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I .  The results of isotope tracer studies of the dynamics of nitrogen metabolism in mature 
sheep were used to construct a seven-pool mathematical model. 

2. The model was extended to a nine-pool model, which incorporates lags describing the 
time taken for the passage of digesta through the gut of sheep. 

3. Simulation studies using these models satisfactorily predicted results of independent 
experiments. 

4. The dynamics of N metabolism in sheep appear to be best approximated by first-order 
kinetics; that is, many of the important N transport processes are substantially linear orconcen- 
tration-dependent. 

This paper reports the development of a linear, multi-pool model of the dynamics 
of nitrogen metabolism in sheep. The model has some variable coefficients and time 
delays. Variable coefficients were required because of the necessary over-simplifica- 
tions in little-understood aspects of N metabolism in sheep. Delays were incorporated 
into the model in order to describe the time taken for digesta to move through the gut. 

Experimental results used in both the construction and validation of the model 
reported here were based on, and therefore strictly applicable to, forage diets. Energy 
availability is known to be highly correlated with protein intake in sheep consuming 
dried, forage-based diets. For example, r2 = 0.8 when digestible crude protein (DCP) 
is correlated with metabolizable energy (ME; MJ/kg) for forage diets fed to ruminants. 
This value for r2 was calculated using values selected from Table I of McDonald, 
Edwards & Greenhalgh (1973). Therefore, the ratio, available energy: N in the material 
undergoing rumen fermentation was assumed to be constant. Similarly, since only 
forage diets were considered, essential amino acids and dietary constituents other than 
N were assumed to be non-limiting in sheep given these diets. 

Flows of N between biologically important pools in sheep given a range of forage 
diets were well predicted by the model for a number of studies, both in these labora- 
tories and elsewhere. 

THE S E V E N - P O O L  M O D E L  

Steady-state model synthesis 
A twenty-five-pool flow model of the dynamics of N metabolism in sheep was 

proposed by Nolan & Leng (1972). This model was defined quantitatively by isotope 
dilution experiments in animals under steady-state conditions (Nolan, 1971). 
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1 50 A. MAZANOV AND J. V. NOLAN I976 
Model synthesis followed the use of a number of different sites of injection of tracer 

(e.g., see Nolan, Norton & Leng, 1976), which resulted in a set of sub-models containing 
only a few pools in each. These sub-models were incorporated into larger, conceptual N 
metabolism models that were representative of the movement of N in ‘whole’ sheep 
(cf. Nolan, 1971; Nolan & Leng, 1972). 

While some of the flows of N were quantified in these models, many of the N transfers 
were not available. Consequently, the model proposed by Nolan & Leng (1972; Fig. 6) 
was condensed by treating the post-rumen pools in the ‘ gut’ sequence and also the pools 
in the ‘body fluids’ portion of the model, as well as the ‘tissue components’ in the 
twenty-five-pool model, as three single pools of N. 

Fig. I shows the structure of the resulting seven-pool model in which the ‘lower 
gut’ represents all the gut pools shown below the rumen microbial N pool in the twenty- 
five-pool flow model of Nolan & Leng (1972). In the seven-pool model, the ‘undigested 
plant N’ of the Nolan & Leng (1972) model was assumed to flow directly from pool I, 
the ‘available’ N pool in the rumen (Fig. I), into the lower gut (pool 5 ) .  Pools 2,3 and 4 
correspond respectively to the amino acid-N, ammonia-N and microbial N pools in 
the rumen. The body fluids and body tissue N pools become pools 6 and 7 respectively 
in the model shown in Fig. I. 

Even in this simplified model, some of the N flows were not known for sheep given a 
‘ high-N’ diet of 800 g lucerne chaff (containing 23-48 N)/d. Therefore, estimated 
flows of N which made the seven-pool model conform to the assumption of steady- 
state were used. That is, the sum of the amounts of N flowing daily into any pool was 
made exactly equal to the total N flowing out of that pool; this was also done for the 
model as a whole. Therefore, when both ‘cell sloughings’ and the result of ‘nitrogenous 
base’ flows from ‘tissue components’ (Nolan & Leng, 1972 ; Fig. 6) were each assumed 
to be 0-1 g N/d, the transfer of N from the lower gut to body fluids became 5.6 g N/d 
while the flow of N from rumen fluid NH, to the tissue pool became 1-2 g N/d to ‘ bal- 
ance’ each pool (Table I) in this seven-pool model. The interaction between ‘body 
fluids amino acid-N ’ and ‘ intracellular amino acid-N ’ was assumed to consist of equal 
and opposite flows of N;  these two pathways were, erroneously, omitted in prototype 
models of the dynamics of N metabolism in sheep. 

