ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE STEFAN PROBLEM WITH A KINETIC CONDITION AT THE FREE BOUNDARY

J. N. DEWYNNE¹, S. D. HOWISON¹, J. R. OCKENDON¹ and WEIQING XIE¹

(Received 18 October 1988)

Abstract

We study the large time behaviour of the free boundary for a one-phase Stefan problem with supercooling and a kinetic condition $u = -\varepsilon |\delta|$ at the free boundary x = s(t). The problem is posed on the semi-infinite strip $[0, \infty)$ with unit Stefan number and bounded initial temperature $\varphi(x) \leq 0$, such that $\varphi \rightarrow -1 - \delta$ as $x \rightarrow \infty$, where δ is constant. Special solutions and the asymptotic behaviour of the free boundary are considered for the cases $\varepsilon \geq 0$ with δ negative, positive and zero, respectively. We show that, for $\varepsilon > 0$, the free boundary is asymptotic to $k\sqrt{t}$, $\delta t/\varepsilon$ if $\delta < 0$, $\delta > 0$ respectively, and that when $\delta = 0$ the large time behaviour of the free boundary depends more sensitively on the initial temperature. We also give a brief summary of the corresponding results for a radially symmetric spherical crystal with kinetic undercooling and Gibbs-Thomson conditions at the free boundary.

1. Introduction

We study the qualitative behaviour and special solutions of the Stefan problem with a kinetic condition at the free boundary [5], [6]. Several authors have considered this problem and the existence, uniqueness and regularity of the solution have been obtained (e.g. [14], [15]).

We consider here the one-phase Stefan problem on a semi-infinite strip $[0,\infty)$, with a kinetic condition at the free boundary, unit Stefan number and bounded initial temperature $\varphi(x) \leq 0$, so that the liquid is supercooled.

¹Mathematical Institute, 24-29 St. Giles, Oxford OX1 3LB, U. K.

[©] Copyright Australian Mathematical Society 1989, Serial-fee code 0334-2700/89

That is, we study the following dimensionless problem which corresponds to the limit of a two phase Stefan problem when the thermal diffusivity in the solid is vanishingly small:

$$u_t - u_{xx} = 0,$$
 $s(t) < x < \infty, t > 0$ (1.1)

$$u(x,0) = \varphi(x) \le 0, \qquad 0 \le x < \infty \tag{1.2}$$

$$u(s(t), t) = -\varepsilon \dot{s}(t), \qquad t > 0 \tag{1.3}$$

$$u_x(s(t), t) = -\dot{s}(t), \qquad t > 0$$
 (1.4)

where $\varepsilon \ge 0$ is a constant, and where $\varphi(x) \in C^1[0,\infty)$ is a given function, which is bounded together with its first derivative. The negativity of φ ensures that $\dot{s} > 0$.

The problem (1.1)-(1.4) reduces to the standard supercooled Stefan problem when $\varepsilon = 0$. It is known that when $\varepsilon = 0$ the solution of (1.1)-(1.4) can blow up with $\dot{s} \to \infty$ in finite time for certain initial data $\varphi(x)$, in particular when (but not only when) $\varphi(\infty) < -1$ [7, 9, 11], and also that the kinetic term with $\varepsilon > 0$ prevents blow-up for any initial data $\varphi(x)$, at least for the analogous problem posed on a finite spatial domain (see [15]).

In this paper we give some special solutions and discuss the asymptotic behaviour corresponding to initial data $\varphi(x)$ with

$$\varphi(x) \to -1 - \delta \quad \text{as } x \to \infty,$$
 (1.5)

where δ is a constant. The plan of the paper is as follows. In Section 2 we review known results on similarity solutions and asymptotic behaviour when $\varepsilon = 0$. In Section 3 we present analogous exact solutions for $\varepsilon > 0$ and in Section 4, using an integral equation derived from the Laplace transform of (1.1)-(1.4), we analyse the asymptotic behaviour of s(t) as $t \to \infty$ in the case that the initial data is not compatible with one of the similarity solutions previously noted. In Section 5 we summarise the results of Sections 2-4. Lastly, in Section 6 we give a brief review of the corresponding results for a spherical crystal growing in three dimensions, with surface energy effects incorporated via a Gibbs-Thomson condition on the free boundary. These are qualitatively the same as the one-dimensional results of Sections 2-5. Our analysis here complements the numerical work of Schaefer and Glicksman [13]; they pointed out that values of δ as high as 0.8 are obtainable using certain materials.

2. Known results and exact solutions when $\varepsilon = 0$

We first review some results for the standard supercooled Stefan problem. Firstly, as a consequence of the finite time blow-up for the initial-value problem with initial data $\varphi(x)$ having $\varphi(x) < -1$ (see [7, 9, 11]), we know that there is no solution of (1.1)-(1.4) for large time if δ is a positive constant. Secondly, when $\delta < 0$, there is a similarity solution of the form²

$$u(x,t) = f(x/\sqrt{t}), \qquad s(t) = \beta\sqrt{t}$$
(2.1)

where

$$f(\xi) = \frac{\beta}{2} \exp(\beta^2/4) \int_{\xi}^{\beta} \exp(-y^2/4) \, dy \tag{2.2}$$

and β is to be determined from

$$\beta \exp(\beta^2/4) \int_{\beta/2}^{\infty} \exp(-y^2) \, dy = 1 + \delta,$$
 (2.3)

which has real positive solutions only if $-1 < \delta < 0$ [1]. The initial data for this solution is the step function $\varphi(x) = -1 - \delta$, $x \ge 0$.

