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A Class of Supercuspidal Representations of
G2(k)

Gordan Savin

Abstract. Let H be an exceptional, adjoint group of type E6 and split rank 2, over a p-adic field k. In this
article we discuss the restriction of the minimal representation of H to a dual pair PD× × G2(k), where D
is a division algebra of dimension 9 over k. In particular, we discover an interesting class of supercuspidal
representations of G2(k).

Introduction

Let k be a p-adic field. Let h be an exceptional, adjoint Lie algebra of type E6 and split rank
2, over k. Its restricted root system is of type G2. The long root spaces are one-dimensional,
and the short root spaces admit the structure of a division algebra D of dimension 9 over
k. Let PD× = D×/k×. It acts on h, trivially on the long root spaces, and by conjugation on
the short root spaces (∼= D). Let H be the corresponding algebraic group of adjoint type.
The centralizer of PD× is G2(k), the simple split group of type G2. In fact PD× × G2(k) is
a dual reductive pair in H.

Let Π be the minimal representation of H. It is the smallest (in a well defined sense, see
[MS]), non-trivial representation of H. Since PD× is compact, we can write

(0.1) Π|PD××G2(k) =
⊕
π

π ⊗Θ(π)

where the sum runs over irreducible, smooth representations π of PD×. A conjectural
description of this correspondence is given in [GS2]. In this article we refine this conjecture
and present some evidence. We show thatΘ(π) is supercuspidal if π 6= 1, and we determine
the leading part of its character expansion. In particular, all Θ(π) are degenerate, i.e., do
not have Whittaker functionals.

More precisely, let g2(k) be the Lie algebra of G2(k), and Osr ⊂ g2(k̄) the subregular
nilpotent orbit. Then Osr ∩ g2(k) breaks up as a union

(0.2) Osr ∩ g2(k) =
⋃

E

OE

of subregular G-orbits, parametrized by isomorphism classes of separable cubic algebras E
over k [HMS]. The structure of nilpotent G-orbits is given in Figure 1, where Oshort and

Received by the editors November 19, 1997; revised March 4, 1998.
AMS subject classification: Primary: 22E35, 22E50; secondary: 11F70.
c©Canadian Mathematical Society 1999.

393

https://doi.org/10.4153/CMB-1999-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-046-9


394 Gordan Savin

Oreg/
| \

OE1 OE2 · · ·

\ |
/

Oshort

|

Olong

|

{0}

Figure 1

Olong are orbits of non-zero vectors in the short and the long root spaces, respectively. Since
Θ(π) is degenerate, its leading part of the character expansion will be

(0.3)
∑

E

cEµ̂OE ,

where µOE is a G2(k)-invariant measure on OE, and µ̂OE its Fourier Transform as in [MW].
We show that

(0.4) cE = dimπE× ,

if E ⊂ D (this happens precisely when E is a field), and 0 otherwise.

1 A Construction of h

The algebra h can be described in terms of a Z/3Z-gradation. To explain this, let a be a
simple Lie algebra together with a Z/3Z-gradation

(1.1) a = a−1 ⊕ a0 ⊕ a1.

Then a Killing form κ〈 , 〉 on a, restricts to a Killing form 〈 , 〉0 on a0, and gives an a0-
invariant pairing

(1.2) 〈 , 〉00 : a−1 × a1 → k.

In particular, a−1
∼= a∗1 as a0-modules. Also, it induces an a0-invariant skew trilinear form

〈 , , 〉 on a1 by

(1.3) 〈X,Y,Z〉 = κ〈X, [Y,Z]〉.
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Now it is easy to check that the Lie bracket on a is completely determined by 〈 , 〉0, the
pairing (1.2), and the skew form (1.3).