A similar seven-pool model was constructed for sheep given a diet of (g/d) 500 
wheaten chaff, roo Solka floc, 20 dried molasses. This diet provided an average intake of 
4.9 g N/d but, for precise model balance, the input and the sum of losses were both 
assumed to be 491 g N/d in the model for the ‘low-N ’ diet. Identical pathways to those 
used in the ‘high-” model were assumed for the ‘1ow-N’ model and N flows were 
estimated by incorporating the results reported in Nolan (1971) and by subsequently 
balancing the flows to and from each pool, as well as for the whole model (Table 2). 

The final, mean, seven-pool model that was assumed to be characteristic of the 
dynamics of N metabolism in sheep consuming forage diets containing between 4-9 and 
23.4 g N/d is shown in Fig. I. The flows shown in Fig. I are simply the average of the 
‘high-” and ‘1ow-N’ balanced model flows shown in Tables I and 2 respectively. 
Obviously, the average model must also be in steady-state with the input and the sum 
of the losses of N exactly equal to 14.155 g N/d. 
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Fig. I. Seven-pool model of the dynamics of nitrogen metabolism in sheep consuming forage 
diets, with values for N transfers (g N/d) shown for a dietary N intake of 14.155 g N/d. The 
value (g N) in the top right-hand corner of each box represents the steady-state pool size for 
the average dietary N intake corresponding to the N flows given. 

The contents of each of the rumen pools were estimated from measurements of 
rumen volume, which were multiplied by estimates of concentrations of metabolites 
and the proportion of dry matter in rumen contents samples. Body fluid space was 
estimated from the live weights of sheep (cf. Packett & Groves, 1965), used in conjunc- 
tion with probable plasma protein and measured plasma urea concentrations. Body 
tissue protein mass was estimated by assuming that carcass compositions of sheep 
consuming the ‘ high-N ’ and ‘ low-N ’ diets were similar to those reported by Panaretto 

The remaining numerical estimates were obtained from a wide range of sources in 
the published literature. Estimates of all pool sizes were made independently for each 
of the two experimental diets and also for the ‘average’ diet. They appeared to be gener- 
ally consistent with values obtained experimentally in our laboratories. 

The seven-pool model structure for the ‘whole animal ’ constitutes the minimum 

(1963)- 
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Table I .  ' High-nitrogen ' modeljlows ( g  N l d )  from donor pool j to acceptor pool i between 
the pools shown in the seven-pool model of the dynamics of N metabolism in sheep con- 
suming forage diets in Fg.  I * 
Steady-state pool 
size (g N) ... 
i ... 
Input (g  N/d) i 
23 '4 I 

2 

3 
4 
5 
6 
7 

Losses (g N/d) 

(Values not included are 0.0) 

4'0 0.08 1'0 8.0 4'0 10.0 700.0 

I 2 3 4 5 6 7  

-23.5 0'1 

13.9 -17.0 3'1 

11'0 -15 .1  

0'1 12.9 -14'2 1'2 . 
4' I 

9'5 12.0 -26.6 5'1 . 
2'0 16.3 -18.4 0.1 
1'2 5 6 - 6.8 

4'7 12.1 6.6 Totalz3.4 

* For details of model dynamics, see p. 153- 

Table 2. ' Low-nitrogen' model jaws ( g  N / d )  from donor pool j to acceptor pool i between 
the pools shown in the seven-pool model of the dynamics of N metabolism in sheep con- 
suming forage diets in Fig. I *  

Steady-state pool 
size (g N) ... 2.4 0'01 0.03 2'0 

(Values not included are 0.0) 

1'0 2.0 560.0 
i ... 
Input (g N/d) i 
4'91 I 

3 
4 
5 
6 
7 

2 

Losses (g N/d) 

I 2 3 4 

- 5'01 
2.8 -3 .2 0.4 
0'01 2.8 -4.02 

0.4 4'0 -4'4 
2'2 4'0 

0'01 
0'01 

5 6 7 

0' I 

1'21 . 