The asymptotic behaviour

$$s(t) \sim \beta \sqrt{t}, \quad \text{as } t \to \infty$$
 (2.4)

was obtained by [3] for any initial data $\varphi(x)$ with $\varphi'' > 0$ and $\varphi(\infty) > -1/4$. It is a reasonable conjecture that (2.4) is true for any $\varphi(x)$ with $\varphi(\infty) > -1$ and for which finite-time blow-up does not occur; we shall support this conjecture with asymptotic results in Section 4.

Lastly when $\delta = 0$, we can find a travelling wave solution in the form

$$u(x,t) = \exp(-V(x-Vt)) - 1, \qquad s(t) = Vt \tag{2.5}$$

where V is any positive constant. We remark here that there is no similarity solution of the form (2.1) for $\delta = 0$ and no travelling wave solution of the

² In using β here, we are following the notation of Lamé & Clapeyron (1831) [12] who first considered the one-phase Stefan (*sic*) problem.

form (2.5) if $\delta < 0$. We also note that V in (2.5) is arbitrary, whereas β in (2.1) is determined by $\varphi(\infty)$.

3. Exact solutions for $\varepsilon > 0$

We begin our analysis of the case $\varepsilon > 0$ by noting two exact solutions analogous to the solutions given in Section 2.

(a) $\varepsilon > 0$, $\delta < 0$: similarity solution with $s(t) = \beta \sqrt{t}$

We begin with the case $\delta < 0$. We know that there are similarity solutions of the form (2.1) if $\varepsilon = 0$. When $\varepsilon > 0$, we incorporate the kinetic condition (1.3) by seeking similarity solutions of the form

$$u(x,t) = f(\xi) + g(\xi)/\sqrt{t}, \qquad \xi = x/\sqrt{t},$$
 (3.1)

$$s(t) = \beta \sqrt{t}, \qquad \beta > 0. \tag{3.2}$$

We find that $f(\xi)$ and $g(\xi)$ satisfy the ordinary differential equations $f'' + (\xi/2)f' = 0$, $g'' + (1/2)(\xi g)' = 0$ where primes denote differentiation with respect to ξ . Further, from the kinetic and Stefan conditions, (1.3)-(1.4) we find that

$$f(\beta) = 0,$$
 $f'(\beta) = -\beta/2,$ $g(\beta) = -\varepsilon\beta/2,$ $g'(\beta) = 0,$

and so

$$f(\xi) = \frac{\beta}{2} e^{\beta^2/4} \int_{\xi}^{\beta} e^{-y^2/4} \, dy,$$
$$g(\xi) = \frac{\beta}{2} \left\{ \frac{\beta}{2} e^{-\xi^2/4} \int_{\xi}^{\beta} e^{y^2/4} \, dy - e^{(\beta^2 - \xi^2)/4} \right\}.$$

Since $g(\xi) \to 0$ as $\xi \to \infty$, β is determined by (2.3) which, as already noted, has real positive solutions only when $-1 < \delta < 0$.

We observe that β is independent of ε . This surprising result is reminiscent of the fact that, without kinetic undercooling, the corresponding similarity solution for the growth of a spherical solid region expanding into supercooled liquid has a rate of growth unaffected by the inclusion of a Gibbs-Thomson condition at the free boundary [10] (see also Section 6). It is to be contrasted with the results of the next part of this section, where we find a travelling wave solution whose speed does depend on ε .

Finally, we note that $u(x, 0+) \sim O(1/x)$ as $x \to 0$, but that finite initial data can be obtained by shifting the origin of t.

(b) $\varepsilon > 0$, $\delta > 0$: travelling-wave solutions

When $\delta > 0$, a travelling-wave solution analogous to (2.5) can be found. We seek a solution

$$u(x,t) = f(z), \qquad z = x - Vt$$
 (3.3)

$$s(t) = Vt, \quad V > 0.$$
 (3.4)

By direct calculation we establish that

$$u(x,t) = \exp[-V(x-Vt)] - (1+\delta)$$
 (3.5)

$$s(t) = Vt = \delta t/\varepsilon. \tag{3.6}$$

Here the wave speed V is uniquely determined.

We now investigate how the possible travelling-wave solutions of (1.1)-(1.4) behave as the parameters ε and δ approach zero. Suppose first that $\varepsilon = o(\delta)$ as $\varepsilon \to 0$, $\delta \to 0$. In this case $\varphi(x)$ tends to a step function and the velocity V becomes infinite as δ and $\varepsilon \to 0+$, suggesting that there is no solution for the problem with $\varepsilon = 0$, $\delta = 0$ when the initial data is a step function. In the case where $\delta = o(\varepsilon)$, we observe that $V \to 0+$ as ε , $\delta \downarrow 0$, the corresponding initial function goes to zero and we retrieve the trivial solution, although the limit is not uniform as $x \to \infty$.

