G) \oplus \check{H}^n(P_2; G). \end{split}$$

Obviously,

(2.1)
$$\delta_1(i^*(\mathbf{e}_2)) = \mathrm{id}(\delta(\mathbf{e}_2)) = \mathbf{e}_1 \neq \mathbf{0}.$$

On the other hand, the commutativity of the diagram

$$\check{H}^{n-1}(|\omega|;G) \xrightarrow{p_{\omega}^{*}} \check{H}^{n-1}(F_{1} \cap F_{2};G)$$

$$\downarrow^{i_{C}^{*}} \qquad \downarrow^{i^{*}}$$

$$\check{H}^{n-1}(|\omega(C)|;G) \xrightarrow{p_{\omega(C)}^{*}} \check{H}^{n-1}(C;G)$$

implies that $p_{\omega(C)}^*(i_C^*(e)) = i^*(p_{\omega}^*(e)) = i^*(e_2)$. Therefore, according to (2.1), $p_{\omega(C)}^*(i_C^*(e)) \neq 0$. This completes the proof of Claim 1.

Now, we can show that $X \in V_G^n$. Let U_1 and U_2 be non-empty open subsets of X with disjoint closures. Then there exists a finite open cover ω of $X \setminus (U_1 \cup U_2)$, a map $p_\omega \colon X \setminus (U_1 \cap U_2) \to |\omega|$ and an element $e \in \check{H}^{n-1}(|\omega|; G)$ satisfying the conditions from Claim 1. For each $W \in \omega$ let h(W) be an open subset of X extending W. So, $\gamma = \{h(W) : W \in \omega\} \cup \{U_1, U_2\}$ is a finite open cover of X whose restriction on $X \setminus (U_1 \cup U_2)$ is ω .

Suppose there exists a partition *C* of *X* between \overline{U}_1 and \overline{U}_2 admitting a γ -map *g* onto a space *T* with $g^*(\check{H}^{n-1}(T;G)) = 0$. Thus, we can find a finite open cover α of *T* such that $\beta = g^{-1}(\alpha)$ refines ω . Let $p_\beta: C \to |\beta|$ be a map onto the nerve of β generated by a partition of unity subordinated to β . Obviously, the function $V \in \alpha \to g^{-1}(V) \in \beta$ generates a a simplicial homeomorphism $g_{\beta}^{\alpha}: |\alpha| \to |\beta|$. Then the maps p_β and $g_\alpha = g_\beta^{\alpha} \circ \pi_\alpha \circ g$, where $\pi_\alpha: T \to |\alpha|$ is a map generated by a partition of unity subordinated to $|\alpha|$, are homotopic. Hence, $p_\beta^* = g^* \circ \pi_\alpha^* \circ (g_\beta^{\alpha})^*$. Because $g^*: \check{H}^{n-1}(T;G) \to \check{H}^{n-1}(C;G)$ is a trivial map, the last equality implies that so is the map $p_\beta^*: \check{H}^{n-1}(|\beta|;G) \to \check{H}^{n-1}(C;G)$. On the other hand, since β refines ω , we can find a map $\varphi_\beta: |\beta| \to |\omega(C)|$ such that $p_{\omega(C)}$ and $\varphi_\beta \circ p_\beta$ are homotopic. Therefore, $p_{\omega(C)}^* = p_\beta^* \circ \varphi_\beta^*$. According to Claim 1, $p_{\omega(C)}^*(e_C) \neq 0$, where e_C is the element $i_C^*(e) \in \check{H}^{n-1}(|\omega(C)|;G)$. So, $p_\beta^*(\varphi_\beta^*(e_C)) \neq 0$, which contradicts the triviality of p_β^* .

We can extend the definition of V_G^n -continua as follows.

Definition 2.4 A compactum X is said to be a V_G^n -continuum with respect to a given class \mathcal{A} if for every two closed, disjoint, massive subsets X_0 , X_1 of X there exists an open cover ω of X such that any partition P in X between X_0 and X_1 does not admit an ω -map g onto a space $Y \in \mathcal{A}$ with $g^* \colon \check{H}^{n-1}(Y; G) \to \check{H}^{n-1}(P; G)$ being trivial.