- 9.6 3'4 . 
5.2  -5.61 0.4 

2.4 1.0 1.51 TOtal4.91 
2'0 - 2'01 

* For details of model dynamics, see p. 153. 

system of interconnected pools of N that can be validated by comparing model behaviour 
with the dynamics of N metabolism in sheep. It is also the largest model that could 
readily be constructed from the results reported by Nolan (1971) and Nolan & Leng 

General theoretical considerations 
The change in the concentration of an isotope tracer in a set of kinetic 'components' 

can best be described by first-order kinetics, and therefore can be fitted by equations 
which are sums of exponential terms (Berman & Schoenfeld, 1956; Rescigno & Segre, 
1966; Shipley & Clarke, 1972). The coefficients and exponents of the resulting equations 
can be used to estimate pool sizes and rates of flow of metabolites through the pools that 
are sampled (Nolan & Leng, 1972). I n  practice, results from isotope dilution experi- 
ments with animals are usually well fitted by curves with two, three or four exponential 
terms. This indicates the number of 'recognizable' compartments in the system even 
though a large number of dynamic compartments is involved. 

(1972). 
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VOl. 35 Simulation of sheep N metabolism I 53 
Any finite part of a continuous, real-valued function can be approximated by the 

sum of a finite number of exponential functions with real exponents and coefficients. 
The number of terms needed depends only on the assigned precision (Muntz, 1936). 
Since each exponential term used to fit experimental data implies a separate compart- 
ment, a minimum number of these exponential components should be used to fit a 
given set of biological data (Berman, 1963, 1969; Mancini & Pilo, 1970). 

For example, an artificial set of data with small random errors and a large number of 
points could be fitted progressively more accurately by using an increasing number of 
exponential terms in the equation to the fitted curve. A fit using more than three or four 
exponential terms may reflect only the imprecision of a set of experimental data points 
and also the finiteness of the time interval. In addition, because mixing of tracer cannot 
be instantaneous, care must be taken to minimize the number of exponential terms in 
the equation to the fitted curve. 

Model dynamics 
If first-order kinetics are assumed for the flow of N between all pools in the seven- 

pool model, then any flow, rij, of tracer or tracee (unlabelled material) out of poolj will 
be proportional to the size, q,, of that pool. In a steady-state system the inputs of N,fj, 
are zero or constant for each poolj, with at least onefj value non-zero. The constant of 
proportionality, kif,  that describes the first-order kinetic flow from the donor pool, j ,  
to the acceptor pool, i, is the ratio, ri,: q, (the quantity of N transferred: the steady-state 
size of the source pool). Total loss rate of N from poolj, kj,, is the sum of all the quanti- 
ties of N flowing out of pool j divided by q, and this result is negative. 

When the rate of input of N into pool I of the average seven-pool model (Fig. I) is 
suddenly changed to a new constant input,f,, the subsequent rate of change, 

in the size of each of the seven pools in the system will be : 
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Table 3. The matrix of coeflcimts k, (the constant of proportionality that describes the 
jirst-order kinetics from the donor pool, j ,  to the acceptor pool, i) for the seven-pool model 
of the dynamics of nitrogen metabolism in sheep consuming forage diets shown in Fig. I 

and used in equation 3 ( p .  154) 
(The roots of the resulting characteristic polynomial of equation 3 are given below the matrix. 