Finally, in the case $\delta = O(\varepsilon)$, we notice that $V = \delta/\varepsilon$ is bounded as ε , δ go to zero. This gives the solution (2.5), and underlines the fact that V is indeterminate in the limit δ , $\varepsilon \downarrow 0$. Note that there is no bounded travelling wave solution of the form (3.5), (3.6) if δ is negative.

4. Asymptotic behaviour of s(t) as $t \to \infty$

In this section, we discuss the large-time behaviour of the free boundary s(t) by considering an integral equation formulation of problem (1.1)-(1.4). We begin with the assumption that there is indeed a unique classical solution for all t > 0. This is the case for $\varepsilon > 0$, provided the initial data $\varphi(x)$ satisfies some mild conditions, for example $\varphi \in C^1[0,\infty)$ and φ , φ' are bounded (see [14], [15]).

We now investigate the large-time behaviour of solutions with arbitrary bounded smooth initial data satisfying (1.5).

The first step is to reduce (1.1)-(1.4) to an integral equation by applying a Laplace transform in x [8]. We define the transform $\hat{u}(p,t)$ of u(x,t) by

$$\hat{u}(p,t) = \int_{s(t)}^{\infty} e^{-px} u(x,t) \, dx; \qquad (4.1)$$

[5]

by a direct calculation using (1.1)-(1.4) we find that

$$\partial \hat{u}/\partial t - p^2 \hat{u} = [1 + \varepsilon p + \varepsilon \dot{s}]\dot{s}e^{-ps}, \qquad \hat{u}(p,0) = \hat{\varphi}(p)$$
(4.2)

where $\hat{\varphi}(p) = \int_0^\infty e^{-px} \varphi(x) dx$. Thus we have, from (4.2),

$$\hat{u}(p,t) = e^{p^2 t} [\hat{\varphi}(p) + \int_0^t \dot{s}(\tau)(1+\varepsilon p + \varepsilon \dot{s})e^{-ps(\tau)-p^2\tau} d\tau].$$
(4.3)

Since u(x, t) exists and is bounded for all t, it follows that $\hat{u}(p, t)$ exists and is bounded for all t and Re p > 0. Thus taking $|\arg p| < \pi/4$ and letting $t \to \infty$, the quantity in square brackets in (4.3) must vanish identically, yielding

$$\hat{\varphi}(p) = -\int_0^\infty \dot{s}(\tau) [1 + \varepsilon p + \varepsilon \dot{s}(\tau)] e^{-ps(\tau) - p^2 \tau} d\tau.$$
(4.4)

Integrating by parts, we obtain another more convenient form of (4.4):

$$\hat{\varphi}(p) = -\frac{1}{p} - \varepsilon + p(1 + \varepsilon p) \int_0^\infty e^{-ps - p^2 t} dt$$
$$-\varepsilon \int_0^\infty \dot{s}^2 e^{-ps - p^2 t} dt. \tag{4.5}$$

The behaviour of s(t) depends on the balance between the terms on the righthand side of (4.5).

In order to obtain the asymptotic behaviour of s(t) as $t \to \infty$, we must investigate (4.5) as $p \to 0$, in particular the behaviour of the integrals $\int_0^\infty e^{-ps-p^2t} dt$ and $\int_0^\infty \dot{s}^2 e^{-ps-p^2t} dt$. We first note that, by a direct calculation, if we take $s(t) = \beta \sqrt{t}$ with β a positive constant, then

$$p\int_0^\infty e^{-ps-p^2t} dt = \frac{1}{p} \left[1 - \beta e^{\beta^2/4} \int_{\beta/2}^\infty e^{-x^2} dx \right],$$
$$\int_\eta^\infty \dot{s}^2 e^{-ps-p^2t} dt \sim \log p\sqrt{\eta}, \quad \text{as } p \to 0,$$

and, if we take s(t) = Vt with V a positive constant, then

$$p \int_0^\infty e^{-ps - p^2t} dt = \frac{1}{p + V}$$
(4.6)

$$\int_0^\infty \dot{s}^2 e^{-ps-p^2t} dt = \frac{V^2}{(p+V)p}.$$
 (4.7)

Comparing these forms for s(t), when the initial data is such that $\hat{\varphi} = -(1+\delta)/p + \hat{\varphi}_1$, where $\hat{\varphi}_1 = o(1/p)$ as $p \to 0$ (for example, if $\varphi_1(x)$ is bounded and vanishes at ∞ , or if $\varphi_1(x) \sim \sin \omega x$), we conclude that the asymptotic behaviour of s(t) is $\beta\sqrt{t}$ if $\delta < 0$, $\varepsilon \ge 0$, and Vt if $\delta > 0$, $\varepsilon > 0$; β and V are determined as in Sections 2 and 3 respectively. This analysis

further suggests that in the marginal case $\delta = 0$, $\varepsilon > 0$, the free boundary is in general asymptotic neither to Vt nor to $\beta\sqrt{t}$ as $t \to \infty$. We therefore investigate in more detail the remaining case $\delta = 0$, $\varepsilon \ge 0$, where the asymptotic form of s(t) depends more sensitively on $\hat{\varphi}(p)$.

