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Shear bands are common in dense quasi-static granular flows. They can appear in the
interior of the flowing material or at confining boundaries and are typically of the
order of ten particle diameters in thickness. Deformation tends to be localized in shear
bands separating non-deforming or weakly deforming regions. Dilatancy and sharp
velocity variation are typical in these shear layers. Much work has been reported
in the literature concerning the development of non-local quasi-static rheological
models to predict the flow behaviour in shear layers. In a recent article, Dsouza &
Nott (J. Fluid Mech., vol. 888, 2020, R3) derive a non-local extension to a classical
plasticity model by postulating that some local quantities appearing in the yield
function, which stipulates the relationship between different components of the stress
for the material to undergo sustained yielding, and the flow rule which provides
information on the rate of deformation tensor to within an arbitrary multiplicative
constant, should be replaced by their local averages. They then obtain an explicit
non-local model which does not involve new microstructural variables and they show
that the model captures velocity and volume fraction fields in simple shear flows,
although some model parameters must be fitted to achieve quantitative agreement.
This article discusses the work of Dsouza & Nott (2020) and comments on work
ahead for further testing and developing the model.
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1. Introduction

Incipient yield of dense assemblies of granular materials and their subsequent flows
pose many modelling challenges. In slow-flow problems, stress does not depend
on the rate of deformation in the flow regions or only weakly so (Schofield &
Wroth 1968). Initially dense assemblies of particles exhibit dilation upon shear
deformation, while loose assemblies compact (Reynolds 1885; Schofield & Wroth
1968). Furthermore, much of the deformation is often localized in dynamic shear
bands separating non-deforming or weakly deforming regions; the particle volume
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fraction and velocity fields manifest sharp variations across the shear layer (Desrues
et al. 1996). These shear bands can form near boundaries (walls) or in the interior
of the flow domain.

There is a long history of modelling the order-zero dependence of stress on rate of
deformation and the dilation or compaction upon deformation through a combination
of yield function and flow rule, which are two essential components of plasticity
theories (Schofield & Wroth 1968). Such models permit discontinuous changes in the
velocity field, corresponding to shear bands of zero thickness. In reality, however, the
width of the shear bands is of the order of ten particle diameters. How the standard
plasticity models should be augmented to predict both the finite size of the shear
band and the flow behaviour inside it has been studied by many research groups.

Additive models (Johnson & Jackson 1987) which combine the (frictional) stress
transmitted through enduring contact between particles in an assembly (modelled via
classical plasticity theory) and the inertial stress resulting from the fluctuating motion
of particles (modelled via kinetic theory of granular flows) have been used previously
to investigate flows in the so-called intermediate regime (where both collisional
and frictional stresses are important). Flow in the shear band was hypothesized to
fall into this regime. Savage (1998) went further and modified the plasticity theory
capturing the effects of strain rate fluctuations on yield via its standard deviation
ε and proposed a relation between ε and the local granular temperature. In these
models, granular inertia is central to the formation of shear layers. However, shear
bands do form even at extremely slow flows where inertial effects are no more than
a minor perturbation. This consideration has led to the search for models that do not
include the granular temperature and also preserve the order-zero dependence on rate.
Dsouza & Nott (2020) summarize the literature on such models, which introduce
non-locality to generate a non-zero length scale for the shear layer. However, these
models focus on the velocity profile in the shear band but ignore dilation (e.g. Bouzid
et al. 2013; Henann & Kamrin 2013).

2. Overview

Dsouza & Nott (2020) present a model that (a) does not introduce new variables
such as fluidity (Henann & Kamrin 2013), (b) does not require particle inertia and
(c) allows for dilation in the shear layer. Although this model shows promising
comparison with computational results obtained through discrete element method
(DEM) simulations, loose ends remain which warrant further investigation.

