Bull. Austral. Math. Soc. Vol. 54 (1996) [197-202]

MEASURE CONVERGENT SEQUENCES IN LEBESGUE SPACES AND FATOU'S LEMMA

HEINZ-ALBRECHT KLEI

Let (f_n) be a sequence of positive *P*-integrable functions such that $(\int f_n dP)_n$ converges. We prove that (f_n) converges in measure to $\lim_{n\to\infty} f_n$ if and only if equality holds in the generalised Fatou's lemma. Let f_∞ be an integrable function such that $(\|f_n - f_\infty\|_1)_n$ converges. We present in terms of the modulus of uniform integrability of (f_n) necessary and sufficient conditions for (f_n) to converge in measure to f_∞ .

1. INTRODUCTION

In [6] we proved the following result: let (Ω, Σ, P) be a probability space and (f_n) a sequence of positive integrable functions such that $(\int f_n dP)_n$ converges. Then (f_n) converges in norm to $\lim_{n\to\infty} f_n$ if and only if equality holds in Fatou's lemma. This is a striking example of the well known fact that under suitable extreme point conditions, weak convergence in L^1 -spaces (and even much less) implies strong convergence [1]. By means of the modulus of uniform integrability of (f_n) (to be defined later), we proved a generalisation of Fatou's lemma [6, Corollary 4]. In the present paper we pose the following question: when does (f_n) converge in measure to $\lim_{n\to\infty} f_n$? We show that this is the case if and only if for all subsequences of (f_n) equality holds in the generalised Fatou's lemma (Theorem 3). More generally we study the convergence in measure of a bounded sequence (f_n) to an arbitrary element $f_{\infty} \in L^1(\mathbb{R})$ (Theorem 7). Both Theorem 3 and Theorem 5 enable us to give a straightforward proof of Lebesgue's convergence Theorem [3, p.122].

2. PRELIMINARIES

Throughout this paper, (Ω, Σ, P) will be probability space. We shall consider the Banach space $L^1(\mathbb{R})$ of all (classes of) P-Bochner-integrable functions from Ω to \mathbb{R} .

Received 16 October 1995

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

In [7] Rosenthal defined the modulus of uniform integrability $\eta(H)$ of a bounded subset $H \subseteq L^1(\mathbb{R})$: For $\varepsilon > 0$, put

$$egin{aligned} &\eta(H,\,arepsilon) &= \sup \Big\{ \int_A |h| \, dP \colon h \in H, \, A \in \Sigma, \, P(A) \leqslant arepsilon \Big\}, \ &\eta(H) &= \lim_{arepsilon o 0^+} \eta(H,\,arepsilon). \end{aligned}$$

Thus H is uniformly integrable if and only if $\eta(H) = 0$.

3. Results

We start with a lemma proved in [4] and extended to Banach space valued integrable functions in [5].

LEMMA 1. Let $f = (f_n)$ be a bounded sequence in $L^1(\mathbb{R}_+)$ converging in measure to an element f_{∞} of $L^1(\mathbb{R}_+)$. Then the following assertions are equivalent:

- (i) $\lim_{n \to +\infty} \int f_n dP = \eta(f) + \int f_\infty dP$ and $\eta(f') = \eta(f)$ for each subsequence f' of f:
- (ii) the sequence of reals $(\int f_n dP)_n$ converges in \mathbb{R}_+ .

COROLLARY 2. Let $f = (f_n)$ be a bounded sequence in $L^1(\mathbb{R})$ converging in measure to $f_{\infty} \in L^1(\mathbb{R})$. Then $(||f_n - f_{\infty}||_1)_n$ converges in \mathbb{R} if and only if $\eta(f') = \eta(f)$ for each subsequence f' of f and in this case $\lim_{n \to +\infty} ||f_n - f_{\infty}||_1 = \eta(f)$.

THEOREM 3. Let $f = (f_n)$ be a bounded sequence in $L^1(\mathbb{R}_+)$ such that the sequence $(\int f_n dP)$ converges in \mathbb{R}_+ . Then the following assertions are equivalent:

- (i) $\lim_{n \to +\infty} \int f_n \, dP = \eta(f) + \int \lim_{n \to \infty} f_n \, dP$ and $\eta(f') = \eta(f)$ for each subsequence f' of f;
- (ii) the sequence (f_n) converges in measure to $\lim_{n \to \infty} f_n$.

PROOF: The implication (ii) \Rightarrow (i) is a consequence of Lemma 1. Suppose now that (i) is true. Let $f' = (f'_n)$ be a subsequence of f. On account of the generalised Fatou's lemma [6, Corollary 4], we have

$$\lim_{n\to+\infty}\int f_n\,dP \ge \eta(f) + \int \underline{\lim}_{n\to\infty}f'_n\,dP.$$

By comparing this inequality with the hypothesis, we obtain the following relation:

$$\int \underline{\lim}_{n \to \infty} f_n \, dP \geqslant \int \underline{\lim}_{n \to \infty} f'_n \, dP.$$

It follows that $\lim_{n\to\infty} f_n = \lim_{n\to\infty} f'_n$ *P*-almost everywhere. Hence

$$\lim_{n\to+\infty}\int f'_n\,dP=\eta(f')+\int \underline{\lim}_{n\to\infty}f'_n\,dP.$$

So Theorem 10 of [6] applies to the sequence (f'_n) and says that there is a further subsequence (f''_n) of (f'_n) converging in measure to $\lim_{n \to \infty} f'_n$, which equals $\lim_{n \to \infty} f_n P$ -almost everywhere.