(1a) We start with $\delta = \varepsilon = 0$ and choose initial data $\varphi(x)$ with the form $\varphi(x) = -1 + \varphi_1(x)$ where $\hat{\varphi}_1(p)$ is finite (that is, $\varphi_1(x)$ is integrable over $[0,\infty)$) and nonzero at p = 0. Then we find the asymptotic behaviour of the free boundary to be $s(t) \sim Vt$ as $t \to \infty$, with $V = 1/\hat{\varphi}_1(0)$. We see from (4.5)-(4.7) that no similar result is valid if $\varepsilon > 0$.

(1b) We next discuss the case (still with $\delta = \varepsilon = 0$) where the initial data satisfies $\varphi(x) \sim -1 + cx^{-(1+\gamma)} + o(x^{-(1+\gamma)})$ as $x \to \infty$, so that

$$\hat{\varphi}(p) \sim -p^{-1} + ap^{\gamma} + o(p^{\gamma}) \quad \text{as } p \to 0$$
 (4.8)

where $-1 < \gamma < 0$ and $a = c\Gamma(-\gamma)$. If, in the first integral of (4.5), we take $s(t) \sim kt^{\alpha}$, $\frac{1}{2} < \alpha < 1$, then, by rescaling time so that $s(t) \sim pt$ (i.e. putting $t = (k/p)^{1/(1-\alpha)}\tau$) and applying Laplace's method [4] to estimate the behaviour of the integral as $p \to 0$, we find that

$$p \int_0^\infty e^{-ps-p^2t} dt \sim \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) k^{-1/\alpha} p^{(1-1/\alpha)} + o(p^{(1-1/\alpha)}) \tag{4.9}$$

as $p \to 0$. This gives an estimate of the order of singularity (with respect to p) of this integral as $p \to 0$. The relation between the order γ of this singularity and α is depicted in Figure 1.

Comparing (4.9) to (4.8), we see from (4.5) with $\varepsilon = 0$ that $s(t) \sim kt^{\alpha}$ where

$$\alpha = \frac{1}{1 - \gamma}, \qquad k = \left(\frac{\Gamma(1/\alpha)}{a\alpha}\right)^{\alpha}.$$
(4.10)

The inequality $-1 < \gamma < 0$ implies that $\frac{1}{2} < \alpha < 1$. Note that in general k will be real and positive only if a > 0; that is, there will be a solution only if $\varphi(x) \ge -1$ in the far field. Indeed, it is likely that finite-time blow-up will occur if a < 0.

This method can clearly be extended to more complicated behaviour of $\hat{\varphi}(p)$.

Note that if we take $\varphi(x) = -1$, $0 \le x < \infty$ (i.e. the initial data is a unit step function) then $\hat{\varphi}(p) = -\frac{1}{p}$. Then in (4.5) with $\varepsilon = 0$, all the terms cancel except for $p \int_0^\infty e^{-ps(t)-p^2t} dt$, which is strictly positive. Thus the supercooled Stefan problem with unit step function initial data $\varphi(x)$ has no solution that has a Laplace transform (4.1).

(1c) If we consider initial data of the form $\varphi(x) = -1 + \varphi_1(x)$ where $\hat{\varphi}_1(p)$ vanishes at p = 0, then from parts (1a, b) of this section, it is apparent that

FIGURE 1. Relation between γ and α for $\delta = 0$, $\varepsilon = 0$.

it is impossible to have $s(t) \sim kt^{\alpha}$ for any $\frac{1}{2} \leq \alpha \leq 1$. We thus look for solutions which have $s(t) \sim kt^{\alpha}$ for $\alpha > 1$, as $t \to \infty$. The estimate (4.9) remains valid for $\alpha > 1$ (although a different scaling $\tau = p^2 t$ is necessary to obtain it). Thus if we assume that $\hat{\varphi}_1(p) \sim ap^{\gamma}$ as $p \to 0$ for $\gamma > 0$, we recover (4.10). Clearly, however, this is valid only for $0 < \gamma < 1$.

The condition that $\hat{\varphi}_1(0) = 0$ is simply the condition that $\int_0^\infty \varphi_1(x) dx = 0$, and since the assumption that $\hat{\varphi}_1(p) \sim ap^{\gamma}$ excludes the possibility that $\varphi_1 \equiv 0$, this implies that $\varphi_1(x)$ must change sign. In particular, it implies that there must be regions where $\varphi(x) < -1$.

By analogy with the finite-time blow-up case (where $\dot{s}(t)$ becomes infinite in a finite time) we can regard these cases as infinite-time blow up (since $\hat{s}(t)$ is unbounded at $t \to \infty$). Evidently such infinite time blow up cannot occur if $\varepsilon > 0$, for the maximum principle implies that $|\dot{s}| \le \sup |\varphi(x)|/\varepsilon$ (see [15]).

