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1. Introduction. A ring R is called radical if it coincides with its Jacobson radical,
which means that R forms a group under the operation a ° b = a + b + ab for all a and b
in R. This group is called the adjoint group R° of R. The relation between the adjoint
group R° and the additive group R+ of a radical ring R is an interesting topic to study. It
has been shown in [1] that the finiteness conditions "minimax", "finite Prufer rank",
"finite abelian subgroup rank" and "finite torsionfree rank" carry over from the adjoint
group to the additive group of a radical ring. The converse is true for the minimax
condition, while it fails for all the other above finiteness conditions by an example due to
Sysak [6] (see also [2, Theorem 6.1.2]). However, we will show that the converse holds if
we restrict to the class of nil rings, i.e. the rings R such that for any a e R there exists an
n =n(a) with a" = 0.

Recall that a group G is called a minimax group if it has a series of finite length
whose factors satisfy the minimum or maximum condition on subgroups. The group G has
finite torsion-free rank if it has a finite series whose factors are either periodic or infinite
cyclic. The number of infinite cyclic factors in any such series is an invariant of G denoted
by ro(G). The group G has finite abelian subgroup rank if each abelian subgroup of G has
finite torsion-free rank and each abelian p -subgroup of G has finite Prufer rank for every
prime p. Here a group G is said to have finite Prufer rank r = r(G) if every finitely
generated subgroup of G can be generated by r elements, and r is the least positive
integer with this property. For the relation between these finiteness conditions see
Chapter 6.3 of [4].

THEOREM A. Let R be a nil ring. Then the following hold.
(a) If R+ has finite torsion-free rank n, then also ro(R°) = n.
(b) If R+ has finite abelian subgroup rank, then so does R°.
(c) IfR+ has finite Prufer rank, then so does R°, and r(R°) < 3 . r(R+). If R* contains

no elements of order 2 then even r(R°) <2 . r(R+).

The situation for the class of radical rings with a periodic additive group is similar, as
the following result shows.

THEOREM B. Let the additive group R+ of the radical ring R be periodic. Then the
following hold.

(a) If R+ has finite abelian subgroup rank, then so does R°.
(b) IfR+ has finite Prufer rank, then so does R°, and r(R°) < 3. r(R+). If R+ contains

no elements of order 2 then even r(R°) < 2. r(R+).

At the end of Section 2, an example of a radical ring R with R+ being an elementary
abelian p-group shows that in the situation of Theorem B, the adjoint group R° may have
infinite torsion-free rank. The rank inequalities in part (c) of Theorem A and part (b) of
Theorem B depend on the following proposition.
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PROPOSITION. Let R be a nil ring and n a positive integer. If S = nR, then
nS = (5°){nl = (5°)".

Here GM denotes the set of all nth powers of the elements of a group G and G" the
subgroup of G generated by this set.

It seems to be unknown whether the bounds in part (c) of Theorem A and part (b) of
Theorem B are best possible. This question will be discussed in more detail at the end of
Section 3.

The notation is standard and can for instance be found in [4] and [5]. Note that the
adjoint inverse of an element a of a radical ring will be denoted by a'.

2. Proof of the proposition and Theorem B. The following is a technical lemma on
formal power series.

LEMMA 2.1. Let Zf;c]] be the ring of formal power series in the variable x over the ring
Z of integers. If n is a positive integer, then 1 + n2x can be written as (1 + n . / ) " for some
f e xllxj.

