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Abstract

Given a domain Ω of a complete Riemannian manifoldM, define A to be the Laplacian with Neumann
boundary condition on Ω. We prove that, under appropriate conditions, the corresponding heat kernel
satisfies the Gaussian upper bound

h(t, x, y) ≤
C

[VΩ(x,
√

t)VΩ(y,
√

t)]1/2

(
1 +

d2(x, y)
4t

)δ
e−d2(x,y)/4t for t > 0, x, y ∈ Ω.

Here d is the geodesic distance onM, VΩ(x, r) is the Riemannian volume of B(x, r) ∩Ω, where B(x, r) is
the geodesic ball of centre x and radius r, and δ is a constant related to the doubling property of Ω. As a
consequence we obtain analyticity of the semigroup e−tA on Lp(Ω) for all p ∈ [1,∞) as well as a spectral
multiplier result.
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1. Introduction and main results

This short note is devoted to the Gaussian upper bound for the heat kernel of the
Neumann Laplacian. Let us start with the Euclidean setting in which Ω is a bounded
Lipschitz domain of Rn. Let ∆N be the Neumann Laplacian. It is well known that the
corresponding heat kernel h(t, x, y) satisfies

0 ≤ h(t, x, y) ≤ Ct−n/2ete−c|x−y|2/t, t > 0, x, y ∈ Ω. (1.1)

One can replace the extra term et by (1 + t)n/2 but the decay h(t, x, y) ≤ Ct−n/2 cannot
hold for large t since et∆N 1 = 1. We refer to the monographs [5] or [14] for more
details.

In applications, for example when applying the Gaussian bound to obtain spectral
multiplier results, one can apply (1.1) to −∆N + I (or εI for any ε > 0) and not to −∆N .
It is annoying to add the identity operator especially as it is not clear how the functional
calculus for −∆N can be related to that of −∆N + I. The same problem occurs for
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analyticity of the semigroup et∆N on Lp(Ω) for p ∈ [1,∞). One obtains from (1.1)
analyticity of the semigroup but not a bounded analytic semigroup. This boundedness
(on sectors of the right half plane) is important in order to obtain appropriate estimates
for the resolvent or for the time derivatives of the solution to the corresponding
evolution equation on Lp. In this note we will show in an elementary way how one
can resolve this question. The idea is that (1.1) can be improved to a Gaussian upper
bound of the type

h(t, x, y) ≤
C

[VΩ(x,
√

t)VΩ(y,
√

t)]1/2
e−c|x−y|2/t, t > 0, x, y ∈ Ω, (1.2)

where VΩ(x, r) denotes the volume of Ω ∩ B(x, r) and B(x, r) is the open ball of centre
x and radius r. There is no extra factor in (1.2) and one can use this estimate in various
applications of Gaussian bounds instead of (1.1).

We shall state most of the results for Lipschitz domains of general Riemannian
manifolds.

Let (M, g) be a complete Riemannian manifold of dimension n without boundary.
Let Ω be a subdomain ofM with Lipschitz boundary Γ. That is, Γ can be described
in an appropriate local coordinate system by means of graphs of Lipschitz functions.
Specifically, for any p ∈ Γ, there exist a local chart (U, ψ), ψ : U → Rn with ψ(p) = 0
and a Lipschitz function λ : Rn−1 → R with λ(0) = 0 and ε > 0, such that

ψ(U ∩Ω) = {(x′, λ(x′) + t); 0 < t < ε, x′ ∈ Rn−1, |x′| < ε},
ψ(U ∩ Γ) = {(x′, λ(x′)); x′ ∈ Rn−1, |x′| < ε}.

We use the Einstein summation convention for repeated indices. We recall that, in
local coordinates x = (x1, . . . , xn),

g(x) = gi jdxi ⊗ dx j.