(1d) Now we consider the case $\varepsilon > 0$ and $\hat{\varphi}(p)$ of the form (4.8). Suppose we take $s(t) = kt^{\alpha}$, $\alpha \in (\frac{1}{2}, 1)$; then we can obtain an estimate for the second integral in (4.5) in the same manner as for the first integral in (4.5), namely

$$\varepsilon \int_0^\infty \dot{s}^2 e^{-ps-p^2t} dt \sim \varepsilon \alpha k^{1/\alpha} \Gamma\left(2-\frac{1}{\alpha}\right) p^{(1/\alpha-2)} + o(p^{(1/\alpha-2)}) \text{ as } p \to 0.$$
(4.11)

The orders of magnitude of these two integrals as $p \rightarrow 0$ (as determined by (4.9) and (4.11)) are shown as functions of α in Figure 2. According to

FIGURE 2. Relations between γ and α for $\delta = 0$, $\varepsilon > 0$.

Figure 2 we see, from (4.5), (4.8)-(4.11), that the following cases must be considered:

(i) $-1 < \gamma < -\frac{1}{2}$: There are two possible choices for γ (see Figure 2). The choice we make depends on the sign of *a* in (4.8). If a > 0, the first integral in (4.5) must balance ap^{γ} , so we choose

$$\gamma = 1 - \frac{1}{\alpha}, \qquad k = \left(\frac{\Gamma(1/\alpha)}{\alpha a}\right)^{\alpha}.$$

If on the other hand a < 0, the second integral balances ap^{γ} and thus

$$y = \frac{1}{\alpha} - 2, \qquad k = \left(\frac{-a}{\epsilon \alpha \Gamma(2 - 1/\alpha)}\right)^{\alpha}$$

(ii) $\gamma = -\frac{1}{2}$: Now $\alpha = \frac{2}{3}$ and k is determined as the unique positive root of

$$\frac{2\varepsilon}{3}k^2 + \frac{a}{\sqrt{\pi}}k^{3/2} - \frac{3}{4} = 0;$$

that is

$$k=\frac{3a}{4\varepsilon\sqrt{\pi}}\left(\sqrt{\left(1+\frac{2\pi\varepsilon}{a^2}\right)}-1\right).$$

Note that as $\varepsilon \to 0$, $k \to 3\sqrt{\pi/(4a)}$.

(iii) $-\frac{1}{2} < \gamma < 0$: No matter which integral we choose in (4.5) to balance ap^{γ} , the other integral will be more singular than p^{γ} (see Figure 2). The only

J. N. Dewynne et al

way to produce a term to balance ap^{γ} is to choose $\alpha = \frac{2}{3}$ and $k = \frac{1}{2} (\frac{9}{\epsilon})^{1/3}$ (thereby causing the terms of $O(p^{-1/2})$ to cancel) and to then consider higher order terms in the expansion of s(t) as $t \to \infty$.

We must therefore look at asymptotic behaviours of s(t) of the form

$$s(t) \sim kt^{2/3} + k_1 t^{\alpha_1} + o(t^{\alpha_1})$$
 as $t \to \infty$

where

$$k=rac{1}{2}\left(rac{9}{arepsilon}
ight)^{1/3}$$
 and 0

The parameters k_1 and α_1 are to be found in terms of a and y.

To investigate the behaviour of the integrals in (4.5), we first set $t = k^3 \tau/p^3$, where $k = \frac{1}{2} (\frac{9}{\epsilon})^{1/3}$; the first integral, for example, becomes

$$p \int_0^\infty \exp(-pkt^{2/3} - p^2t - pk_1t^{\alpha_1}) dt$$

= $\frac{k^3}{p^2} \int_0^\infty e^{-\eta(\tau^{2/3} + \tau)} \exp(-k_1k^{3\alpha_1}p^{1 - 3\alpha_1}\tau^{\alpha_1}) d\tau$

where $\eta = k^3 p^{-1}$. Provided $0 < \alpha_1 < \frac{2}{3}$, (which is just the condition that $t^{\alpha_1} = o(t^{2/3})$ as $t \to \infty$), the term $e^{-\eta \tau^{2/3}}$ controls the asymptotic behaviour as $p \to 0$. In this case a straightforward application of Laplace's method [4] gives the estimate

$$p \int_0^\infty \exp(-pkt^{2/3} - p^2t - pk_1t^{\alpha_1}) dt$$

$$\sim \frac{3\sqrt{\pi}}{2k^{3/2}} p^{-1/2} - \frac{3k_1}{2k^{(3+3\alpha_1)/2}} \Gamma\left(\frac{3}{2}(1+\alpha_1)\right) p^{(1/2-3\alpha_1/2)} \frac{-6}{k^2} + o(1).$$

A similar calculation can be made for the second integral in (4.5); in this case, however, some care must be taken in dealing with the lower limit of integration, as the integrand will not be integrable at t = 0 if $\alpha_1 \in (0, 1/3]$. As we are concerned with the asymptotic behaviour of s(t) as $t \to \infty$, however, the lower limit can be replaced by any finite nonzero constant if necessary.