While the standard plasticity theory assumes that the yield function and the
flow rule can be expressed strictly in terms of local stress and particle volume
fraction, Dsouza & Nott (2020) begin with a postulate that the dynamic response
of the assembly at any location is affected by the state of the particle assembly
in the neighbourhood of the location under consideration, for which there is ample
experimental support. This provides a mechanism to introduce non-locality into
the model, which could be thought of as a consequence of dynamic force chains
that arise in dense flows. To be precise, the authors make the following postulates:
(a) the local deviatoric rate of deformation and the local rate of dilation are determined
by the local average deviatoric stress and the local average of the derivative of the
yield function with pressure, respectively, instead of their local values as in classical
plasticity theory and (b) the critical pressure at any location is affected not only
by the local particle volume fraction (as in classical plasticity theory) but also by
its spatial variation in the averaging region. Savage (1998) posited that strain rate
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variations affect the local stress, while Dsouza & Nott (2020) postulate the opposite,
namely that the spatial distribution of stress in a neighbourhood around the point
of interest affects the local strain rate, which is equally, if not more, reasonable.
They then assume that the spatial variations are only gradual, estimate the integrals
involved in the local average via Taylor series and arrive at (2.9) in their paper, which
is a non-local extension of the standard plasticity theory. This extension removes the
Hadamard ill-posedness associated with classical plasticity models.

This model does not introduce any new variable such as fluidity which requires
its own evolution equation and boundary conditions. Instead, it introduces the radius
of the averaging region ` as a new parameter, which is set to ten particle diameters.
Dsouza & Nott (2020) show that this model can be used to fit the DEM results from
simple shear flows with and without gravity in the shear direction by adjusting the
values of the wall slip coefficient and the ratio of wall and bulk friction coefficients.
The figure by the title of this article, taken from Dsouza & Nott (2020), compares the
predictions of their model for wall-bounded shear flows in the absence of gravity with
the corresponding DEM results for two different sets of bumpy walls. In this figure
the ordinate refers to particle volume fraction and the abscissa is the scaled position
in the gap. The solid lines show model predictions while the dashed lines refer to
DEM results. The bumpier wall produces more dilation near the wall. As the authors
acknowledge, the need to fit these parameters is unsatisfactory, but it is encouraging
that the same set of fitting parameters apply equally in the presence and absence of
gravity, suggesting that predictive models or simple calibration rules can be developed
in the future for these parameters.

In their example of simple shear with gravity, Dsouza & Nott (2020) observed
dilation and shear flow in the vicinity of a sliding top plate, with an essentially static
region forming near the bottom stationary boundary. This type of flow behaviour
is well known. Their model could fit the simulation results only if the boundary
condition first suggested for the bottom plate was enforced at an intermediate
elevation, which was found to be a distance ` away from the top plate in the
two cases they present. It is reasonable to anticipate that this location will change
with applied normal stress and/or the buoyant weight of particles (perhaps scaled with
the critical state pressure to form proper dimensionless groups). The model can be
used to make predictions only once a robust criterion to locate the boundary between
deforming and non-deforming regions in terms of local variables has been developed
and validated.

3. Future

Dsouza & Nott (2020) have subjected the model to a limited set of tests thus far and
more work is needed to fully assess the model. Specifically, they have only considered
steady, simple shear flows, where the divergence of the velocity ∇ · u field is zero;
thus, the components of the model that include ∇ · u (see equation (2.9c) in their
paper) remain untested. They suggest dilation-driven secondary flows (Krishnaraj &
Nott 2016) and oscillatory shear where the assemblies undergo repeated dilation and
compaction (Sun & Sundaresan 2011) as worthwhile tests. These would indeed be a
key to understanding the merits and limitations of the model.

Sun & Sundaresan (2011) studied, through DEM simulations, oscillatory shear of
granular assemblies where shear reversal led to collapse of force chains and their
gradual re-emergence in a different orientation. They found that the dynamics of shear
reversal on stress could be quantified in terms of the fabric tensor A and the contact
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coordination number Z. They then proposed a local model for the evolution of A
and Z. It would be interesting to explore if the model proposed by Dsouza & Nott
(2020) (their equation (2.9)) can capture the spontaneous occurrence of dilation and
compaction in dynamic flows without further modification (although it is difficult to
see how it can without introducing additional microstructural variables). If it were
able to do so, it would not only demonstrate that a complex model accounting for
the dynamics of microstructure evolution is not required to capture dilatancy and its
effects but also tie these outcomes to non-locality of flow. If not, analysis of a model
that integrates non-locality and the dynamics of microstructure evolution would be of
interest as a natural next step.

In summary, the non-local extension of the standard plasticity model proposed by
Dsouza & Nott (2020) is based on readily understandable averaging, and it leads to
a well-posed model. It allows for dilatancy across the shear layer and the initial tests
of the model are promising. Much additional work remains to be done to fully test
and refine the model as well as to develop a criterion to locate the boundary between
deforming and non-deforming regions in terms of local variables.
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