If f ∈ C∞(M), the gradient of f is the vector field given by

∇ f = gi j ∂ f
∂xi

∂

∂x j

and the Laplace–Beltrami operator is the operator acting as follows:

∆ f = |g|−1/2 ∂

∂xi

(
|g|1/2gi j ∂ f

∂x j

)
,

where (gi j) is the inverse of the metric g and |g| is the determinant of g.
Let µ be the Riemannian measure induced by the metric g. That is

dµ = |g|1/2dx1 . . . dxn.

We set L2(Ω) = L2(Ω, dµ). Let H1(Ω) be the closure of C∞0 (Ω) with respect to the
norm

‖ f ‖H1(Ω) =

(∫
Ω

f (x)2 dµ(x) +

∫
Ω

|∇ f (x)|2 dµ(x)
)1/2

.
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Here
|∇ f |2 = 〈∇ f ,∇ f 〉,

where
〈∇ f ,∇g〉 = gi j ∂ f

∂xi

∂g
∂x j

.

We consider on L2(Ω) × L2(Ω) the unbounded bilinear form

a( f , g) =

∫
Ω

〈∇ f ,∇g〉 dµ(x)

with domain D(a) = H1(Ω).
Since Γ is Lipschitz, the unit conormal ν ∈ T ∗M is defined almost everywhere with

respect to the surface measure dσ. Let ∂ν f = 〈∇ f , ν〉 = gi jνi(∂ f /∂x j) and

H∆(Ω) = { f ∈ L2(Ω); ∆ f ∈ L2(Ω)}.

We recall the Green’s formula∫
Ω

〈∇ f ,∇g〉 dµ = −

∫
Ω

∆ f g dµ +

∫
Γ

∂ν f g dσ, f ∈ C∞0 (Ω), g ∈ H1(Ω).

In light of this formula, we define ∂ν f , f ∈ H∆(Ω), as an element of H−1/2(Γ), the dual
space of H1/2(Γ), by the formula

(∂ν f , g)1/2 :=
∫

Ω

∆ f g dµ +

∫
Ω

〈∇ f ,∇g〉 dµ, g ∈ H1(Ω).

Here (·, ·)1/2 is the duality pairing between H1/2(Γ) and H−1/2(Γ).
We define the operatorAu = −∆u with domain

D(A) = {u ∈ H∆(Ω); ∂νu = 0}.

Then it is straightforward to see thatA is the operator associated to the form a.
Let d be the geodesic distance and B(x, r) be the geodesic ball with respect to d of

centre x ∈ M and radius r > 0, and set V(x, r) = µ(B(x, r)).
We assume in what follows that M satisfies the volume doubling property

(abbreviated to VD from here on): there exists C > 0 so that

V(x, 2r) ≤ CV(x, r), x ∈ M, r > 0.

We shall assume that the heat kernel p(t, x, y) of the Laplacian on M satisfies the
Gaussian upper bound

p(t, x, y) ≤
C

[V(x,
√

t)V(y,
√

t)]1/2
e−cd2(x,y)/t, t > 0, x, y ∈ M (1.3)

in which C and c are positive constants.
A typical example of a manifold which satisfies both properties is a manifold with

nonnegative Ricci curvature. The volume doubling property is then an immediate
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consequence of the Gromov–Bishop theorem. The Gaussian upper bound can be found
in [11].

We define VΩ by

VΩ(x, r) = µ(B(x, r) ∩Ω), r > 0, x ∈ Ω.

The main assumption on Ω is the following variant of the VD property: there exist two
constants K > 0 and δ > 0 so that

VΩ(x, s) ≤ K
( s
r

)δ
VΩ(x, r), 0 < r ≤ s, x ∈ Ω. (1.4)

Note that this doubling property holds for all bounded Lipschitz domains of Rn

(with δ = n). We shall discuss this in Section 3.
Most of the results we will refer to are valid for metric measure space with Borel

measure. In our case this metric measure space is just (Ω, d, µ). Here, we keep the
notation d and µ for the distance and measure induced on Ω by d onM and µ onM.

Now we state our main results, which we formulate as the following theorem and
the subsequent corollaries.

Theorem 1.1.

(1) The operator −A generates a symmetric Markov semigroup e−tA with kernel
h ∈ C∞((0,∞) ×Ω ×Ω).