After a lengthy calculation, we find the following estimate:

$$p \int_{0}^{\infty} e^{-ps-p^{2}t} dt - \varepsilon \int_{0}^{\infty} \dot{s}^{2} e^{-ps-p^{2}t} dt$$

$$\sim -\varepsilon k_{1} k^{-3(\alpha_{1}-1)/2} \Gamma((3\alpha_{1}-1)/2) \alpha_{1} (3\alpha_{1}+1) p^{-(3\alpha_{1}-1)/2}$$

$$+ 2\varepsilon \alpha_{1} k_{1}^{2} k^{(6\alpha_{1}-3)/2} H(p) - 3\varepsilon \alpha_{1}^{2} k_{1}^{2} k^{-(6\alpha_{1}-3)/2} F(p)/2$$

$$+ o(p^{-(6\alpha_{1}-3)/2}) \quad \text{as } p \to 0$$

FIGURE 3. Relation between y and α_1 for $\delta = 0$, $\varepsilon > 0$.

where

$$H(p) = \begin{cases} \Gamma\left(\frac{6\alpha_1 - 1}{2}\right) p^{(6\alpha_1 - 3)/2}, & \frac{1}{6} < \alpha_1 < \frac{2}{3} \\ O(p), & 0 < \alpha_1 \le \frac{1}{6} \end{cases}$$
$$F(p) = \begin{cases} \Gamma\left(\frac{6\alpha_1 - 3}{2}\right) p^{-(6\alpha_1 - 3)/2}, & \frac{1}{2} < \alpha_1 < \frac{2}{3} \\ O(\log p), & 0 < \alpha_1 \le \frac{1}{2}. \end{cases}$$

As previously, this allows us to choose α_1 in terms of γ (Figure 3). We therefore have $s(t) \sim kt^{2/3} + k_1t^{\alpha_1}$ as $t \to \infty$ if $-\frac{1}{2} < \gamma < 0$, where $k = \frac{1}{2}(\frac{9}{\epsilon})^{1/3}$, $\alpha_1 = (1 - 2\gamma)/3$, and where $\frac{1}{3} < \alpha_1 < \frac{2}{3}$ and k_1 is determined by $-\epsilon k_1 k^{-3(\alpha_1-1)/2} \alpha_1(3\alpha_1+1)\Gamma((3\alpha_1-1)/2) = a$.

5. Summary for the planar problem

We have discussed the asymptotic behaviour of a one-dimensional Stefan problem with the kinetic condition $u = -\varepsilon \dot{s}(t)$ at the free boundary, and initial data $\varphi(x) \rightarrow -1 - \delta$ as $x \rightarrow \infty$. We have investigated the cases ε nonnegative, δ negative, zero and positive respectively. To summarise, we display our results in Figure 4.

(I) $\varepsilon = 0, \delta > 0$: finite time blow-up.

FIGURE 4. Regions of existence of classes of solution in the $e - \delta$ plane.

- (II) $\varepsilon = 0, \ \delta < 0$: similarity solutions exist with $s(t) = \beta \sqrt{t}$ and $\varphi(x) \equiv 0$ $-1 - \delta$. For other $\varphi(x)$ with $\varphi(\infty) = -1 - \delta$, $s(t) \sim \beta \sqrt{t}$ as $t \to \infty$ provided that no blow-up occurs.
- (III) $\varepsilon > 0$, $\delta < 0$: similarity solutions (but no travelling wave solution) exist with $s(t) = \beta \sqrt{t}$; for other initial data the free boundary is asymptotic to $\beta \sqrt{t}$ as $t \to \infty$.
- (IV) $\varepsilon > 0$, $\delta > 0$: travelling wave solutions (but no similarity solution) exist with $s(t) = \delta t/\epsilon$; for other initial data the free boundary is asymptotic to $\delta t/\epsilon$ as $t \to \infty$.
- (V) $\varepsilon > 0$, $\delta = 0$: $s(t) \sim kt^{\alpha}$ with $\frac{1}{2} < \alpha < 1$, as $t \to \infty$. Furthermore, if $\hat{\varphi}(p)$, the Laplace transform of $\varphi(x)$, has the form

$$\hat{\varphi}(p) = -p^{-1} + ap^{\gamma} + o(p^{\gamma}) \text{ as } p \to 0$$
 (5.1)

- (iii) If $\gamma = -\frac{1}{2}$, then $\alpha = \frac{2}{3}$, $k = (3/4\varepsilon\sqrt{\pi})[\sqrt{a^2 + 2\pi\varepsilon} a]$. (iv) If $-\frac{1}{2} < \gamma < 0$, $s(t) \sim kt^{2/3} + k_1t^{\alpha_1}$, as $t \to \infty$, where

$$k = \frac{1}{2} \left(\frac{9}{\varepsilon}\right)^{1/3}, \ \alpha_1 = \frac{1-2\gamma}{3}, \ k_1 = -ak^{(3\alpha_1-3)/2}/\varepsilon\alpha_1(1+3\alpha_1)\Gamma(3\alpha_1-1)/2).$$