Recall that a metric space *X* is *strongly n-universal* if any map $g: K \to X$, where *K* is a metric compactum of dimension dim $K \le n$, can be approximated by embeddings.

Theorem 2.5 Let X be a metric compactum containing a strongly n-universal dense subspace M such that M is an absolute extensor for n-dimensional compacta with $n \ge 1$. Then X is a V_G^n -continuum with respect to the class D_G^{n-1} of all spaces of dimension $\dim_G \le n-1$. In particular, X is an Alexandroff manifold with respect to the class D_G^{n-2} .

Proof Suppose that X is not a V_G^n -continuum with respect to the class D_G^{n-1} . So we can find open sets U and V in X with disjoint closures such that for every $\epsilon > 0$ there exists a partition C_{ϵ} between \overline{U} and \overline{V} admitting an ϵ -map g_{ϵ} onto a space $Y_{\epsilon} \in D_G^{n-1}$ such that $g_{\epsilon}^* : \check{H}^{n-1}(Y_{\epsilon}; G) \to \check{H}^{n-1}(C_{\epsilon}; G)$ is trivial.

Consider two different points a, b from the *n*-sphere \mathbb{S}^n and a map $f: \mathbb{S}^n \to M$ with $f(a) \in U \cap M$ and $f(b) \in V \cap M$ (such a map exists because M is an absolute extensor for *n*-dimensional compacta). Since M is strongly *n*-universal, we can approximate f by a homeomorphism $h: \mathbb{S}^n \to M$ such that $h(a) \in U$ and $h(b) \in V$. Therefore, $K_{\epsilon} = C_{\epsilon} \cap h(\mathbb{S}^n)$ is a partition of $h(\mathbb{S}^n)$ between $h(\mathbb{S}^n) \cap \overline{U}$ and $h(\mathbb{S}^n) \cap \overline{V}$. Then $Z = g_{\epsilon}(K_{\epsilon})$ is a closed subset of Y_{ϵ} , and since dim_G $Y_{\epsilon} \leq n - 1$, $i_Z^*: \check{H}^{n-1}(Y_{\epsilon}; G) \to \check{H}^{n-1}(Z; G)$ is a surjective map, where $i_Z: Z \hookrightarrow Y_{\epsilon}$ is the inclusion. So, we have the following commutative diagram with $g_{K_{\epsilon}} = g|K_{\epsilon}$ and $i_{K_{\epsilon}}: K_{\epsilon} \hookrightarrow C_{\epsilon}$:

Because g_{ϵ}^* is trivial and i_Z^* is surjective, $g_{K_{\epsilon}}^*$ is also trivial. Hence, for every $\epsilon > 0$ there exists a partition K_{ϵ} between $h(\mathbb{S}^n) \cap \overline{U}$ and $h(\mathbb{S}^n) \cap \overline{V}$ admitting an ϵ -map $g_{K_{\epsilon}}$ onto a space Z such that $g_{K_{\epsilon}}^*$: $\check{H}^{n-1}(Z;G) \to \check{H}^{n-1}(K_{\epsilon};G)$ is trivial. This means that \mathbb{S}^n is not a V_G^n -continuum. On the other hand, \mathbb{S}^n is an (n, G)-bubble for all G. So by Theorem 2.3, \mathbb{S}^n is a V_G^n -continuum, a contradiction.

Corollary 2.6 Let X be either the universal Menger compactum μ^n or X be a metric compactification of the universal Nöbeling space ν^n . Then X is a V_G^n -continuum with respect to the class D_G^{n-1} for any G. Moreover, μ^n is not a V_G^n -continuum.