The proof is complete.

PROPOSITION 4. Let $f = (f_n)$ be a bounded sequence in $L^1(\mathbb{R}_+)$ and let $f' = (f'_n)$ a subsequence of f such that $\lim_{n \to +\infty} \int f'_n dP = \lim_{n \to \infty} \int dP$. Then the following assertions are equivalent:

- (i) $\lim_{n \to \infty} \int f_n \, dP = \eta(f') + \int \lim_{n \to \infty} f_n \, dP \text{ and } \eta(f') = \eta(f'') \text{ for each subsequence } f'' \text{ of } f';$
- (ii) the sequence (f'_n) converges in measure to $\lim_{n\to\infty} f_n$.

PROOF: Suppose that (i) is true. Let $f' = (f'_n)$ be a subsequence of (f_n) satisfying the hypothesis of Proposition 4. It follows that

(1)
$$\lim_{n \to +\infty} \int f'_n dP = \eta(f') + \int \lim_{n \to \infty} f_n dP \leqslant \eta(f') + \int \lim_{n \to \infty} f'_n dP.$$

By the generalised Fatou's lemma [6, Corollary 4] we obtain

$$\lim_{n \to +\infty} \int f'_n \, dP \ge \eta(f') + \int \lim_{n \to \infty} f'_n \, dP.$$

Thus we have two equalities in (1). Since all subsequences of f' have the same modulus of uniform integrability, Theorem 3 applies to the sequence f'. Consequently (f'_n) converges in measure to $\lim_{n\to\infty} f'_n$. Now $\lim_{n\to\infty} f'_n$ and $\lim_{n\to\infty} f_n$ are comparable and their integrals coincident because of the second equality in (1). This means that $\lim_{n\to\infty} f'_n(\omega) = \lim_{n\to\infty} f_n(\omega) P$ -almost everywhere.

Conversely, suppose that (ii) is true and let $f' = (f'_n)$ be a subsequence of f such that

$$\lim_{n\to+\infty}\int f'_n\,dP=\lim_{n\to\infty}\int f_n\,dP.$$

As (f'_n) converges in measure to $\lim_{n \to \infty} f_n$, we can apply the implication (ii) \Rightarrow (i) of Lemma 1 to the sequence (f'_n) , and the proof is done.

0

[4]

Let us consider a special case of Theorem 3. If $\eta(f) = 0$, then we obtain a result which was the starting point of our investigation. Note that it was used in the proof of Theorem 3.

THEOREM 5. Let $f = (f_n)$ be a bounded sequence in $L^1(\mathbb{R}_+)$. Then the following assertions are equivalent:

- (i) $(\int f_n dP)$ converges in \mathbb{R}_+ and $\lim_{n \to +\infty} \int f_n dP = \int \lim_{n \to \infty} f_n dP$;
- (ii) (f_n) converges in norm to $\lim_{n\to\infty} f_n$.

PROOF: Suppose that (i) is true. By the generalised Fatou's lemma we have

$$\lim_{n \to +\infty} \int f_n \, dP \ge \eta(f) + \int \lim_{n \to \infty} f_n \, dP$$

It follows that $\eta(f) = 0$. We know from Theorem 3 that (f_n) converges in measure to $\lim_{n \to \infty} f_n$. Note that a measure convergent and uniformly integrable sequence converges in norm.

REMARK. As pointed out in [6], the combination of Theorem 5 and Fatou's lemma yields Lebesgue's convergence theorem [3, p.122].

LEMMA 6. Let $f = (f_n)$ be a bounded sequence in $L^1(\mathbb{R})$ converging in measure to an element f_{∞} belonging to $L^1(\mathbb{R})$. Then the sequence $(||f_n||_1)$ converges if and only if $(||f_n - f_{\infty}||)$ does and in this case we have $\lim_{n \to +\infty} ||f_n - f_{\infty}||_1 = \eta(f) = \lim_{n \to +\infty} (||f_n||_1 - ||f_{\infty}||_1)$.

PROOF: We know from Brezis and Lieb [2] that

$$\lim_{n \to +\infty} (\|f_n\|_1 - \|f_n - f_\infty\|_1)_n = \|f_\infty\|_1.$$

Suppose that $\lim_{n \to +\infty} ||f_n||_1$ exists. As $(|f_n|)_n$ converges in measure to $|f_\infty|$, it follows from Lemma 1 of [4] that

$$\lim_{n\to+\infty} \left\|f_n\right\|_1 = \eta(f) + \left\|f_\infty\right\|_1.$$

The combination of the last two equalities yields the first implication. To prove the opposite implication, suppose that the sequence $(\|f_n - f_{\infty}\|_1)_n$ converges. We know from Lemma 1 of [4] that its limit is $\eta(f)$. An application of Brezis' and Lieb's equality completes the proof.