- (VI) ε = δ = 0:
 (i) If φ(x) = -1 + φ₀(x) with φ̂₀(p) finite and nonzero at p = 0 then s(t) ~ Vt as t → ∞, where V = 1/φ̂₁(0). This includes the travelling wave solution (2.5) as a special case.
 - (ii) If $\hat{\varphi}(p)$ has the same form as (5.1), $-1 < \gamma < 0$, then $s(t) \sim kt^{\alpha}$ with $\frac{1}{2} < \alpha < 1$, as $t \to \infty$, where $\alpha = 1/(1 \gamma)$, $k = (\Gamma(1/\alpha)/\alpha a)^{\alpha}$.
 - (iii) No solution exists for unit step function initial data.
 - (iv) If $\hat{\varphi}(p)$ has the form (5.1) for $0 < \gamma < 1$ then $s(t) \sim kt^{\alpha}$ with k and $\alpha > 1$ determined as in (ii). In this case $\dot{s}(t)$ is unbounded as $t \to \infty$ and we have "infinite-time" blow-up.

6. Three-dimensional solutions with radial symmetry

We briefly describe the extension of our previous results to a radially symmetric three-dimensional problem with an extra term incorporating surface tension effects at the free surface via a Gibbs-Thomson condition. The spherical version of the problem (1.1)-(1.4) is

$$u_t = r^{-2}(r^2u_r)_r, \qquad s(t) < r < \infty$$

$$u = -\varepsilon \dot{s} - 2\sigma/s, \qquad r = s(t)$$

$$u_r = -\dot{s}, \qquad r = s(t)$$

$$u(r, 0) = \varphi(r), \qquad s(0) \le r < \infty,$$

where $\sigma \ge 0$ is the dimensionless surface tension. If we introduce a new variable

$$v(r,t) = ru(r,t)$$

then v(r, t) satisfies

$$v_t = v_{rr}, \qquad s(t) < r < \infty \tag{6.1}$$

$$v = -\varepsilon s\dot{s} - 2\sigma, \qquad r = s(t)$$
 (6.2)

$$v_r = -(\varepsilon + s)\dot{s} - 2\sigma/s, \qquad r = s(t)$$
 (6.3)

with initial data

$$v(r,0) = r\varphi(r) = \psi(r), \qquad (6.4)$$

say, where $\varphi(r)$ has the same form as (1.5).

We first mention that the problem (6.1)-(6.4) can blow up in finite time if $\varepsilon = 0$ and $\delta > 0$ (even with surface tension), and that when $\delta < 0$ there is

[13]

J. N. Dewynne et al

a similarity solution with $s(t) = \beta \sqrt{t}$, where β is to be determined from

$$\frac{\beta^2}{2} \left(1 - \beta e^{\beta^2/4} \int_{\beta/2}^{\infty} e^{-x^2} dx \right) = 1 + \delta$$
 (6.5)

(for details, see [2] and references therein). This similarity solution includes both surface tension and kinetic undercooling.

When $\delta > 0$ there is a pseudo-travelling-wave solution³

$$v(r,t) = -(1+\varepsilon V)r + 2(1/V - \sigma) + [2(Vt - 1/V) - r]e^{-V(r-Vt)} - \frac{2\sigma}{V\sqrt{t}}e^{-r^2/4t} \int_{-r/2\sqrt{t}}^{(r-2Vt)/2\sqrt{t}} e^{y^2} dy, s(t) = Vt,$$

where $V = \delta/\epsilon$. For $\epsilon = \delta = 0$, this is also a solution, for arbitrary V > 0. It is singular with $v = O(1/r^2)$ at the origin as $t \to 0+$, but this can be overcome by changing the time origin.

We now investigate the large-time behaviour of the free boundary s(t) for problem (6.1)-(6.4). As previously, we define the Laplace transform by (4.1). This reduces (6.1)-(6.4) to an integral equation formulation. By a straightforward calculation, we get the integral equation

$$\psi(p) = -d\hat{\varphi}/dp = -e^{-ps(0)}[p^{-2} + (2\sigma + 2\varepsilon + (1 + \varepsilon p)s(0))p^{-1}] + \int_0^\infty \left[1 + 2\varepsilon p + (1 + \varepsilon p)ps(t) - \frac{2\sigma}{s(t)} - \varepsilon s(t)\dot{s}(t)^2 \right] e^{-ps-p^2t} dt.$$
(6.6)

Repeating the method used in Section 4 we can find similar asymptotic results. Our results here confirm the numerical solutions of Schaefer and Glicksman [13].

For brevity, we state the main results only.

(1) $\varepsilon > 0$, $\delta > 0$: the asymptotic behaviour of s(t) is Vt and $V = \delta/\varepsilon$.

(2) $\varepsilon > 0$, $\delta < 0$: the asymptotic behaviour of s(t) is $\beta \sqrt{t}$ and β is determined by (6.5). Note that this is independent of both ε and σ .