Proof Since both μ^n and ν^n are strongly *n*-universal absolute extensors for *n*-dimensional compacta, it follows from Theorem 2.5 that *X* is a V_G^n -continuum with respect

to the class D_G^{n-1} . To show that μ^n is not a V_G^n -continuum, it suffices to find a partition E of μ^n with trivial $\check{H}^{n-1}(E; G)$. One can show the existence of such partitions using the geometric construction of the Menger compactum. We provide a proof of this fact using Dranishnikov's results from [5]. Indeed, by [5, Theorem 2], there exists a map $g: \mu^n \to \mathbb{I}^\infty$ such that $g^{-1}(P)$ is homeomorphic to μ^n for any *AR*-space $P \subset \mathbb{I}^\infty$. If $P \in AR$ is a partition of \mathbb{I}^∞ , then $g^{-1}(P)$ is a partition of μ^n homeomorphic to μ^n . Hence, $\check{H}^{n-1}(g^{-1}(P); G) = 0$.

3 Homogeneous Continua

In this section we prove that some homogeneous continua are V_G^n -continua. Recall that a space X is said to be *homogeneous* if for every two points $x, y \in X$ there exists a homeomorphism $h: X \to X$ with h(x) = y. Krupski has conjectured that any *n*-dimensional, homogeneous metric *ANR*-continuum is a V^n -continuum.¹ The next result provides a partial solution to Krupski's conjecture and a partial answer to [18, Question 2.4].

Theorem 3.1 Let X be a homogeneous, metric ANR-continuum such that $\dim_G X = n \ge 1$ and $\check{H}^n(X; G) \ne 0$, where G is a principal ideal domain. Then X is a V_G^n -continuum.

Proof According to [20, Theorem 3.3], any space *X* satisfying the conditions from this theorem is an (n, G)-bubble. Hence, by Theorem 2.3, $X \in V_G^n$.

Bing and Borsuk [2] raised the question whether no compact acyclic in dimension n-1 subset of X separates X, where X is a metric *n*-dimensional homogeneous ANR-continuum. Yokoi [20, Corollary 3.4] provided a partial positive answer to this question in the case where X is a homogeneous metric *n*-dimensional ANR-continuum such that $\check{H}^n(X;\mathbb{Z}) \neq 0$. The next proposition is a version of Yokoi's result when X is not necessarily an ANR.

Proposition 3.2 Let X be a finite-dimensional homogeneous metric continuum with $\check{H}^n(X;G) \neq 0$. Then $\check{H}^{n-1}(C;G) \neq 0$ for any partition C of X such that $\dim_G C \leq n-1$.

Proof Suppose there exists a partition *C* of *X* such that

$$\dot{H}^{n-1}(C;G) = 0$$
 and $\dim_G C \le n-1$.

The last inequality implies that the inclusion homomorphism

$$\check{H}^{n-1}(C;G) \to \check{H}^{n-1}(A;G)$$

is an epimorphism for every closed set $A \subset C$. So, $\check{H}^{n-1}(A; G) = 0$ for all closed subsets of *C*. Therefore, we may assume that *C* does not have any interior points. Since $\check{H}^n(X; G) \neq 0$, according to [16, Theorem 2], there exists a compact subset

¹Private communication, 2007.

 $K \subset X$ with $K \in V_G^n$. Since X is homogeneous, we may also assume that $K \cap C \neq \emptyset$. Observe that $z \in K \setminus C$ for some z. Indeed, the inclusion $K \subset C$ would imply that $\check{H}^{n-1}(P; G) = 0$ for every partition P of K. Let $X \setminus C = U \cup V$ and $z \in V$, where U and V are nonempty, open ,and disjoint sets in X. Then the Effros theorem [8] allows us to push K towards U by a small homeomorphism $h: X \to X$ so that the image h(K)meets both U and V (see the proof of [14, Lemma 2] for a similar application of Effros' theorem). To do this, we let ϵ be the distance from z to the boundary of V and choose δ so that the pair (ϵ, δ) satisfies the Effros property. Further, we pick points $x \in K$ and $y \in U$ such that dist $(x, y) < \delta$ and choose a homeomorphism h such that h(x) = h(y) and h is ϵ -close to the identity. Therefore, $S = h(K) \cap C$ is a partition of h(K) and $\check{H}^{n-1}(S; G) = 0$, because $S \subset C$, a contradiction.

Proposition 3.2 provides a partial answer to Kallipoliti–Papasoglu's question [11] as to whether homogeneous, two-dimensional, metric, locally connected continua can be separated by arcs.