Identifiers i and j of kij in equation 3 refer to rows and columns respectively) 

- 2.851 
1.67 
0’01 I 
0 
1.17 
0 
0 

- 2,852 

0 
- 202 
157 
45 
0 
0 
0 

- 202‘1 

0 
0 

-15.183 

1.675 
I .008 

12.5 
0 

- 15’77 

Matrix 

0.35 0 

- 1.95 0 

0 0 

0 0 

I .6 - 7’24 
0 4’3 
0 1.52 

Roots of polynomial 
- 1’394 -7.769 
+0-214i 

0 
0 
0.20083 

0.7083 
- 2.0083 

0 

0 

- 1’394 
-0.2142’ 

0~0001587 
0 
0 
0 
0 

0~0003968 
- 0.00699~ 

- 0.00683 

with ql(o) = 5.0, q2(o) = 0.05, q3(0) = 0.6, q4(0) = 5.0, q5(0) = 2.5, q6(0) = 6.0, 
q,(o) = 630.0. Actual numerical values from Fig. I are included to indicate the precise 
relationship between the mathematical model as defined by equation series I and the 
corresponding flow model shown in Fig. I .  In general terms, for n pools, equation series 
I can be rewritten as : 

12 

&(t) = C k i i q j ( t ) + f i ( t )  ( i =  I , Z ,  ...,n), 
j=i 

or, in matrix notation, 
&(t) = KQ(t) + F(t) ,  (3) 

where Q(t) and F(t)  are column vectors of n quantities qi(t) andfi(t) respectively, and 
K is the n x n matrix of coefficients kii (see Berman & Schoenfeld, 1956). 

Table 3 gives K corresponding to the model in Fig. I ,  as defined by equation series I .  
The characteristic polynomial (Wylie, 1966) of this matrix is: 

p7+23~’24P6+6~62’87p5+54567.89p4+ 189811~01p3+ 275141-89p2+ 142365.7~ 
+ 959’648. (4) 

The roots of this polynomial are given below the matrix in Table 3 since they are the 
eigenvalues, hi, of this matrix. 

Thus, the solution to equation series I can be written as: 
+ a e-7.769t + a e-000683t 

a2 23 i4 i 5  qi( t )  = ai0 + a,, e-2.852 + a. e-202.1 + a. e-15.77t 

+,8e--1.39t i xsin(o*z14t)+y~e--1*~9tcos(0*214t) (i = 1,2,  . . . ,7),  ( 5 )  
where the coefficients aio, . . ,, a,,, pi and yi are constants which depend only on initial 
pool sizes and fl (the constant rate of input of N into the seven-pool model). The period 
of the oscillations due to the last two terms in equation series 5 is 29.37 d, which means 
that detection of fluctuations in any solution to equation series I would be highly 
improbable since /3ie-1’39X29.37 < 

Thus, analytical or exact solutions to equation series I can be written down (at the 
x 10-l~. 
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VOl. 35 Simulation of sheep N metabolism I55 
expense of much labour) for any given set of initial conditions, qi(o), and constant 
inputs,& However, with varying N inputsfi(t) numerical solutions have to be generated 
to study the dynamics of the linear model given by equation series I. 

Methods : some problems in analysis 
Model stability 

Since the matrix in Table 3 has a dominant main diagonal whose entries are all 
negative, while all the off-diagonal entries are positive or zero, equation series I is 
stable with respect to perturbations from steady-state (cf. Hearon, 1963). Stability is 
clearly indicated, in this instance, by the fact that the eigenvalues, &, given in Table 3, 
all have negative real parts. Table 3 also suggests that the eigenvalues of such diagonal- 
dominant matrices may be approximated by the entries on the main diagonal of the 
matrix. Both sets of values for the matrix in Table 3 can be seen to span six orders of 
magnitude. Such linear multi-compartmental models with constant coefficients can 
also be shown to be stable independently of any time delay in the transfer of material 
from one pool to another (Mazanov, 1976). 

Differential equation series I are ‘stiff’ since the smallest eigenvalue of K, the co- 
efficient matrix, is less than - 200.0. Consequently, numerical instability of digital 
computer solutions could arise from discretization errors that would inevitably be 
present in any finite precision numerical technique that could be used to solve ‘stiff’ 
systems of differential equations such as equation series I. Therefore, the stability 
properties of error propagation in a range of numerical solution techniques should be 
studied in detail before a particular procedure is selected as suitable. 