We now give a construction of h following these ideas. Let D be a division algebra of
rank 9 over k. Let Let N and Tr denote the reduced norm and trace of D. Let D0 be the set
of traceless elements in D. Define

(1.4) h0 = sl3(k)⊕ D0 ⊕ D0,

with a Killing form

(1.5) 〈(a, b, c), (x, y, z)〉0 = Tr(ax) + Tr(by) + Tr(cy),

where Tr(ax) is the ordinary trace of a 3× 3 matrix. Let

(1.6)

{
V = ke1 ⊕ ke2 ⊕ ke3

V ∗ = ke∗1 ⊕ ke∗2 ⊕ ke∗3

be the standard representation of sl3(k) and its dual. Put D∗ = D, and define

(1.7) h1 = V ⊗ D and h−1 = V ∗ ⊗ D∗

with a pairing

(1.8) 〈ei ⊗ d, e∗j ⊗ d∗〉00 = δi j Tr(dd∗),

where δi j is the Kronecker symbol. Let x, y ∈ D0, and z ∈ D. Then

(1.9) Ax,y(z) = xz − zy

defines a representation of a Lie algebra D0 ⊕ D0 on D. This, with the standard action of
sl3(k) on V , defines an action of h0 on h1. The action of h0 on h−1 is now defined as well,
since we require that the form (1.8) be h0-invariant.

Let

(1.10) (a, b, c) = N(a + b + c)− N(a + b)− N(b + c)− N(c + a) + N(a) + N(b) + N(c)

be a symmetric tri-linear form on D, and

(1.11) 〈 , , 〉 ′ : V ×V ×V → ∧3V = k · e1 ∧ e2 ∧ e3
∼= k,

a skew-form on V . Then

(1.12) 〈 , , 〉 = 〈 , , 〉′ ⊗ ( , , ),

defines a skew-symmetric form on h1. Since

(1.13) 3(xz − zy, z, z) =
(
Tr(x)− Tr(y)

)
(z, z, z)

for any x, y and z ∈ D, it follows that
(
Ax,y(z), z, z

)
= 0. This implies that the skew-

form (1.12) is h0-invariant. The construction is now complete.

https://doi.org/10.4153/CMB-1999-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-046-9


396 Gordan Savin

2 Some Structure of h

We first give some explicit brackets in h. Let 1 be the identity element of D, and eii be a
diagonal 3× 3 matrix with 1 at the i-th place and 0 elsewhere. Then

(2.1)

{
[ei ⊗ 1, e j ⊗ 1] = ±2e∗k ⊗ 1

[ei ⊗ 1, e∗i ⊗ 1] = 3eii − (e11 + e22 + e33) in sl(3).

In the first formula,± is the sign of permutation (i, j, k) of (1, 2, 3).
Let D0 be diagonally embedded in D0 ⊕ D0 ⊂ h. Since Ax,x(z) = 0 for all x in D0 if and

only if z is in the center of D, it follows that the centralizer of D0 in h is

(2.2) g2(k) = V ∗ ⊕ sl3(k)⊕V.

The formulas in (2.1) imply that this is a simple Lie algebra of type G2. Conversely, the
centralizer of g2(k) in h is D0. Indeed, the centralizer of sl3(k) is h0. In addition, Ax,y(1) = 0
if and only if x = y. This shows that

(2.3) D0 × g2(k)

is a dual reductive pair in h.
Let

(2.4) s1 =


1

1
−2


 and s2 =


1

0
−1




be in sl3(k) ⊂ g2(k) ⊂ h. Define

(2.5) hi( j) = {x ∈ h | [si , x] = jx}.

The structure of hi( j) can easily be computed from the Z/3Z-gradation of h. In particular,
pi = mi ⊕ ni are parabolic subalgebras. Here

(2.6) mi = hi(0) and ni =
⊕
j>0

hi( j).

The unipotent radical n1 is a 3-step nilpotent Lie algebra, and n2 is a 2-step nilpotent Lie
algebra. The center z2 of n2 is 1-dimensional, and

(2.7) n2/z2 = h2(1) = k⊕ D⊕ D∗ ⊕ k∗.

Note that we have isomorphisms

(2.8)

{
m1
∼= gl2(k)⊕ D0 ⊕ D0

m2
∼= gl2(D).

Analogously, s1 and s2 define two maximal parabolic subalgebras in g2(k):

(2.9)

{
q1 = l1 ⊕ u1

q2 = l2 ⊕ u2.

Their structure is quite analogous to the structure of the corresponding algebras of h: re-
place D by k in formulas (2.7) and (2.8).

https://doi.org/10.4153/CMB-1999-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-046-9


A Class of Supercuspidal Representations of G2(k) 397

3 Minimal Representation Π

Let O be the ring of integers in k, and p = (p) the maximal ideal of O. Also, let R be the
maximal order in D, and m = ($) the maximal ideal of R. Note that E = R/m is a cubic
extension of F = O/p.