(2) Suppose thatM satisfies VD and (1.3) and Ω satisfies the VD property (1.4) and
diam (Ω) <∞. Then h has the Gaussian upper bound

h(t, x, y) ≤
C

[VΩ(x,
√

t)VΩ(y,
√

t)]1/2

(
1 +

d2(x, y)
4t

)δ
e−d2(x,y)/4t, t > 0, x, y ∈ Ω.

Since (1 + ρ)δe−ρ/2 is a bounded function on [0,∞), the following corollary is an
immediate consequence of Theorem 1.1.

Corollary 1.2. Suppose thatM satisfies VD and (1.3) and Ω satisfies the VD property
(1.4) and diam (Ω) <∞. Then

h(t, x, y) ≤
C

[VΩ(x,
√

t)VΩ(y,
√

t)]1/2
e−d2(x,y)/8t, t > 0, x, y ∈ Ω.

We note that for unbounded domains, Gaussian upper bounds for the Neumann heat
kernel are proved in [8].

Theorem 1.1 (2) or its corollary has several consequences.

Corollary 1.3. Suppose thatM satisfies VD and (1.3) and Ω satisfies the VD property
(1.4) and diam (Ω) <∞. Then:

(1) the semigroup e−tA extends to a bounded holomorphic semigroup of C+ on
Lp(Ω, µ) for all p ∈ [1,∞);

(2) the spectrum of A, viewed as an operator acting on Lp(Ω), p ∈ [1,∞), is
independent of p.
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Assertion (1) is a consequence of Corollary 1.2 combined with [14, Corollary 7.5,
page 202]. It was originally proved in [13]. Assertion (2) follows from a result in [6]
which asserts that a Gaussian upper bound implies p-independence of the spectrum.
See also [14, Theorem 7.10, page 206] for the general form needed here.

Let (Eλ) be the spectral resolution of the nonnegative self-adjoint operator A. We
recall that for any bounded Borel function f : [0,∞)→ C, the operator f (A) is defined
by

f (A) =

∫ ∞

0
f (λ) dEλ.

An operator T on the measure space (Ω, µ) is said to be of weak type (1, 1) if

‖T‖L1(Ω)→L1
w(Ω) := sup{λµ({x ∈ Ω; |Tϕ(x)| > λ}); λ > 0, ‖ϕ‖L1(Ω) = 1} <∞.

In light of [7, Theorem 1.3, page 450 and Remark 1, page 451], the following
corollary is another consequence of Corollary 1.2.

Corollary 1.4. Suppose that M satisfies VD and (1.3) and Ω satisfies the VD
property (1.4) and diam (Ω) < ∞. Let s > δ/2, where δ is as in (1.4), ϕ ∈ C∞0 ((0,∞))
not identically equal to zero and f : [0,∞)→ C a Borel function satisfying

sup
t>0
‖ϕ(·) f (t·)‖W s,∞ <∞.

Then f (A) is of weak type (1, 1) and bounded on Lp(Ω) for any p ∈ (1,∞).
Additionally,

‖ f (A)‖L1(Ω)→L1
w(Ω) ≤ Cs

(
sup
t>0
‖ϕ(·) f (t·)‖W s,∞ + | f (0)|

)
.

A particular case of this corollary concerns the imaginary powers of A. Precisely,
Air, r ∈ R, extends to a bounded operator on Lp(Ω), p ∈ (1,∞), and, for any ε > 0,
there is a constant Cε > 0 so that

‖Air‖B(Lp(Ω)) ≤ Cε(1 + |r|)δ|1/2−1/p|+ε . (1.5)

Indeed, an application of the previous corollary with f (λ) = λir shows that

‖Air‖L1(Ω)→L1
w(Ω) ≤ Cε(1 + |r|)δ/2+ε .

On the other hand, the standard functional calculus for self-adjoint operators gives

‖Air‖B(L2(Ω)) ≤ 1.