Numerical method stability 
Examination of the numerical stability of different numerical integration techniques 

varies in difficulty. Implicit methods such as, for example, the modified Hamming 
(cf. Ralston, 1960) predictor-corrector integration technique are more difficult to 
examine than single-step methods. Also, although single-step, implicit methods are 
stable when every product, h 4 ,  of integration step-length, h, and eigenvalue, A ,  lies 
outside the unit circle, in the complex plane and with centre unity, ‘it is important to 
choose a suitable (sic) iteration’ procedure (Cooper, 1969). 

However, by using the classical formulas of Runge (1895) to solve equation : 

9 = h(Y -a), (6) 
numerically with yo = a+eo and step-length h, the error after m steps can be found 
directly. Substitution into the formulas: 

I k, = hh(y,-a), 
k, = hh(yt-a+o.gK,), 
K, = hh(y, - CL + 0*5k,), 
k, = hh(yi - + k3), 

(k1+ 2kz + 2k3 + k4) 
6 Yi+l = Y6+ 

(7) 
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8, = coorn, (8) 

gives the error em = ym -y(tm) after m steps, i = 0, I ,  2, ..., m. Sincey(t) = a, this error 
is : 

where q5 turns out to be 
q5= (I+hh+-+-+-). (hh)* 

2 6 24 

This analysis gives the ‘ non-asymptotic ’ (cf. Cooper, 1969) stability condition: 
- 2.785293 < hh < 0, since - I < 4 < o ensures that 6, decreases as m increases. 

Consequently, the method chosen to generate numerical solutions to equation series I 

and all the other models reported below, was a fourth-order Runge-Kutta procedure as 
modified by Gill (1951). This method gives the highest possible accuracy by controlling 
round-off errors in the Runge-Kutta procedure. It requires a minimum number of 
storage registers and comparatively few instructions (Romanelli, 1960). Also, since 
Runge-Kutta methods are self-starting, the interval between steps may be changed at 
will, as can the inputs, fi. These methods are comparable in accuracy to predictor- 
corrector methods (Ralston, 1965) and, for fixed-step integration, they are nearly as fast 
as the modified Hamming technique. 

The above considerations ensure that when - 2.78 < hh, < o for equation series I ,  

discretization error propagation in the modified Runge-Kutta method used here will 
be controlled for all numerical solutions of equation series I and similar mathematical 
models. Round-off errors are minimized in this method and can usually be ignored 
(Ralston, 1965). Thus truncation errors committed at each step should be used to 
control numerical integration step size selection. 

Truncation error can be estimated in this fourth-order numerical method by com- 
paring solutions qLh) and qi(0.5h) found each time t + h  with step h and two steps, 0-5h, 
respectively. The estimated truncation error, e,  which compares favourabIy with true 
error, can be calculated as follows: 

where the wiare statistical weights that compensate for the possibility of large differences 
between pool sizes, qi. Of course Cwi should always be unity. For example, in genera- 
ting numerical solutions to a particular system of two differential equations (for which 
the exact solutions were known), the actual and estimated truncation errors were found 
to be - 13-7 x 10-7 and - 13.5 x 10-7 respectively (see Romanelli, 1960). For equation 
series I with pool sizes near steady-state, estimated truncation errors given by equation 9 
were (2.0 & 0.7) x IO-’ when the maximum possible step-length that still ensured 
numerically stable solutions was used (cf. truncation errors of (2.0 0.8) x I O - ~  for the 
Hamming method solution of the same problem). 

The FORTRAN subroutine that was consequently selected to generate all numerical 
solutions in this study was an IBM ‘ System/360 Scientific Subroutine Package’ im- 
plementation of a variable-step version of the Gill-modified Runge-Kutta scheme 
(see Romanelli, 1960). This implementation proved to be the most versatile, convenient 
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and stable numerical integration technique considered, although solutions using this 
method took half as long again as a fixed-step Runge-Kutta scheme. 

Truncation error was readily monitored in the method used here to solve the ‘stiff’ 
differential equations arising from the modelling project reported in this paper. Integra- 
tion step-length was quickly estimated from the entries on the main diagonal of K, the 
coefficient matrix, for any given simulation model. (In any instance, the step-length was 
automatically reduced whenever truncation errors became too large, during the com- 
putation of numerical solutions to a particular set of differential equations.) 