First, we describe a special maximal compact subgroup of H. Let k be an O-lattice in h

defined by

(3.1)

{
k0 = sl3(O)⊕ R0 ⊕ R0

k1 = VO ⊗O R and k−1 = V ∗O ⊗O R∗

where VO and V ∗O are the standard O-lattices in V and V ∗, and R∗ = R ⊂ D = D∗.
Let k ′ be a lattice defined by

(3.2)

{
k ′0 = sl3(p)⊕ {(x, y) | x, y ∈ R0, x ≡ y mod(m)}

k ′1 = VO ⊗O m and k−1 = V ∗O ⊗O m∗

where m∗ = m ⊂ R = R∗.
Let V and V∗ be the reductions mod p of VO and V ∗O. Since [k, k ′] ⊆ k ′, and pk ⊂ k ′ ⊂ k,

it follows that

(3.3) k/k ′ = V∗ ⊗ E∗ ⊕
(
sl3(k)⊕ E0

)
⊕ V ⊗ E,

where E0 is the set of traceless elements in E, is a Lie algebra over F. In fact, it is a simple
Lie algebra of type D3

4 [HMS].
Let K be the stabilizer of k in H. It is the special maximal compact subgroup. Let K ′ be

the subgroup of K stabilizing the lattice k ′. Since [k, k ′] ⊆ k ′, K ′ is a normal subgroup of K.
The quotient K/K ′ is a semidirect product of D3

4(q), and its group of outer automorphisms
Γ ∼= Z/3Z generated by the conjugation action of$.

Let πmin be the “reflection” representation of D3
4(q). It is the smallest non-trivial unipo-

tent representation [C, p. 478], its dimension is q5 − q3 + q. Let Π be the unique represen-
tation of H such that the K/K ′-moduleΠK ′ is isomorphic to πmin.

Theorem 3.4 (Rumelhart [R]) The representation Π is minimal. This means that the char-
acter expansion of Π is given by

µ̂Omin + cµ̂{0}

where Omin is the minimal non-trivial nilpotent orbit [CM], and c some constant.

4 Conjectures

Let π ′I be the unique degenerate discrete series representation of G2(k) with one-dimen-
sional space of Iwahori-fixed vectors [B]. Let π ′[νa], a = 1, 2, be the unipotent supercusp-
idal representations of G2(k) induced from the unipotent cuspidal representations G2[νa]
[C, p. 478] of G2(q). In [GS2] we have introduced a conjecture describing the correspon-
dence between representation of PD× and G2(k):
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Conjecture 4.1

(1) RepresentationsΘ(π) are irreducible.
(2) Θ(π1) ∼= Θ(π2) only if π1

∼= π2.
(3) Θ(1) = π ′I , andΘ(π) is supercuspidal if π 6= 1.
(4) Θ(χD) = π ′[ν], and Θ(χ2

D) = π ′[ν2].

The unramified character χD of PD× will be specified in the last section.
In Section 6 we shall prove the statements (3) and (4) of this conjecture.

5 Tools

In order to prove the statements (3) and (4) we need some technical results.

Proposition 5.1 Let N1 ⊃ U1 and N2 ⊃ U2 be the unipotent radicals of maximal parabolic
subgroups of H and G2(k). We have the following equalities of Jacquet modules.

{
ΠN1 = ΠU1

ΠN2 = ΠU2 .

Proof We shall first prove the second statement. Recall that N2 is a two-step nilpotent
group, and let Z2 be its one-dimensional center (it is also the center of U2). Let N̄2 be
the opposite unipotent radical, and Z̄2 its center. The Killing form on h induces a non-
degenerate pairing 〈·, ·〉 between N2/Z2 and N̄2/Z̄2. Thus, every one-dimensional character
of N2/Z2 is of the form

ψy(x) = ψ
(
〈x, y〉

)
for some x̄ in N̄2/Z̄2, and ψ a given non-trivial additive character of k. If ΠU2 is not equal
to ΠN2 , then there exists a non-trivial character ψx̄ such that

ψx̄|U2 = 1 and (ΠU2 )N2,ψx̄ 6= 0.

SinceΠ is minimal, x̄ has to lie in the smallest non-trivial M2-orbit in N̄2/Z̄2. On the other
hand, x̄ has to lie in the orthogonal complement of U2/Z2 in N̄2/Z̄2. It can be checked that
these two sets have empty intersection. This is a contradiction, and the second statement
follows.