Therefore, (1.5) follows by interpolation. We refer to [14, Corollary 7.24, page 239]
for more details.
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2. Proof of the main theorem

Proof of Theorem 1.1. (1) We first recall that −A generates on L2(Ω) an analytic
semigroup e−tA. Note that

e−tA =

∫ +∞

0
e−tλ dEλ, t ≥ 0.

Proposition 2.1.

(a) The semigroup e−tA is positivity preserving.
(b) The semigroup e−tA is a contraction on Lp(Ω) = Lp(Ω, dµ) for all 1 ≤ p ≤ ∞ and

t ≥ 0.

Proof. (a) We recall that if u ∈ H1(Ω), then u+, u− ∈ H1(Ω) and ∇|u| = ∇u+ + ∇u−.
Hence

a(|u|, |u|) = a(u, u), u ∈ H1(Ω).

In light of [5, Theorem 1.3.2, page 12], we deduce that e−tA is positivity preserving.
(b) If 0 ≤ u ∈ H1(Ω), then one can check in a straightforward manner that u ∧ 1 =

min(u, 1) ∈ H1(Ω) and

∇(u ∧ 1) =

∇u in [u > 1],
0 in [u ≤ 1].

Therefore e−tA is a contraction semigroup on Lp(Ω) for all p with 1 ≤ p ≤ ∞ by [5,
Theorem 1.3.3, page 14]. �

This proposition says that e−tA is a symmetric Markov semigroup.
We have for any integer k,

Ake−tA =

∫ +∞

0
λke−tλ dEλ. (2.1)

Therefore, e−tA f ∈ D(A), for all f ∈ L2(Ω) and t > 0.
On the other hand, we get from the usual interior elliptic regularity⋂

k∈N

D(Ak) ⊂ C∞(Ω).

Hence, x→ e−tA f (x) belongs to C∞(Ω) for any fixed t > 0. But, t→ e−tA f is analytic
on (0,∞) with values in the Hilbert space D(Ak). Consequently, (t, x)→ e−tA f (x) is
in C∞((0,∞) ×Ω).

From now on, the scalar product of L2(Ω) will be denoted by (·, ·)2,Ω and the norm
of Lp(Ω), 1 ≤ p ≤ ∞, by ‖ · ‖p,Ω. The norm of Lp(M) is simply denoted by ‖ · ‖p,
1 ≤ p ≤ ∞.
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We fix t > 0. Since λ→ λke−tλ attains its maximum value at λ = k/t, we obtain from
(2.1) for f ∈ L2(Ω)

‖Ake−tA f ‖22,Ω =

∫ ∞

0
[λke−λt]2 d‖Eλ f ‖22,Ω

≤ sup
λ>0

[λke−λt]2
∫ ∞

0
d‖Eλ f ‖22,Ω

≤

(k
t

)2k
e−2k‖ f ‖22,Ω. (2.2)

Again by the interior elliptic regularity, D(Ak) is continuously embedded in C(Ω)
when k is sufficiently large. This and (2.2) entail: for any ω b Ω, there exists
C = C(Ω, ω, k) so that

sup
ω

|e−tA f | ≤
C
tk

2

‖ f ‖2,Ω.

In particular, for any fixed x ∈ Ω and t > 0, the (linear) mapping f → e−tA f (x) is
continuous. We can then apply the Riesz representation theorem to deduce that there
exists `(t, x) ∈ L2(Ω) so that

e−tA f (x) = (`(t, x), f )2,Ω, x ∈ Ω, t > 0.

Therefore, (t, x)→ `(t, x) ∈ L2(Ω) is weakly C∞ on (0,∞) × Ω and hence norm C∞

by [4, Section 1.5].
Let h(t, x, y) = (`(t/2, x), `(t/2, y)). Then h ∈ C∞((0,∞) ×Ω ×Ω) and

(e−tA f , g)2,Ω = (e−(t/2)A f , e−(t/2)Ag)2,Ω =

∫
Ω

∫
Ω

h(t, x, y) f (x)g(y) dµ(x) dµ(y)

for f , g ∈ C∞0 (Ω). By the density of C∞0 (Ω) in L2(Ω), the last identity yields

e−tA f (x) =

∫
Ω

h(t, x, y) f (x) dµ(x), t > 0, x ∈ Ω, f ∈ L2(Ω).