Proof. Considering the binomial series for (1 + n2x)v", we obtain that

f _ V 2m-\(l'n\ m r|D|rrll

m = i V m I

satisfies 1 + n2x = (1 + nf)". Thus it suffices to show that

j;m_, 1(1 ~ n){\ - 2n). .. (1 - (m - l)n)
\ m I m\

is an integer for n, m > 1. If p is a prime, then the number of times that p divides ml is

vm = ?. —

where [x] denotes the greatest integer not exceeding the real number x. Hence we only
need to show that p divides AJm~'l(l - «)(1 - 2n)... (1 - (m - l)n) at least vm times. As

m A /1V m

<Z ()p ,=0 W> p-i-

this is clear if p divides n. Therefore we may suppose that p does not divide n. Then at

least — of the factors

1, 1 - n, 1 - 2n,... , 1 - (m - l)n

are divisible by p' for every / ̂  1, from which it follows that p divides the product
1(1 - n)(l -2n)... (1 - (m - 1)«) at least vm times. This completes the proof of the
lemma.
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Proof of the proposition. As nS is an ideal of R, it forms a subgroup of the adjoint
group 7?°. Thus we only have to show that nS = (S°){"\

Let / e nS, i.e. t = ns for some j e S . Then s = nr for a suitable r e R. By Lemma 2.1
there exists a formal power series / E XZJX] such that (1 + nf)n = 1 + /72JC. Putting
a = n . f(r) e nR = S and using a formal identity 1, we obtain (1 + a)" - 1 + n2r = 1 + r.
Note that the substitution of r into / is possible, since R is nil. It follows that / is the
adjoint nth power of a e S, which implies nS £ (5°)(nl.

Now let p b e a prime dividing n. If s e S, then s = pr for some /• e R. It follows that

where

and

SP = ppr» = pP-2r"-\ ps e pS.

Hence we have (1 + 5) t p l£ 1 +pS. Writing n = pi ... pk as a product of primes, it now
follows by induction on k that (1 + S)M g 1 + nS. Thus (S°)w c ^S. The proposition is
proved.

To apply the proposition for radical p-rings recall that a finite p-group G is called
powerful if either p = 2 and C £ G4 or p is an odd prime and G' s C . Writing d(G) for
the minimal number of elements from G necessary to generate G, we have the following
facts, which can for instance be found in [3].

LEMMA 2.2. Let G be a finite p-group.
(a) (Burnside Basis Theorem.) If 4>(G) denotes the Frattini subgroup of G, then
= \G/<S>(G)\.

(b) / / G is powerful, then r(G) = d{G) and <J>(G) = G".

LEMMA 2.3. Let R be a finite nilpotent p-ring.
(a) Ifp = 2, then r((4/?)°) = r((4/?)+).
(b) / /> « an odd prime, then r({pR)°) = r((pR)+).

Proof. Let 5 = n/?, where n = 4 if p = 2, and n =p if p is odd. For all x,y e 5, the
adjoint commutator x' ° y' ° x ° y = (1 + x')(l + y')(xy —yx) lies in S2 = n2R2<=n2R = nS.
Hence it follows from the proposition that (5°)' ^ (5°)". Thus 5° is powerful. Now Lemma
2.2 and again the proposition yield

p«s°) =pd(s°) = |5°/o(5°)| = \S°/(S°Y\ = \S+/(pS)+\ =pr(5+).

This proves the lemma.

As a consequence, part (b) of Theorem B follows for radical p-rings.

LEMMA 2.4. Let R be a radical p-ring whose additive group R+ has finite Priifer rank.
Then R° has likewise finite Priifer rank and the following hold.

(a) Ifp = 2, then r(R°) < 3. r(R+).
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(b) Ifp is an odd prime, then r(R°) < 2 . r(R+).

Proof. Consider first the case that ft is finite. Then ft is nilpotent; see [5, Theorem
2.5.16]. For any subgroup U of (R/pR)°, it follows by the Burnside Basis Theorem that

| < \R/PR\ = p

Hence
r((R/pR)°)= max d(£/) sr((ft/pft)+) <r(ft+).

U(RR)°

In case (b), Lemma 2.3 yields

from which it follows that

r(ft°) < r(R°/(pR)°) + r((pft)°) = r((ft/pft)°) + r((pft)°) < 2. r(ft+).

Case (a) is treated in the same way by considering the chain

0 < 4ft < 2R < R

and observing that the ring 2ft/4ft has trivial multiplication, so that its additive and
adjoint groups coincide.

