J. Austral. Math. Soc. (Series A) 30 (1980), 168-170

CHARACTERIZATION OF A FAMILY OF SIMPLE GROUPS BY THEIR CHARACTER TABLE, II

MARCEL HERZOG AND DAVID WRIGHT

(Received 3 December 1979)

Communicated by D. E. Taylor

Abstract

It is shown that the simple groups $G_2(q)$, $q = 3^f$, are characterized by their character table. This result completes characterization of the simple groups $G_2(q)$, q odd, by their character table.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 08. 20 C 15.

The aim of this paper is to prove the following result:

THEOREM 1. The character table of $G_2(q)$, q odd, determines $G_2(q)$.

By Theorem 3.2 in Herzog and Wright (1977), it suffices to deal with the case $q = 3^{f}$. Thus we prove, using the character tables of $G_{2}(3^{f})$ recently computed by Enomoto (1976), that the following theorem holds:

THEOREM 2. The character table of $G_2(q)$, $q = 3^f$, determines $G_2(q)$.

PROOF. We shall use the notation of Enomoto (1976) for elements and characters of $G_2(q)$, $q = 3^f$. In addition, we shall denote by Irr(G) the set of irreducible characters of G and if $x \in G$, Cl(x) denotes the conjugacy class of x in G.

Suppose that *G is a group with the same character table as $G_2(q)$, $q = 3^f$. Put an asterisk in front of each conjugacy class representative, character, and so on, of *G, to distinguish it from the same in $G_2(q)$. Since a character table determines the order of the group and the lattice of normal subgroups, see Feit (1967), *G is simple with $|*G| = q^6(q^2 - 1)(q^6 - 1)$. The first step is to establish that *G has a unique conjugacy class of involutions.

LEMMA 3. The only conjugacy class of involutions in *G is that represented by $*B_1$.

PROOF. By Enomoto (1976), p. 239, $*B_1$ is the only class representative with the full 2-power of |*G| dividing the order of its centralizer. Hence $*B_1$ is an involution. The classes of $G_2(q)$ denoted by A_i or A_{ij} in Enomoto (1976) consist of 3-elements, and by Lambert (1972), Property 2.5, also $*A_i$ and $*A_{ij}$ are 3-elements. Let *F be a conjugacy class representative in $*G, *F \neq *A_i, *A_{ij}, *B_1$. Then by Enomoto (1976), p. 239,

$$|C_{*G}(*F)| \leq q(q+1)(q^2-1)$$

hence

$$\left|\operatorname{C1}_{\bullet G}(^{\ast}F)\right| \ge \left|G\right| q(q+1)(q^{2}-1) = q^{5}(q^{5}-q^{4}+q^{3}-q^{2}+q-1).$$

Consequently, we get

(1)
$$|C1_{*G}(*F)| \ge q^{10} - q^9.$$

Suppose that *F is an involution. If t is the number of involutions in *G, then by Feit (1967), p. 23,

(2)
$$t+1 \leq \sum * Y_i(1) = \sum Y_i(1),$$

where $Y_i(Y_i)$ runs through Irr $(*G)(Irr(G_2(q)))$. To obtain an upper bound for $\sum Y_i(1)$ the following inequalities were used:

$$\begin{aligned} q &\ge 3, \quad (q+1)^2 \le 2q^2, \quad q^i+1 \le 4q^i/3, \quad i = 1, \dots, \\ q^i - d &\le q^i \quad \text{for } d \ge 0, \quad (q^i)^2 + q^i + 1 \le 3q^{2i}/2, \quad i = 1, \dots, \\ (q^i)^2 - q^i + 1 &\le q^{2i}, \quad i = 1, \dots. \end{aligned}$$

and

We get, using the notation of Enomoto (1976):

$$\sum_{i=0}^{12} \theta_i(1) \leqslant 1 + \frac{3}{2}q^4 + 6\frac{13}{18}q^5 + 2\frac{1}{2}q^6 \leqslant 1 + 5q^6$$

and

$$\sum_{i=1}^{14} r(X_i) X_i(1) \leq 3q^6 + 3q^7 + 1\frac{35}{108}q^8 \leq 3q^8,$$

where $r(X_i)$ is the number of characters of type X_i and degree $X_i(1)$ in $Irr(G_2(q))$. Thus:

(3)
$$\sum Y_i(1) \leq 1 + 4q^8 \leq 1 + 4q^9/3.$$

If F were an involution, we would get from (1), (2) and (3) that

$$1 + q^{10} - q^9 \le 1 + 4q^9/3$$

hence $q \leq 7/3$, a contradiction. Thus *F is not an involution, proving the lemma.

[3]

We need also:

LEMMA 4. 2-rank $*G \leq 3$.

PROOF. By Lemma 3 and by Lemma 2.1(b) in Herzog and Wright (1977), it suffices to find an $X \in Irr(G_2(q))$ such that

(4)
$$X(A_1) - X(B_1) \neq 0 \pmod{16}$$

First suppose that $q = 3^{f}$, f odd. Then $q \equiv 3$ or 11 (mod 16) and we get, using the tables of Ecomoto (1976):

$$3(\theta_3(A_1) - \theta_3(B_1)) = q(q^4 + q^2 - 2) \equiv 8 \pmod{16}.$$

Hence θ_3 satisfies (4) in this case. For $q = 3^f$, f even, we have: $q \equiv 1$ or 9 (mod 16). Consider $X_1(k)$, $k \in {}^2R_2$. Clearly 1, $2 \in {}^2R_2$, hence:

$$(X_1(1)(A_1) - X_1(1)(B_1)) - (X_1(2)(A_1) - X_1(2)(B_1)) = 2(q+1)^2 \equiv 8 \pmod{16}$$

and either $X_1(1)$ or $X_1(2)$ satisfies (4). The lemma is proved in all cases.

We now complete the proof of Theorem 2. By Lemma 4 2-rank $*G \leq 3$. Since $G_2(q)$ has 2-rank 3, by Lemma 2.1.(b) in Herzog and Wright (1977) $X(A_1) - X(B_1) \equiv 0 \pmod{8}$ for each $X \in Irr(G_2(q))$. Consequently, Corollary 2.5 in Herzog and Wright (1977) and the Note following it yield: 2-rank *G = 3. As in Herzog and Wright (1977), p. 303, we conclude, using Stroth's (1976) classification of simple groups of 2-rank 3, that $*G = G_2(q)$ unless q = 3. In the latter case $|*G| = 3^6 \cdot 8(3^6 - 1)$ and it is easy to check that the only group of that order in Stroth's list is $G_2(3)$. Hence $*G = G_2(q)$ for each $q = 3^f$, thus proving Theorem 2.

References

- Hikoe Enomoto (1976), 'The characters of the finite Chevally group $G_2(q)$, $q = 3^{f'}$, Japan J. Math. 2. 191–248.
- Walter Feit (1967), Characters of finite groups (Mathematics Lecture Notes, W. A. Benjamin Inc., New York).
- Marcel Herzog and David Wright (1977), 'Characterization of a family of simple groups by their character table', J. Austral. Math. Soc. Ser. A 24, 296-304.
- P. J. Lambert (1972), 'Characterizing groups by their character tables, Γ, Quart. J. Math. Oxford Ser., 23, 427–433.
- G. Stroth (1976), 'Über Gruppen mit 2-Sylow-Durchschnitten von Rang $\leq 3'$, 1 and 11, J. Algebra 43, 398–456 and 457–505.

Department of Mathematics Tel-Aviv University Tel-Aviv Israel