(2) We start with the following proposition.

Proposition 2.2. The semigroup e−tA satisfies the Davies–Gaffney property
(abbreviated to DG from here on). That is, for any t > 0, U1, U2 open subsets of
Ω, f ∈ L2(U1, dµ) and g ∈ L2(U2, dµ),

|(e−tA f , g)2,Ω| ≤ e−r2/4t‖ f ‖2,Ω ‖g‖2,Ω.

Here
r = dist(U1,U2) = inf

x∈U1,y∈U2
d(x, y).

Proof. We omit the proof, which is similar to that of [3, Theorem 3.3, page 515]. �
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We now observe that Ω has the 1-extension property (see for instance [12,
Theorem C]). In other words, there exists E ∈ B(H1(Ω),H1(M)) satisfying (Eu)|Ω = u,
u ∈ H1(Ω).

On the other hand, since M has the volume doubling property and the Gaussian
bound (1.3), it follows from [1, Theorem 1.2.1] that the following Gagliardo–
Nirenberg type inequality holds: for 2 < q ≤ +∞, there exists a constant C > 0 so
that

‖ f V1/2−1/q(·, r)‖q ≤ C(‖ f ‖2 + r‖|∇ f |‖22), r > 0, f ∈ C∞0 (M). (2.3)

In light of (2.3) and using VΩ(·, r) ≤ V(·, r) in Ω, we obtain for r > 0, f ∈ H1(Ω) and
fixed 2 < q ≤ ∞,

‖ f V1/2−1/q
Ω

(·, r)‖q,Ω ≤ ‖ f V1/2−1/q(·, r)‖q,Ω
≤ ‖(E f )V1/2−1/q‖q

≤ C(‖E f ‖2 + r‖|∇(E f )|‖2)
≤ C‖E‖((1 + r)‖ f ‖2,Ω + r‖|∇ f |‖2,Ω).

Here ‖E‖ is the norm of E in B(H1(Ω),H1(M)). Hence

‖ f VΩ(·, r)1/2−1/q‖q,Ω ≤ C(‖ f ‖2,Ω + r‖|∇ f |‖2,Ω), r > 0, f ∈ H1(Ω),

where we used the fact that VΩ(·, r) = VΩ(·, r0) = µ(Ω), for all r ≥ r0 = diam (Ω).
We then apply [1, Theorem 1.2.1] to show that h possesses a diagonal upper bound.

In other words, there exists a constant C > 0 so that

h(t, x, x) ≤
C

[VΩ(x,
√

t)VΩ(x,
√

t)]1/2
, t > 0, x ∈ Ω. (2.4)

Since e−tA has the DG property by Proposition 2.2, from [3, Corollary 5.4, page 524],

h(t, x, y) ≤
eC

[VΩ(x,
√

t)VΩ(y,
√

t)]1/2

(
1 +

d2(x, y)
4t

)δ
e−(d2(x,y)/4t), t > 0, x, y ∈ Ω.

The proof is then complete. �

3. Domains with volume doubling property

3.1. Flat case. It is known that any bounded Lipschitz domain of Rn satisfies the
volume doubling property. We discuss this again here. We consider Rn equipped with
its Euclidean metric g = (δi j). Let

C (y, ξ, ε) = {z ∈ Rn; (z − y) · ξ ≥ (cos ε)|z − y|, 0 < |y − z| < ε},

where y ∈ Rn, ξ ∈ Sn−1 and 0 < ε. That is, C (y, ξ, ε) is the cone of dimension ε, with
vertex y, aperture ε and directed by ξ.