THEOREM 7. Let $f = (f_n)$ be a bounded sequence in $L^1(\mathbb{R})$ and let f_{∞} be an element of $L^1(\mathbb{R})$. Suppose that $(\|f_n - f_{\infty}\|_1)_n$ converges in \mathbb{R} . Then the following assertions are equivalent:

(i) (f_n) converges in measure to f_{∞} ;

(ii) $\lim_{n \to +\infty} ||f_n - f_\infty||_1 \leq \eta(f)$ and $\eta(f) = \eta(f')$ for each subsequence f' of f.

(iii)
$$\lim_{n \to +\infty} ||f_n - f_\infty||_1 = \eta(f)$$
 and $\eta(f) = \eta(f')$ for each subsequence f' of f .

PROOF: We know from Corollary 2 that (i) implies (iii). Suppose now that (ii) is true and let $f' = (f'_n)$ be any subsequence of f. Note that

$$\lim_{n\to+\infty}\|f_n'-f_\infty\|_1\leqslant\eta(f').$$

Hence Theorem 6 of [4] applies to the subsequence (f'_n) and says that there is a further subsequence (f''_n) of (f'_n) which converges in measure to f_{∞} . Consequently assertion (i) follows.

PROPOSITION 8. Let $f = (f_n)$ be a bounded sequence in $L^1(\mathbb{R}_+)$ such that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^n\int f_k\,dP=\int\underline{\lim}_{n\to\infty}f_n\,dP.$$

Then the following statements hold:

(i) (1/n ∑_{k=0}ⁿ f_k)_n converges in norm to lim f_n;
(ii) Let f' = (f'_n) be any subsequence of (f_n) satisfying lim _{n→+∞} ∫ f'_n dP = lim _{n→∞} ∫ f_n dP. Then (f'_n) converges in norm to lim f_n.

PROOF: Put $m(f) = \left(1/n \sum_{k=0}^{n} \int f_k \, dP\right)_n$. Note that

$$\int \underbrace{\lim_{n \to \infty} f_n \, dP}_{n \to \infty} \frac{1}{n} \sum_{k=0}^n \int f_k \, dP \ge \eta(m(f)) + \int \underbrace{\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^n f_k \, dP}_{\ge \eta(m(f)) + \int \underbrace{\lim_{n \to \infty} f_n \, dP}_{n \to \infty}}$$

The first of the preceding inequalities comes from the generalised Fatou's lemma. The second one is obvious. It follows that $\eta(m(f)) = 0$ and that $\lim_{n \to \infty} f_n(\omega) =$

 $\lim_{n\to\infty} 1/n \sum_{k=0}^{n} f_k(\omega) P$ -almost everywhere. Now the hypothesis can be written as follows:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^n\int f_k\,dP=\int\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^nf_k\,dP.$$

Theorem 5 applies and yields the assertion (i).

Let $f' = (f'_n)$ be as in (ii). Note that

$$\lim_{n \to \infty} f_n \int f_n \, dP \leqslant \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^n \int f_k \, dP = \int \lim_{n \to \infty} f_n \, dP$$

In particular we have $\lim_{n\to\infty} \int f_n dP = \int \lim_{n\to\infty} f_n dP$. On the other hand, we know that

$$\lim_{n\to\infty}\int f_n\,dP=\lim_{n\to+\infty}\int f_n'\,dP\geqslant \eta(f')+\int \lim_{n\to\infty}f_n'\,dP\geqslant \eta(f')+\int \lim_{n\to\infty}f_n\,dP.$$

So the preceding inequalities reduce to equalities and it follows that $\eta(f') = 0$. Proposition 4 or Theorem 5 enable us to say that (f'_n) converges in norm to $\lim_{n \to \infty} f_n$.

References

- E.J. Balder, 'On equivalence of strong and weak convergence in L₁-spaces under extreme point conditions', Israel J. Math. 75 (1991), 21-47.
- [2] H. Brezis and E. Lieb, 'A relation between pointwise convergence of functions and convergence of functionals', Proc. Amer. Math. Soc. 88 (1983), 486-490.
- [3] N. Dunford and J.T. Schwartz, *Linear operators, Part I* (Interscience Publishers, New York, 1962).
- [4] H.-A. Klei, 'Convergences faible, en measure et au sens de Cesaro dans L¹(ℝ)', C.R. Acad. Sci. Paris 315, Série I (1992), 9-12.
- [5] H.-A. Klei, 'Convergence and extraction of bounded sequences in $L^1(\mathbb{R})$ ', J. Math. Anal. Appl. (to appear).
- [6] H.-A. Klei and M. Miyara, 'Une extension du lemme de Fatou', Bull. Sci. Math. (2^e série) 115 (1991), 211-222.
- [7] H.P. Rosenthal, 'Sous-espaces de L^1 ', (Lectures held at the University Paris VI, 1979).

Université de Reims Département de Mathématiques Moulin de la Housse B P 347 51062 Reims Cedex France e-mail: heinz.klei@univ-reims.fr

202