Finally, the self-starting nature of this single-step method made it ideally suited to 
studies of model responses to step and delta function inputs that were used to simulate 
tracer-kinetic and other experiments. This final consideration became all the more 
critical in later studies, when more detailed models included the effect of the rate of 
passage of digesta in sheep. 

VOl. 35 

Variable-coeficient models 
An appropriate choice of f i ( t )  and initial conditions in equation series I could be 

used to reproduce some of the tracer concentration curves that were used to calculate 
various N flows in the model (Fig. I). Such simulations do not validate the model unless 
the same model can also simulate the results of a number of different experiments under 
the same conditions but using a number of different sites of injection of tracer (Berman, 
1963). The model would then be validated for that set of constant conditions. 

In an n-compartment system, the solution to equation 3 with F( t )  3 o is: 
n 

qi(t) = 7,eV (i = 1,2,3, ..., n), 
3 = 1  

where qii are constants and the eigenvalues A,, of K are distinct (Benyon, 1968) with 
negative real parts (Hearon, 1963 ; Mazanov, 1976). With only one of the qi(o) non-zero, 
equation series 10 could be used to simulate ‘ single-injection’ tracer experiments. When 
F is a constant non-zero vector and Q(o) is a zero vector, the solution to equation 3 
is : 

n 

1=1 
qi(t) = I: uij(l - e V )  (i = I ,  z,3, ..., n), (11) 

where the ui, are constants and the A, are the same as for equation series 10. This 
instance could be used to simulate ‘ continuous-infusion ’ tracer experiments. Clearly, 
when each of the constant inputs of tracer, fi, into the system is halved, the plateau 
concentrations of tracer in every pool in the system will eventually halve in a system 
which stays in steady-state. 

A consequence of the linearity of the model equation series I is that the steady-state 
pool sizes, qi(co), in the system must halve or double if each and every constant input, 
f i ,  of N is halved or doubled. 

Table 4 gives the quantities of N in each of the seven pools (Fig. I) for the con- 
stant-coefficient (Table 3) model, together with values predicted by the assumption of 
linearity and those expected on biological premises. Comparison of the biologically 
expected pool sizes for animals consuming diets on which the model was based with 

6 N U T  35 
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Table 4. The seven-pool model of the dynamics of nitrogen metabolism in sheep consuming 
forage diets: predicted ( P )  (by model shown in FZg. I using matrix given in Table 3 )  and 
expected ( E )  pool sixes (g  N )  at time infinity 

Model values assuming N intake of (g/d) : 

4’91 14’155 23’4 
r , 

Pool - - 
no. E P Results P E 

I 1-2.5 1’7 5 8.3 4- 10 
2 0’01 0.017 0.05 0.083 0.08 
3 0’3 0‘21 0.6 0‘99 I 

4 2 I ‘7 5 8.3 8 
5 I 0.87 2.5 4’1 4 
6 2 2’1 6 9’9 1 0  

7 560 232 630 1107 700 

the quantities of N in pools 1-6 that were predicted shows close agreement. The size 
of pool 7 was not well predicted by this model since the tissue mass of sheep does 
not halve or double as dietary N intake halves or doubles (Panaretto, 1963). 

Thus, either a more complex constant-coefficient model or avariable-coefficient model 
must be constructed. I n  other words, some of the K, in equation series 2 or equation 3 
must be variable because in the seven-pool model, the various components of tissue 
N are considered to be a single, homogeneous pool. This is a gross over-simplification 
made in the absence of more (adequate) biological data. 

However, wool growth and presumably other integumental growth rates respond 
quickly to protein or amino acid availability (Downes, Reis, Sharry & Tunks, 1970) and 
these could be related to dietary Nintake. The loss of N from the tissue pool, for example, 
and the quantity of N recycled to pools I and 6 may be functions of dietary N input, f i ( t ) .  
Making the rate-coefficients associated with these three transfers of N functions of 
f l ( t )  would not make the model (Fig. I) non-linear, since none of the coefficients would 
become a function of any of the pool sizes of the model. 

