Canad. Math. Bull. Vol. 42 (3), 1999 pp. 393-400

A Class of Supercuspidal Representations of $G_2(k)$

Gordan Savin

Abstract. Let *H* be an exceptional, adjoint group of type E_6 and split rank 2, over a *p*-adic field *k*. In this article we discuss the restriction of the minimal representation of *H* to a dual pair $PD^{\times} \times G_2(k)$, where *D* is a division algebra of dimension 9 over *k*. In particular, we discover an interesting class of supercuspidal representations of $G_2(k)$.

Introduction

Let *k* be a *p*-adic field. Let \mathfrak{h} be an exceptional, adjoint Lie algebra of type E_6 and split rank 2, over *k*. Its restricted root system is of type G_2 . The long root spaces are one-dimensional, and the short root spaces admit the structure of a division algebra *D* of dimension 9 over *k*. Let $PD^{\times} = D^{\times}/k^{\times}$. It acts on \mathfrak{h} , trivially on the long root spaces, and by conjugation on the short root spaces (\cong *D*). Let *H* be the corresponding algebraic group of adjoint type. The centralizer of PD^{\times} is $G_2(k)$, the simple split group of type G_2 . In fact $PD^{\times} \times G_2(k)$ is a dual reductive pair in *H*.

Let Π be the minimal representation of H. It is the smallest (in a well defined sense, see [MS]), non-trivial representation of H. Since PD^{\times} is compact, we can write

(0.1)
$$\Pi|_{PD^{\times} \times G_2(k)} = \bigoplus_{\pi} \pi \otimes \Theta(\pi)$$

where the sum runs over irreducible, smooth representations π of PD^{\times} . A conjectural description of this correspondence is given in [GS2]. In this article we refine this conjecture and present some evidence. We show that $\Theta(\pi)$ is supercuspidal if $\pi \neq 1$, and we determine the leading part of its character expansion. In particular, all $\Theta(\pi)$ are degenerate, *i.e.*, do not have Whittaker functionals.

More precisely, let $\mathfrak{g}_2(k)$ be the Lie algebra of $G_2(k)$, and $\overline{\mathbb{O}}_{sr} \subset \mathfrak{g}_2(\bar{k})$ the subregular nilpotent orbit. Then $\overline{\mathbb{O}}_{sr} \cap \mathfrak{g}_2(k)$ breaks up as a union

(0.2)
$$\overline{\mathfrak{O}}_{sr} \cap \mathfrak{g}_2(k) = \bigcup_E \mathfrak{O}_E$$

of subregular *G*-orbits, parametrized by isomorphism classes of separable cubic algebras *E* over *k* [HMS]. The structure of nilpotent *G*-orbits is given in Figure 1, where O_{short} and

Received by the editors November 19, 1997; revised March 4, 1998.

AMS subject classification: Primary: 22E35, 22E50; secondary: 11F70.

[©]Canadian Mathematical Society 1999.

$$\begin{array}{c|c} & \mathcal{O}_{\text{reg}} \\ / & | & \setminus \\ & \mathcal{O}_{E_1} & \mathcal{O}_{E_2} & \cdots \\ & & | & / \\ & & \mathcal{O}_{\text{short}} \\ & | \\ & & \mathcal{O}_{\text{long}} \\ & | \\ & & \{0\} \end{array}$$

 $\mathcal{O}_{\text{long}}$ are orbits of non-zero vectors in the short and the long root spaces, respectively. Since $\Theta(\pi)$ is degenerate, its leading part of the character expansion will be

(0.3)
$$\sum_{E} c_{E} \hat{\mu}_{\mathbb{O}_{E}},$$

where $\mu_{\mathcal{O}_E}$ is a $G_2(k)$ -invariant measure on \mathcal{O}_E , and $\hat{\mu}_{\mathcal{O}_E}$ its Fourier Transform as in [MW]. We show that

$$(0.4) c_E = \dim \pi^{E^{\times}},$$

if $E \subset D$ (this happens precisely when *E* is a field), and 0 otherwise.