The first statement can be checked analogously. In fact, if Z1 is the center of N1 (it is also
the center of U1), then a stronger statement

ΠN1 = ΠZ1

is true. The proposition is proved.

Corollary 5.2 {
ΠU1 = (π ′I )U1

ΠU2 = (π ′I )U2 .
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Proof Note that π ′I is unique representation of G2(k) such that, up to a twist by an unrami-
fied character, (π ′I )U1 is a Steinberg L1-module, and (π ′I )U1 is a trivial L1-module. The same
is true for Π: up to a twist by an unramified character, ΠN1 is a Steinberg M1-module, and
ΠN2 is a trivial M2-module. The corollary now follows from Proposition 5.1 (note that L1

is the sole non-compact factor of M1, hence the Steinberg representation of M1 restricts to
the Steinberg representation of L1).

Let (x, y, z) be the symmetric tri-linear form on D defined by (1.10). Let x be in D, and
λ in k. Then

(5.3) Charx(λ) = (λ− x, λ− x, λ− x)

is called a characteristic polynomial of x. Its leading coefficient is 6 (since (1, 1, 1) = 6).
Recall from [GS1], that characters of U2 are parametrized by cubic polynomials. We

have the following fundamental result [GS1, Ch. VI] and [HMS].

Proposition 5.4 Let P be a cubic polynomial with the leading coefficient 6, and ψP the corre-
sponding character of U2. Then

ΠU2,ψP = C∞c (ωP)

where
ωP = {x ∈ D | Charx = P}.

Examples 5.5 (1) If P(λ) = 6λ3, then ωP = 0, and ΠU2,ψP = C.
(2) If P(λ) = 6λ2(λ− 1), then ωP = ∅, and ΠU2,ψP = 0.
(3) If E = k[λ]/(P) is a cubic separable algebra, then ωP = ∅ unless E is a field, in

which case
ΠU2,ψP = C∞c (D×/E×).

Just as in [HMS] the first example imples that Π has no Whittaker vectors for G2(k). In
particular, Θ(π) are degenerate. The third example is a consequence of the following two
facts; any cubic field E is contained in D, and any two regular elements in D with the same
characteristic polynomial are conjugated. Also, if E is a field, then the third example implies
that

(5.6) Θ(π)U2,ψP
∼= πE× .

This is equivalent to (0.5) by [MW].

6 Proofs

In this section we shall prove the parts (3) and (4) of Conjecture 4.1. Recall from [HMS]
that under the action of Γ× G2(q) the reflection representation πmin decomposes as

(6.1) 1⊗ φ1,3 ′ ′ ⊕ χD ⊗ G2[ν]⊕ χ2
D ⊗ G2[ν2]

for a choice of the cubic character χD of Γ. Here φ1,3 ′ ′ is a unipotent representation of
G2(q) [C, p. 478].
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It is the minimal K-type of π ′I . This and Corollary 5.2 immediately imply that π ′I is a
direct summand ofΘ(1), and π ′[νa] is a direct summand ofΘ(χa

D), (a = 1, 2) (note that Γ
is a quotient of PD×, hence χD is the unramified character mentioned in Conjecture 4.1).

Calculations of the previous section, compared with results of [HMS] whereΘ(χa
D)U2,ψP

have been computed, show that

(6.2) dim
(
π ′[νa]

)
U2,ψP

= dim
(
Θ(χa

D)
)

U2,ψP

for any P. This implies that the complements of π ′[νa] inΘ(χa
D), (a = 1, 2), are trivial (for

example, they have trivial character expansion). Also, the results of [HMS] combined with
calculations in the Grothendieck group of representations of G2(k), show that

(6.3) dim(π ′I )U2,ψP = dim
(
Θ(1)
)

U2,ψP

for any P defining a cubic separable algebra. Since (π ′I )U1 is a generic L1-module, it follows
that (π ′I )U2,ψP 6= 0 for P(λ) = 6λ3. In particular, we again have an equality in (6.3) for all
P, and π ′I = Θ(1) follows. This proves the parts (3) and (4) of Conjecture 4.1 (cuspidality
ofΘ(π) if π 6= 1 follows from Corollary 5.2).
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