(3) $\varepsilon > 0$, $\delta = 0$: the asymptotic behaviour of s(t) is kt^{α} with $\frac{1}{2} < \alpha < 1$. In particular, if

$$\hat{\psi}(p) = -e^{-ps(0)}p^{-2} + ap^{\gamma-1} + o(p^{\gamma-1}), \quad \text{as } p \to 0$$
 (6.7)

where $-1 < \gamma < 0$, then

(a) if $-1 < \gamma < -\frac{1}{2}$, a > 0, then $\alpha = 1/(1 - \gamma)$, $k = ((1 + \alpha)\Gamma(1/\alpha)/\alpha^2 a)^{\alpha}$; (b) if $-1 < \gamma < -\frac{1}{2}$, a < 0, then $\alpha = 1/(2 + \gamma)$, $k = (-a/\epsilon \alpha \Gamma(3 - 1/\alpha))^{\alpha}$;

³ This solution does not appear to have been noted previously.

(c) if $\gamma = -\frac{1}{2}$ then $\alpha = \frac{2}{3}$, k is to be determined from

$$\frac{\varepsilon}{3}k^3 + \frac{a}{\sqrt{\pi}}k^{3/2} - \frac{15}{8} = 0;$$

(d) if $-\frac{1}{2} < \gamma < 0$, then $\alpha = \frac{2}{3}$, $k = \frac{3}{2}(\frac{5}{3\varepsilon})^{1/3}$, and we proceed to higher order terms as above.

(4) $\varepsilon = \delta = 0$.

(a) If $\hat{\psi}(p)$ has the form (6.7) and $-1 < \gamma < 0$ then

$$\alpha = \frac{1}{1-\gamma}, \quad k = \left[\frac{1+\alpha}{a\alpha^2}\Gamma\left(\frac{1}{\alpha}\right)\right]^{\alpha},$$

provided k is real and positive.

(b) If $\hat{\psi}(p)$ has the form (6.7) with $\gamma = 0$ then $s(t) \sim 2t/(a+2\sigma)$ as $t \to \infty$, provided $a + 2\sigma > 0$.

(c) If $\hat{\psi}(p)$ has the form (6.7) for $\gamma > 0$ and $\sigma > 0$ then $s(t) \sim t/\sigma + o(t)$ as $t \to \infty$. The precise form of the o(t) term is determined by the higher order terms in $\hat{\psi}(p)$.

(d) If $\hat{\psi}(p)$ has the form (6.7) for $0 < \gamma < 1$ and $\sigma = 0$ then $s(t) \sim kt^{\alpha}$, where

$$\alpha = \frac{1}{1 - \gamma}, \quad k = \left[\frac{1 + \alpha}{a\alpha^2}\Gamma\left(\frac{1}{\alpha}\right)\right]^{\alpha}$$

and we have "infinite-time" blow-up.

References

- [1] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids (Oxford University Press, 1959).
- [2] J. Chadam, S. D. Howison and P. Ortoleva, "Existence and stability for spherical crystals growing in a supersaturated solution", IMA J. Appl. Math. 39 (1987) 1-15.
- [3] J. Chadam and P. Ortoleva, "The stability effect of surface tension on the development of the free boundary in a planar, one-dimensional, Cauchy-Stefan problem", IMA J. Appl. Math. 30 (1983) 57-66.
- [4] E. T. Copson, Asymptotic expansions (Cambridge University Press, 1965).
- [5] S. R. Coriell and R. F. Sekerka, "Oscillatory morphological instabilities due to nonequilibrium segregation', J. Crystal Growth 61 (1983) 499-508.
- [6] A. B. Crowley, "Some remarks on non-equilibrium solidification problems", in *Free and moving boundary problems*, (eds. K. H. Hoffman and J. Sprekels), (Pitman, 1989).
- [7] A. Fasano and M. Primicerio, "New results on some classical parabolic free boundary problems", Quart. Appl. Math. 38 (1981) 439-460.
- [8] G. A. Garinberg and O. M. Chekmareva, "Motion of phase interface in Stefan problems", Sov. Phys. Tech. Phys. 15 (1971) 1579.
- [9] S. D. Howison, J. R. Ockendon and A. A. Lacey, "Singularity development in moving boundary problems", Quart. J. Mech. Appl. Math. 38 (1985) 343-360.
- [10] S. Krukowski and L. A. Turski, "Time-dependent solution for a spherically symmetric freezing precipitate", J. Crystal Growth 58 (1982) 631-635.

[15]

- [11] A. A. Lacey and J. R. Ockendon, "Ill-posed boundary problems", Control Cybernet. 14 (1985) 275-296.
- [12] G. Lamé and B. P. Clapeyron, "Memoire sur la solidification par refroidissement d'un globe liquide", Annales Chimie Physique 47 (1831) 250-256.
- [13] R. J. Schaefer and M. E. Glicksman, "Fully time-dependent theory for the growth of spherical crystal nuclei", J. Crystal Growth 5 (1969) 44-58.
- [14] A. Visintin, "Stefan problem with a kinetic condition at the free boundary", Ann. Math. Pura Appl. (to appear).
- [15] W. Xie, The Stefan problem with a kinetic condition at the free boundary, Preprint 1988.