1 A Construction of **b**

The algebra h can be described in terms of a $\mathbb{Z}/3\mathbb{Z}$ -gradation. To explain this, let a be a simple Lie algebra together with a $\mathbb{Z}/3\mathbb{Z}$ -gradation

$$\mathfrak{a} = \mathfrak{a}_{-1} \oplus \mathfrak{a}_0 \oplus \mathfrak{a}_1.$$

Then a Killing form $\kappa\langle , \rangle$ on \mathfrak{a} , restricts to a Killing form \langle , \rangle_0 on \mathfrak{a}_0 , and gives an \mathfrak{a}_0 -invariant pairing

(1.2)
$$\langle , \rangle_{00} \colon \mathfrak{a}_{-1} \times \mathfrak{a}_{1} \to k.$$

In particular, $\mathfrak{a}_{-1} \cong \mathfrak{a}_1^*$ as \mathfrak{a}_0 -modules. Also, it induces an \mathfrak{a}_0 -invariant skew trilinear form $\langle , , \rangle$ on \mathfrak{a}_1 by

(1.3)
$$\langle X, Y, Z \rangle = \kappa \langle X, [Y, Z] \rangle.$$

A Class of Supercuspidal Representations of $G_2(k)$

Now it is easy to check that the Lie bracket on \mathfrak{a} is completely determined by \langle , \rangle_0 , the pairing (1.2), and the skew form (1.3).

We now give a construction of \mathfrak{h} following these ideas. Let *D* be a division algebra of rank 9 over *k*. Let Let *N* and Tr denote the reduced norm and trace of *D*. Let D^0 be the set of traceless elements in *D*. Define

(1.4)
$$\mathfrak{h}_0 = \mathfrak{sl}_3(k) \oplus D^0 \oplus D^0,$$

with a Killing form

(1.5)
$$\langle (a,b,c), (x,y,z) \rangle_0 = \operatorname{Tr}(ax) + \operatorname{Tr}(by) + \operatorname{Tr}(cy),$$

where Tr(ax) is the ordinary trace of a 3 \times 3 matrix. Let

(1.6)
$$\begin{cases} V = ke_1 \oplus ke_2 \oplus ke_3 \\ V^* = ke_1^* \oplus ke_2^* \oplus ke_3^* \end{cases}$$

be the standard representation of $sl_3(k)$ and its dual. Put $D^* = D$, and define

(1.7)
$$\mathfrak{h}_1 = V \otimes D \quad \text{and} \quad \mathfrak{h}_{-1} = V^* \otimes D^*$$

with a pairing

(1.8)
$$\langle e_i \otimes d, e_i^* \otimes d^* \rangle_{00} = \delta_{ij} \operatorname{Tr}(dd^*),$$

where δ_{ij} is the Kronecker symbol. Let $x, y \in D^0$, and $z \in D$. Then

defines a representation of a Lie algebra $D^0 \oplus D^0$ on D. This, with the standard action of $sl_3(k)$ on V, defines an action of \mathfrak{h}_0 on \mathfrak{h}_1 . The action of \mathfrak{h}_0 on \mathfrak{h}_{-1} is now defined as well, since we require that the form (1.8) be \mathfrak{h}_0 -invariant.

Let

$$(1.10) (a, b, c) = N(a + b + c) - N(a + b) - N(b + c) - N(c + a) + N(a) + N(b) + N(c)$$

be a symmetric tri-linear form on D, and

(1.11)
$$\langle , , \rangle' \colon V \times V \times V \to \wedge^3 V = k \cdot e_1 \wedge e_2 \wedge e_3 \cong k,$$

a skew-form on V. Then

(1.12)
$$\langle , , \rangle = \langle , , \rangle' \otimes (, ,),$$

defines a skew-symmetric form on \mathfrak{h}_1 . Since

(1.13)
$$3(xz - zy, z, z) = (\operatorname{Tr}(x) - \operatorname{Tr}(y))(z, z, z)$$

for any x, y and $z \in D$, it follows that $(A_{x,y}(z), z, z) = 0$. This implies that the skew-form (1.12) is \mathfrak{h}_0 -invariant. The construction is now complete.

2 Some Structure of **h**

We first give some explicit brackets in \mathfrak{h} . Let 1 be the identity element of *D*, and e_{ii} be a diagonal 3×3 matrix with 1 at the *i*-th place and 0 elsewhere. Then

(2.1)
$$\begin{cases} [e_i \otimes 1, e_j \otimes 1] = \pm 2e_k^* \otimes 1\\ [e_i \otimes 1, e_i^* \otimes 1] = 3e_{ii} - (e_{11} + e_{22} + e_{33}) \text{ in sl}(3). \end{cases}$$

In the first formula, \pm is the sign of permutation (i, j, k) of (1, 2, 3).