We say that Ω has the ε-cone property if

for any x ∈ Γ, there exists ξx ∈ S
n−1 so that, for all y ∈ Ω ∩ B(x, ε),C (y, ξx, ε) ⊂ Ω.
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Let Ω be a bounded Lipschitz domain of Rn. Then, by [9, Theorem 2.4.7, page 53],
Ω has the ε-cone property, for some ε > 0. As in [2], this implies that there exist c0 > 0
and ρ > 0 so that

VΩ(x, r) = |B(x, r) ∩Ω| ≥ c0rn, x ∈ Ω, 0 < r ≤ ρ. (3.1)

An immediate consequence is that Ω (equipped with its euclidean metric) satisfies
the volume doubling property. Indeed, let r0 = diam (Ω) and 0 < r ≤ s. Then (3.1)
entails

VΩ(x, s) ≤ c1sn = c1

( s
r

)n
rn ≤

c1

c0

( s
r

)n
VΩ(x, r), 0 < r ≤ ρ, (3.2)

where c1 = |B(0, 1)|.
Also, when ρ < r0,

VΩ(x, s) ≤
c1

c0

( s
ρ

)n
VΩ(x, ρ) ≤

c1

c0

(r0

ρ

)n( s
r

)n
VΩ(x, r), ρ < r ≤ r0. (3.3)

Finally, it is obvious that

VΩ(x, s) = |Ω| = VΩ(x, r0) ≤
( s
r

)n
VΩ(x, r), r > r0. (3.4)

Estimates (3.2)–(3.4) show the volume doubling property.

3.2. Manifold with sectional curvature bounded from above. Let TxM be the
tangent space at x ∈ M, Sx ⊂ TxM the unit tangent sphere and SM the unit tangent
bundle. Let Φt be the geodesic flow with phase space SM. That is, for any t ≥ 0,

Φt : SM→ SM : (x, ξ) ∈ SM→ Φt(x, ξ) = (γx,ξ(t), γ̇x,ξ(t)).

Here γx,ξ : [0,∞)→M is the unit speed geodesic starting at x with tangent unit vector
ξ and γ̇x,ξ(t) is the unit tangent vector to γx,ξ at γx,ξ(t) in the forward t direction.

If (x, ξ) ∈ SM, we denote by r(x, ξ) the distance from x to the cutlocus in the
direction of ξ:

r(x, ξ) = inf{t > 0; d(x,Φt(x, ξ)) < t}.

We fix δ ∈ (0, 1] and r > 0. Following [15], a (δ, r)-cone at x ∈ M is the set of the
form

C (x, ωx, r) = {y = γx,ξ(s); ξ ∈ ωx, 0 ≤ s < r},

where ωx is a subset of Sx so that r < r(x, ξ) for all ξ ∈ ωx and |ωx| ≥ δ (here |ωx| is the
volume of ωx with respect to the normalised measure on the sphere Sx).

A domain D which contains a (δ, r)-cone at x for any x ∈ D is said to satisfy the
interior (δ, r)-cone condition.

Let

sκ(r) =



(sin(
√
κr)

√
κ

)n−1
if κ > 0,

rn−1 if κ = 0,(sinh(
√
−κr)

√
−κ

)n−1
if κ < 0.
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We assume that the sectional curvature of M is bounded above by a constant κ,
κ ∈ R, and Ω satisfies the interior (δ, r)-cone condition. Let J(x, ξ, t) be the density of
the volume element in geodesic coordinates around x. That is

dV(y) = J(x, ξ, t)dSx dt, y = γx,ξ(t), t < r(x, ξ).

By an extension of Günther’s comparison theorem (see for instance [10]), J satisfies
the uniform lower bound

J(x, ξ, t) ≥ sκ(t).

Consequently, for some r0 > 0,

VΩ(x, r) ≥ V(C (x, ωx, r)) ≥ c0rn, x ∈ Ω, 0 < r ≤ r0.

We proceed similarly to the flat case to prove the following lemma.

Lemma 3.1. Assume thatM has sectional curvature bounded from above and satisfies
the volume growth condition

V(x, r) ≤ c1rn, 0 < r ≤ r1,

for some constants c1 and r1. If Ω is of finite diameter and satisfies the (δ, r)-cone
condition, then VΩ is doubling.
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UMR CNRS 5251, Université de Bordeaux,
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