Consider now the general case of an arbitrary radical p-ring. For all n s 0 let Rn be
the ideal {reft \p"r = 0} of ft. As ft is a p-ring, we have

Let U be a finitely generated subgroup of ft+. Then U is an r-generated abelian group of
exponent dividing p", where r = r(R+). Thus |[/ |<(p")r =p"r. Hence each Rn is finite.
Let c = 3 for p = 2 and c = 2 for p ^ 2. By the finite case we have

r(ftn°)<c.r(ftn
+)<c.r(ft+)

for all n > 0. Since ft0 is the union of the ft°, we obtain

r(ft°)<c.r(ft+).

The lemma is proved.

To complete the proofs of both of the theorems we will need the following result.

LEMMA 2.5 ([1, Lemma 2.4]). If R is a nil ring and p a prime, then the following hold.
(a) ft+ is a p-group if and only if R° is a p-group.
(b) ft+ is torsion-free if and only if R° is torsion-free.

Proof of Theorem B. To prove part (a), suppose that ft+ is periodic with finite
abelian subgroup rank. For each prime p the p-component of ft+ forms an ideal Tp of the
ring ft, and ft = 9 Tp. By [4, Vol. 2, p. 38, Corollary 1], each T+ is a Chernikov-group.

p

Hence by Theorem A of [1], each T° is a Chernikov-group and each of the ideals Tp of ft
is nilpotent. In particular, each T° is a nilpotent group. As ft0 is the direct product of
the Tp, it follows that ft0 is locally nilpotent (i.e. each of its finitely generated sub-
groups is nilpotent). By the nilpotency of the rings Tp and Lemma 2.5 each T° is a
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Chernikov p-group. Thus R° = t8) T° has finite abelian subgroup rank by [4, Vol. 2, p. 38,
Corollary 1]. p

Part (b) is proved in the same way, using [4, Vol. 2, p. 38, Corollary 2]. Here, by
Lemma 2.4, the bound r = r(R+) for the Priifer ranks of the Tp carries over to the
required bound for the Priifer ranks of the 7°.

We finish this section with the example mentioned in the introduction.

EXAMPLE (see [6, p. 28]). Let p b e a prime and K = GF(/?) the field with p elements.
If K\x\ denotes the ring of formal power series over K then R = xK\x\ is a radical ring
with an elementary abelian additive group R+. But obviously the element x of R° has
infinite order in R°. (In fact, it can easily be shown that R° is torsion-free.) Assume
ro(R°) < oo. Then Theorem B of [1] implies that ro(R°) = ro(R

+) = 0, contradicting the fact
that R° contains elements of infinite order. Hence ro(R°) = oo.

3. Proof of Theorem A. A ring R is called locally nilpotent if each of its finitely
generated subrings is nilpotent.

LEMMA 3.1 ([1, Lemma 2.1]). Let R be a nilpotent ring and X a class of groups which
is closed under the forming of subgroups, epimorphic images and extensions. Then the
adjoint group R° of R is an X-group if and only if the additive group R+ of R is an
X-group.

LEMMA 3.2 ([1, Lemma 3.1]). If R is a locally nilpotent ring whose additive group /?4

is torsion-free with finite torsion-free rank n, then R" + ] = 0.

LEMMA 3.3 (Special case of [7, Theorem 6]). Let R be an arbitrary ring and S a
nilpotent proper subring of R. Then S is properly contained in its idealizer ldR(S) =

LEMMA 3.4. Let G be a locally nilpotent torsion-free group with finite torsion-free
rank. Then r(G) < ro(G) < oo.

Proof. We may assume that G is finitely generated and hence nilpotent. Let

l = Z , < Z 2 < . . . < Z n = G

be the upper central series of G. As Z, is torsion-free, each of the factors Z,-+1/Z,- for i < n
is torsion-free abelian; see [4, Vol. 1, Theorem 2.25]. Thus

n-l n-\
rK(-1)— 2J ' • ( .A+i/A;= 2J ' 'o(Z,+i///) = 'ioiOj.