Let D^0 be diagonally embedded in $D^0 \oplus D^0 \subset \mathfrak{h}$. Since $A_{x,x}(z) = 0$ for all x in D^0 if and only if z is in the center of D, it follows that the centralizer of D^0 in \mathfrak{h} is

(2.2)
$$\mathfrak{g}_2(k) = V^* \oplus \mathfrak{sl}_3(k) \oplus V.$$

The formulas in (2.1) imply that this is a simple Lie algebra of type G_2 . Conversely, the centralizer of $\mathfrak{g}_2(k)$ in \mathfrak{h} is D^0 . Indeed, the centralizer of $\mathfrak{sl}_3(k)$ is \mathfrak{h}_0 . In addition, $A_{x,y}(1) = 0$ if and only if x = y. This shows that

$$(2.3) D^0 \times \mathfrak{g}_2(k)$$

is a dual reductive pair in h.

Let

(2.4)
$$s_1 = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -2 \end{pmatrix}$$
 and $s_2 = \begin{pmatrix} 1 & & \\ & 0 & \\ & & -1 \end{pmatrix}$

be in $sl_3(k) \subset g_2(k) \subset \mathfrak{h}$. Define

(2.5)
$$\mathfrak{h}_i(j) = \{ x \in \mathfrak{h} \mid [s_i, x] = jx \}.$$

The structure of $\mathfrak{h}_i(j)$ can easily be computed from the $\mathbb{Z}/3\mathbb{Z}$ -gradation of \mathfrak{h} . In particular, $\mathfrak{p}_i = \mathfrak{m}_i \oplus \mathfrak{n}_i$ are parabolic subalgebras. Here

(2.6)
$$\mathfrak{m}_i = \mathfrak{h}_i(0) \text{ and } \mathfrak{n}_i = \bigoplus_{j>0} \mathfrak{h}_i(j).$$

The unipotent radical n_1 is a 3-step nilpotent Lie algebra, and n_2 is a 2-step nilpotent Lie algebra. The center a_2 of n_2 is 1-dimensional, and

(2.7)
$$\mathfrak{n}_2/\mathfrak{z} = \mathfrak{h}_2(1) = k \oplus D \oplus D^* \oplus k^*$$

Note that we have isomorphisms

(2.8)
$$\begin{cases} \mathfrak{m}_1 \cong \mathfrak{gl}_2(k) \oplus D^0 \oplus D^0 \\ \mathfrak{m}_2 \cong \mathfrak{gl}_2(D). \end{cases}$$

Analogously, s_1 and s_2 define two maximal parabolic subalgebras in $g_2(k)$:

(2.9)
$$\begin{cases} \mathfrak{q}_1 = \mathfrak{l}_1 \oplus \mathfrak{u}_1 \\ \mathfrak{q}_2 = \mathfrak{l}_2 \oplus \mathfrak{u}_2. \end{cases}$$

Their structure is quite analogous to the structure of the corresponding algebras of \mathfrak{h} : replace *D* by *k* in formulas (2.7) and (2.8).

396

A Class of Supercuspidal Representations of $G_2(k)$

3 Minimal Representation Π

Let \mathcal{O} be the ring of integers in k, and $\mathfrak{p} = (p)$ the maximal ideal of \mathcal{O} . Also, let R be the maximal order in D, and $\mathfrak{m} = (\varpi)$ the maximal ideal of R. Note that $\mathbb{E} = R/\mathfrak{m}$ is a cubic extension of $\mathbb{F} = \mathcal{O}/\mathfrak{p}$.

First, we describe a special maximal compact subgroup of H. Let \mathfrak{t} be an \mathfrak{O} -lattice in \mathfrak{h} defined by

(3.1)
$$\begin{cases} \mathfrak{t}_0 = \mathfrak{sl}_3(\mathbb{O}) \oplus R^0 \oplus R^0\\ \mathfrak{t}_1 = V_{\mathbb{O}} \otimes_{\mathbb{O}} R \text{ and } \mathfrak{t}_{-1} = V_{\mathbb{O}}^* \otimes_{\mathbb{O}} R^* \end{cases}$$

where V_{\odot} and V_{\odot}^* are the standard \bigcirc -lattices in V and V^* , and $R^* = R \subset D = D^*$. Let \mathfrak{k}' be a lattice defined by