Corollary 3.3 No finite-dimensional, metric, homogeneous continuum X having $\check{H}^2(X;G) \neq 0$ can be separated by any one-dimensional compactum C with $\check{H}^1(C;G) = 0$.

4 Some Remarks and Problems

The class of (n, G)-bubbles is stable in the sense of the following proposition.

Proposition 4.1 Let X be a metric compactum admitting an ϵ -map onto an (n, G)-bubble for any $\epsilon > 0$. Then X is also an (n, G)-bubble.

Proof First, let us show that $\check{H}^n(X; G) \neq 0$. Take any open cover ω of X and let ϵ be the Lebesgue number of ω . There exists a surjective ϵ -map $f: X \to Y_{\epsilon}$ with Y_{ϵ} being an (n, G)-bubble. Since $\check{H}^n(Y_{\epsilon}; G) \neq 0$, we can find an open cover α of Y_{ϵ} such that $\check{H}^n(|\alpha|; G) \neq 0$ (we use the notations from the proof of Theorem 2.3). The $\beta = f^{-1}(\alpha)$ is an open cover of X refining ω such that $|\beta|$ is homeomorphic to $|\alpha|$. So, $\check{H}^n(|\beta|; G) \neq 0$, which implies that $\check{H}^n(X; G) \neq 0$.

Suppose now that *A* is a proper closed subset of *X* and γ is an open (in *A*) cover of *A*. Extend each $U \in \gamma$ to an open set V(U) in *X* and let $W = \bigcup \{V(U) : U \in \gamma\}$. We can suppose that $W \neq X$. Choose a surjective η -map $g : X \to Y_{\eta}$ such that Y_{η} is an (n, G)-bubble with η being a positive number smaller than both dist $(A, X \setminus W)$ and the Lebesgue number of γ . Then B = g(A) is a proper closed subset of Y_{η} such that $g^{-1}(B) \subset W$. There exists an open cover θ of *B* such that the family $\delta = \{g^{-1}(G) \cap A : G \in \theta\}$ is an open cover of *A* refining γ . Obviously, $|\delta|$ is homeomorphic to $|\theta|$. Since $\check{H}^n(B; G) = 0$, we have $\check{H}^n(|\theta|; G) = \check{H}^n(|\delta|; G) = 0$. Hence $\check{H}^n(A; G) = 0$, which completes the proof.

Now, we are going to discuss some problems. The main question suggested by the results of this paper is whether any of the conditions for X can be removed in Theorem 3.1. Since, according to Theorem 2.3, μ^n is not a V_G^n -continuum for any *G*, the condition X to be an *ANR* cannot be removed. So, we have the following question.

Problem 4.2 Let X be a homogeneous metric ANR-continuum X with $\dim_G X = n$, where G is any abelian group. Is X a V_G^n -continuum?

Since any V_G^n -continuum with respect to the class D_G^{n-1} is V^n , the next question is still interesting.

Problem 4.3 Let X be a homogeneous metric continuum X with $\dim_G X = n$. Is X a V_G^n -continuum with respect to the class D_G^{n-1} ? What if $\check{H}^n(X;G) \neq 0$?

Another question is whether finite-dimensionality can be removed from the result of Stefanov [16], which was applied above.

Problem 4.4 Let X be a metrizable compactum with $\check{H}^n(X; G) \neq 0$ for some group G and $n \geq 1$. Does X contain a V_G^n -continuum?

We can show that any finite simplicial complex is a generalized (n, G)-bubble if and only if it is an (n, G)-bubble. So, our last question is whether this remains true for all metric compacta.

Problem 4.5 Is there any metric compactum X that is a generalized (n, G)-bubble but not an (n, G)-bubble?

5 Added in Proof

Recently, Problem 4.3 has been solved in the positive in a forthcoming paper by the third author.