The lemma is proved.

Proof of Theorem A. The torsion subgroup of R+ forms an ideal T of R. If the ideals
Tp of R are defined as in the proof of Theorem B, then 7 = © Tp. By Lemma 2.5, each 7°
is a p-group and (R/T)° is torsion-free.

To prove (a), note that 7° = <S> Tp° is periodic, so that we may assume 7 = 0. Hence
R+ is torsion-free. By Zorn's Lemma there exists a maximal locally nilpotent subring S of
R, which is even nilpotent by Lemma 3.2. Assume now that S ^R. Then by Lemma 3.3, S
is properly contained in its idealizer / = Id/?(S). Hence there exists an element a in the
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subring I of R which is not in 5. The subring 5 generated by 5 U {a} is contained in the
idealizer / of 5, and therefore 5 is an ideal of 5. The quotient ring 5/5 is generated by
a + S. As R is nil, it follows that 5/5 is nilpotent. Thus 5 is a nilpotent subring of R
containing 5 properly. This contradiction shows that R = S is nilpotent. Now Lemma 3.1
yields ro(R°) < «=, so that Theorem B of [1] implies ro(R°) = ro(R

+). This proves part (a).
To prove (b), let R+ have finite abelian subgroup rank. Then T+ and hence by

Theorem B also T° have finite abelian subgroup rank. Moreover, T is a locally nilpotent
ring, since we have seen in the proof of Theorem B, that T is the direct sum of the
nilpotent ideals Tp. As ro((R/T)+)<<*>, it follows as in the proof of (a) that R/T is a
nilpotent ring. Its additive group (R/T)+ is torsion-free with finite abelian subgroup rank
and hence has finite Priifer rank by [4, Vol. 2, p. 38, Corollary 1]. Thus Lemma 3.1 implies
r((/?/r)°)< « and, in particular, (R/T)° has finite abelian subgroup rank. As R/T is
nilpotent and T is locally nilpotent, the ring R is locally nilpotent. Thus R° is a locally
nilpotent extension of T° by (R/T)°, which both have finite abelian subgroup rank. Hence
R° has finite abelian subgroup rank. This proves (b).

To prove (c), suppose that R + has finite Priifer rank. Then it follows as in the proof
of (b) that R is a locally nilpotent ring and that R° is a locally nilpotent group. Moreover,

< ro((R/T)°) = ro((/?/7)+) (1)

by Lemma 3.4 and part (a). On the other hand, Theorem B yields

r(T°)<c.r(T+)<», (2)

where c = 2 if R contains no elements of order 2 and otherwise c = 3. Combining
equations (1) and (2), we obtain

r(R°) < r(R°IT°) + r(T°) = r((R/T)°) + r{T°)
<ro{(R/T)+)+c.r(T+)

= c.r(R+).

This completes the proof of Theorem A.

REMARKS, (a) Note that our main results together with Theorem B of [1] imply that
the rings R considered in the theorems with R+ having finite abelian subgroup rank are
two-sided T-nilpotent, i.e. each non-trivial epimorphic image of R has a non-trivial
two-sided annihilator. It is easy to see that such rings are locally nilpotent.

(b) In both theorems, the inequality r(R°)^c. r(R+) for the Priifer ranks is given,
where c = 2 if R+ contains no elements of order 2 and otherwise c = 3. It remains open
whether these bounds are best possible. For rings with elements of additive order 2, the
worst case known to the author is the ring R = 2Z/82 with r(R+) = 1 and r(R°) = 2, while
in the special case in which R+ contains no elements of order 2, no example R with
r(R°) > r(R+) seems to be known. Hence it can be conjectured that the constant c can be
decreased by 1 in either case.

(c) A slight modification of our proofs leads to the following minor improvement of
the inequality just discussed:

r(R°) < ro(R
+) + max{3 . r(7"2

+), 2 . r(T+
p)

where the Tp are defined as in the proof of Theorem B.
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