(3.2)
$$\begin{cases} \mathfrak{f}_0' = \mathfrak{sl}_3(\mathfrak{p}) \oplus \{(x, y) \mid x, y \in \mathbb{R}^0, x \equiv y \mod(\mathfrak{m})\} \\ \mathfrak{f}_1' = V_0 \otimes_0 \mathfrak{m} \text{ and } \mathfrak{f}_{-1} = V_0^* \otimes_0 \mathfrak{m}^* \end{cases}$$

where $\mathfrak{m}^* = \mathfrak{m} \subset R = R^*$.

Let \mathbb{V} and \mathbb{V}^* be the reductions mod \mathfrak{p} of $V_{\mathbb{O}}$ and $V_{\mathbb{O}}^*$. Since $[\mathfrak{k}, \mathfrak{k}'] \subseteq \mathfrak{k}'$, and $\mathfrak{p}\mathfrak{k} \subset \mathfrak{k}' \subset \mathfrak{k}$, it follows that

(3.3)
$$\mathfrak{t}/\mathfrak{t}' = \mathbb{V}^* \otimes \mathbb{E}^* \oplus \left(\mathrm{sl}_3(k) \oplus \mathbb{E}^0 \right) \oplus \mathbb{V} \otimes \mathbb{E},$$

where \mathbb{E}^0 is the set of traceless elements in \mathbb{E} , is a Lie algebra over \mathbb{F} . In fact, it is a simple Lie algebra of type D_4^3 [HMS].

Let *K* be the stabilizer of \mathfrak{t} in *H*. It is the special maximal compact subgroup. Let *K'* be the subgroup of *K* stabilizing the lattice \mathfrak{t}' . Since $[\mathfrak{t}, \mathfrak{t}'] \subseteq \mathfrak{t}', K'$ is a normal subgroup of *K*. The quotient K/K' is a semidirect product of $D_4^3(q)$, and its group of outer automorphisms $\Gamma \cong \mathbb{Z}/3\mathbb{Z}$ generated by the conjugation action of ϖ .

Let π_{\min} be the "reflection" representation of $D_4^3(q)$. It is the smallest non-trivial unipotent representation [C, p. 478], its dimension is $q^5 - q^3 + q$. Let Π be the unique representation of H such that the K/K'-module $\Pi^{K'}$ is isomorphic to π_{\min} .

Theorem 3.4 (Rumelhart [R]) The representation Π is minimal. This means that the character expansion of Π is given by

$$\hat{\mu}_{\mathcal{O}_{\min}} + c\hat{\mu}_{\{0\}}$$

where O_{min} is the minimal non-trivial nilpotent orbit [CM], and c some constant.

4 Conjectures

Let π'_1 be the unique degenerate discrete series representation of $G_2(k)$ with one-dimensional space of Iwahori-fixed vectors [B]. Let $\pi'[\nu^a]$, a = 1, 2, be the unipotent supercuspidal representations of $G_2(k)$ induced from the unipotent cuspidal representations $G_2[\nu^a]$ [C, p. 478] of $G_2(q)$. In [GS2] we have introduced a conjecture describing the correspondence between representation of PD^{\times} and $G_2(k)$:

397

Conjecture 4.1

- (1) Representations $\Theta(\pi)$ are irreducible.
- (2) $\Theta(\pi_1) \cong \Theta(\pi_2)$ only if $\pi_1 \cong \pi_2$.
- (3) $\Theta(1) = \pi'_I$, and $\Theta(\pi)$ is supercuspidal if $\pi \neq 1$.
- (4) $\Theta(\chi_D) = \pi'[\nu]$, and $\Theta(\chi_D^2) = \pi'[\nu^2]$.

The unramified character χ_D of PD^{\times} will be specified in the last section. In Section 6 we shall prove the statements (3) and (4) of this conjecture.

5 Tools

In order to prove the statements (3) and (4) we need some technical results.