Acknowledgments The authors are grateful to the anonymous referees for valuable comments and corrections

References

- P. S. Alexandroff, Die Kontinua (V^P)-eine Verschärfung der Cantorschen Mannigfaltigkeiten. Monatsh. Math. 61(1957), 67–76. http://dx.doi.org/10.1007/BF01306919
- [2] R. H. Bing and K. Borsuk, Some remarks concerning topologically homogeneous spaces. Ann. of Math. 81(1965), 100–111. http://dx.doi.org/10.2307/1970385
- [3] J. S. Choi, Properties of n-bubbles in n-dimensional compacta and the existence of (n 1)-bubbles in n-dimensional clcⁿ compacta. Topology Proc. **23**(1998), Spring, 101–120.
- [4] A. N. Dranishnikov, On a problem of P. S. Aleksandrov. Mat. Sb. 135(1988), no. 4, 551–557, 560; translation in Math. USSR-Sb. 63(1989), no. 2, 539–545.
- [5] _____, Universal Menger compacta and universal mappings. (Russian) Mat. Sb. 129(1986), no. 1, 121–139, 160.
- [6] J. Dydak and A. Koyama, Cohomological dimension of locally connected compacta. Topology Appl. 113(2001), no. 1–3, 39–50. http://dx.doi.org/10.1016/S0166-8641(00)00018-3
- [7] J. Dydak and J. Wash, Infinite-dimensional compacta having cohomological dimension two: an application of the Sullivan conjecture. Topology 32(1993), no. 1, 93–104. http://dx.doi.org/10.1016/0040-9383(93)90040-3
- [8] E. G. Effros, *Transformation groups and C*-algebras*. Ann. of Math. 81(1965), 38–55. http://dx.doi.org/10.2307/1970381
- [9] N. Hadžiivanov, Strong Cantor manifolds. (Russian) C. R. Acad. Bulgare Sci. 30(1977), no. 9. 1247–1249.
- [10] N. Hadžiivanov and V. Todorov, On non-Euclidean manifolds. (Russian) C. R. Acad. Bulgare Sci. 33(1980), no. 4, 449–452.

Alexandroff Manifolds and Homogeneous Continua

- [11] M. Kallipoliti and P. Papasoglu, Simply connected homogeneous continua are not separated by arcs. Topology Appl. 154(2007), no. 17, 3039–3047. http://dx.doi.org/10.1016/j.topol.2007.06.016
- [12] A. Karassev, P. Krupski, V. Todorov, and V. Valov, *Generalized Cantor manifolds and homogeneity*. Houston J. Math. **38**(2012), no. 2, 583–609.
- U. Karimov and D. Repovš, On Hⁿ-bubles in n-dimensional compacta. Colloq. Math. 75(1998), no. 1, 39–51.
- P. Krupski, *Homogeneity and Cantor manifolds*. Proc. Amer. Math. Soc. 109(1990), no. 4, 1135–1142. http://dx.doi.org/10.1090/S0002-9939-1990-1009992-7
- [15] W. Kuperberg, On certain homological properties of finite-dimensional compacta. Carries, minimal carries and bubbles. Fund. Math. 83(1973), no. 1, 7–23.
- [16] S. T. Stefanov, A cohomological analogue of Vⁿ-continua and a theorem of Mazurkiewicz. (Russian) Serdica 12(1986), no. 1, 88–94.
- [17] V. Todorov, Irreducibly cyclic compacta and Cantor manifolds. Proc. of the Tenth Spring Conf. of the Union of Bulg. Math. (Sunny Beach, April 6-9, 1981).
- [18] V. Todorov and V. Valov, Generalized Cantor manifolds and indecomposable continua. Questions Answers Gen. Topology 30(2012), no. 2, 93–102.
- [19] P. Urysohn, Memoire sur les multiplicites cantoriennes. Fund. Math. 7(1925), 30-137.
- [20] K. Yokoi, Bubbly continua and homogeneity. Houston J. Math. 29(2003), no. 2, 337–343.

Department of Computer Science and Mathematics, Nipissing University, North Bay, ON, P1B 8L7 e-mail: alexandk@nipissingu.ca veskov@nipissingu.ca

Department of Mathematics, UACG, Sofia, Bulgaria e-mail: vtt-fte@uacg.bg