Proposition 5.1 Let $N_1 \supset U_1$ and $N_2 \supset U_2$ be the unipotent radicals of maximal parabolic subgroups of H and $G_2(k)$. We have the following equalities of Jacquet modules.

$$\begin{cases} \Pi_{N_1} = \Pi_{U_1} \\ \Pi_{N_2} = \Pi_{U_2}. \end{cases}$$

Proof We shall first prove the second statement. Recall that N_2 is a two-step nilpotent group, and let Z_2 be its one-dimensional center (it is also the center of U_2). Let \bar{N}_2 be the opposite unipotent radical, and \bar{Z}_2 its center. The Killing form on \mathfrak{h} induces a non-degenerate pairing $\langle \cdot, \cdot \rangle$ between N_2/Z_2 and \bar{N}_2/\bar{Z}_2 . Thus, every one-dimensional character of N_2/Z_2 is of the form

$$\psi_{\mathbf{y}}(\mathbf{x}) = \psi(\langle \mathbf{x}, \mathbf{y} \rangle)$$

for some \bar{x} in \bar{N}_2/\bar{Z}_2 , and ψ a given non-trivial additive character of k. If Π_{U_2} is not equal to Π_{N_2} , then there exists a non-trivial character $\psi_{\bar{x}}$ such that

$$\psi_{\bar{x}}|_{U_2} = 1$$
 and $(\Pi_{U_2})_{N_2,\psi_{\bar{x}}} \neq 0$

Since Π is minimal, \bar{x} has to lie in the smallest non-trivial M_2 -orbit in \bar{N}_2/\bar{Z}_2 . On the other hand, \bar{x} has to lie in the orthogonal complement of U_2/Z_2 in \bar{N}_2/\bar{Z}_2 . It can be checked that these two sets have empty intersection. This is a contradiction, and the second statement follows.

The first statement can be checked analogously. In fact, if Z_1 is the center of N_1 (it is also the center of U_1), then a stronger statement

$$\Pi_{N_1} = \Pi_{Z_1}$$

is true. The proposition is proved.

Corollary 5.2

$$\begin{cases} \Pi_{U_1} = (\pi'_I)_{U_1} \\ \Pi_{U_2} = (\pi'_I)_{U_2}. \end{cases}$$

398

A Class of Supercuspidal Representations of $G_2(k)$

Proof Note that π'_1 is unique representation of $G_2(k)$ such that, up to a twist by an unramified character, $(\pi'_1)_{U_1}$ is a Steinberg L_1 -module, and $(\pi'_1)_{U_1}$ is a trivial L_1 -module. The same is true for Π : up to a twist by an unramified character, Π_{N_1} is a Steinberg M_1 -module, and Π_{N_2} is a trivial M_2 -module. The corollary now follows from Proposition 5.1 (note that L_1 is the sole non-compact factor of M_1 , hence the Steinberg representation of M_1 restricts to the Steinberg representation of L_1).

Let (x, y, z) be the symmetric tri-linear form on *D* defined by (1.10). Let *x* be in *D*, and λ in *k*. Then

(5.3)
$$\operatorname{Char}_{x}(\lambda) = (\lambda - x, \lambda - x, \lambda - x)$$

is called a *characteristic polynomial* of x. Its leading coefficient is 6 (since (1, 1, 1) = 6).

Recall from [GS1], that characters of U_2 are parametrized by cubic polynomials. We have the following fundamental result [GS1, Ch. VI] and [HMS].

Proposition 5.4 Let P be a cubic polynomial with the leading coefficient 6, and ψ_P the corresponding character of U_2 . Then

$$\Pi_{U_2,\psi_P} = \mathcal{C}^{\infty}_{c}(\omega_P)$$

where

$$\omega_P = \{ x \in D \mid \operatorname{Char}_x = P \}.$$

Examples 5.5 (1) If $P(\lambda) = 6\lambda^3$, then $\omega_P = 0$, and $\Pi_{U_2,\psi_P} = \mathbb{C}$.

(2) If $P(\lambda) = 6\lambda^2(\lambda - 1)$, then $\omega_P = \emptyset$, and $\Pi_{U_2,\psi_P} = 0$.

(3) If $E = k[\lambda]/(P)$ is a cubic separable algebra, then $\omega_P = \emptyset$ unless E is a field, in which case

$$\Pi_{U_2,\psi_P} = \mathcal{C}^{\infty}_c(D^{\times}/E^{\times}).$$

Just as in [HMS] the first example imples that Π has no Whittaker vectors for $G_2(k)$. In particular, $\Theta(\pi)$ are degenerate. The third example is a consequence of the following two facts; any cubic field *E* is contained in *D*, and any two regular elements in *D* with the same characteristic polynomial are conjugated. Also, if *E* is a field, then the third example implies that

(5.6)
$$\Theta(\pi)_{U_2,\psi_p} \cong \pi^{E^{\times}}.$$

This is equivalent to (0.5) by [MW].

6 **Proofs**

In this section we shall prove the parts (3) and (4) of Conjecture 4.1. Recall from [HMS] that under the action of $\Gamma \times G_2(q)$ the reflection representation π_{\min} decomposes as

(6.1)
$$1 \otimes \phi_{1,3''} \oplus \chi_D \otimes G_2[\nu] \oplus \chi_D^2 \otimes G_2[\nu^2]$$

for a choice of the cubic character χ_D of Γ . Here $\phi_{1,3''}$ is a unipotent representation of $G_2(q)$ [C, p. 478].

https://doi.org/10.4153/CMB-1999-046-9 Published online by Cambridge University Press

It is the minimal *K*-type of π'_I . This and Corollary 5.2 immediately imply that π'_I is a direct summand of $\Theta(1)$, and $\pi'[\nu^a]$ is a direct summand of $\Theta(\chi^a_D)$, (a = 1, 2) (note that Γ is a quotient of PD^{\times} , hence χ_D is the unramified character mentioned in Conjecture 4.1).

Calculations of the previous section, compared with results of [HMS] where $\Theta(\chi_D^a)_{U_2,\psi_P}$ have been computed, show that

(6.2)
$$\dim\left(\pi'[\nu^a]\right)_{U_2,\psi_P} = \dim\left(\Theta(\chi^a_D)\right)_{U_2,\psi_P}$$

for any *P*. This implies that the complements of $\pi'[\nu^a]$ in $\Theta(\chi^a_D)$, (a = 1, 2), are trivial (for example, they have trivial character expansion). Also, the results of [HMS] combined with calculations in the Grothendieck group of representations of $G_2(k)$, show that

(6.3)
$$\dim(\pi_I')_{U_2,\psi_P} = \dim\big(\Theta(1)\big)_{U_2,\psi_P}$$

for any *P* defining a cubic separable algebra. Since $(\pi'_I)_{U_1}$ is a generic L_1 -module, it follows that $(\pi'_I)_{U_2,\psi_P} \neq 0$ for $P(\lambda) = 6\lambda^3$. In particular, we again have an equality in (6.3) for all *P*, and $\pi'_I = \Theta(1)$ follows. This proves the parts (3) and (4) of Conjecture 4.1 (cuspidality of $\Theta(\pi)$ if $\pi \neq 1$ follows from Corollary 5.2).

Acknowledgments The material contained here was presented by the author at a Number Theory Seminar at Harvard in November of 1996. The author would like to thank Professor B. Gross for the invitation.

References

- [B] A. Borel, Admissible representations of semi-simple group over a local field with vectors fixed under an Iwahori subgroup. Invent. Math. 35(1976), 233–259.
- [C] R. Carter, *Finite Groups of Lie Type*. Wiley, 1985.
- [CM] D. Collingwood and W. McGovern, Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold, New York, 1993.
- [GS1] B. Gross and G. Savin, *Motives with Galois group of type G*₂. Preprint.
- [GS2]B. Gross and G. Savin, The dual pair $PGL_3 \times G_2$. Canad. Math. Bull. **40**(1997), 376–384.[H-C]Harish-Chandra, Admissible invariant distributions on reductive p-adic groups. Queen's Papers in Pure
- and Appl. Math. 40(1978), 281–347.
 [HMS] J.-S. Huang, K. Magaard and G. Savin, Unipotent representations of G₂ arising from the minimal representation of D^E_A. Crelles J., to appear.
- [MS] K. Magaard and G. Savin, *Exceptional* Θ -correspondences I. Compositio Math. 107(1997), 1–35.
- [MW] C. Moeglin and J.-L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes p-adiques. Math. Z. 196(1987), 427–452.
- [R] K. Rumelhart, Minimal Representation for Exceptional p-adic Groups. Represent. Theory 1(1997), 133– 181.
- [Wr] D. Wright, *The adelic zeta function associated to the space of binary cubic forms*. Math. Ann. **270**(1985), 503–534.

Department of Mathematics University of Utah Salt Lake City, Utah 84112 U.S.A. email: savin@math.utah.edu