Pool 7 can be constrained to a linear interpolation between the expected N content 
of the tissue pool for ‘ low-N ’ and ‘ high-N ’ models, without disturbing the balance of 
the first six pools of the model in Fig. I. This result can be achieved by relating the 
entries in the last column of Table 3 to the daily rate of dietary N intake, for instance, 
by the following relationships: 

where 
7400.6 

= 107.2+ with s’ f l (7)dr  > 2.0, 
t - R  

t - R  
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Table 5. The seven-pool model of the dynamics of nitrogen metabolism in sheep consuming 
forage diets (equation 3 ( p .  154) with the matrix in Table 3 modiJied by equation series 
12 ( p .  158)): calculations from predicted pool sixes compared with values reported by 
Cocimano @ Leng (I 967) 

Plasma urea 
Body-wt concentration Urea entry rate Urea excretion rate 

Intake (------, & & 
(kg) (mmol/l) (mdmin) (mdmin) 

Diet* (g N/d) ‘Model’ Reported ‘Model’ Reported ‘Model’ Reported ‘Model’ Reported 

I 2.8 27.2 27.7 1.16 1‘22 3’19 2.4 1’93 0.7 
2 3.6 27‘5 30’4 I .48 1.88 4.09 7’3 2.48 I ‘0 

l and4  13.3 31.2 3 4 8  4.81 5‘39 15.11 17’9 9.16 10’0 

5 14.4 31.6 29.8 5‘1.5 3‘23 16.35 10’0 9’92 3-9 
6 21.8 34.4 35.0 7’16 7.54 2476 28.1 15.01 17’4 
7 35’0 39’8 34’1 9‘94 11’74 39’75 37‘4 24.10 31-8 

* For details of compositon, see Cocimano & Leng (1967). 

and where R is the ‘response time’, or the carry-over effect, for a change in diet. Here 
R was assumed to be only I d and f i ( t )  was given in g N/d. Equation series 12 are the 
result of linear interpolation on the coordinates (560, ri7) and (700, ri7) for each of the 
estimated daily quantities of N movement, q, g N/d (i  = I, 6,  7), out of pool 7 for the 
‘1ow-N’ and ‘high-” balance models that were used to give the average model in 
Fig. I. 

Steady-state aspects of the seven-pool, variable-coefficient model can now bevalidated 
by comparing results predicted by the model with biological measurements other than 
those used to quantify the model. Such comparisons lead to further validations by 
simulation of dynamic changes found in independent biological experiments. Critical 
evaluation of the model‘s responses to dynamic manipulations could lead to further 
model refinement. 

V A L I D A T I O N  OF T H E  SEVEN-POOL MODEL 

Prediction of steady-state relationships 
Using the model in Fig. I, as modified by equation series 12, the steady-state pool 

sizesq,(m), i = I, 2 , .  . ., 7 were predictedfor a range of N intakes. This time, physiological 
measurements such as plasma urea concentration were estimated from the 4.1)s and 
compared with actual experimental results. 

Animal live weight ( W, kg) was estimated from model output by using the formula: 

W = q7 + 20 (Panaretto, 1963), (13) 

V = 0-557W (Packett & Groves, 1965). (14) 

and body fluid volume (V, 1) was then estimated by substitution in the relationship : 

Rumen fluid volumes were assumed to range between 3 and 5 1 in sheep consuming 
diets containing from 3 to 25 g N/d (in about 500-Iooog dry matter). Plasma urea was 
related to total N in pool 6 of the model by a constant scale factor of 0.9 for sheep on 
this range of dietary N intakes. The estimate of the scale factor that was used to 
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Table 6. The seven-pool model of the dynamics of nitrogen metabolism in sheep consuming 
forage diets (equation 3 (p .  154) with the matrix in Table 3 modified by equation series 12 
( p .  158)): predicted values compared with values reported by McIntyre (1970) 

(g N/d) (=om (=ol/l) 
Total urea-N excretion Rumen ammonia Plasma urea-N 

Intake 7 
Diet* ( g  N/d) ‘ Model’ Reported ‘ Model’ Reported+ ‘ Model ’ Reported 

I 6.8 3.60 1.61 4’2 0-1.8 1.25 0.98 
2 16.8 8.92 8.87 9.6 6.5-10.0 2-72 3 ’45 

3 23’5 12.48 12.32 13.0 
15’9-22’3 
(11’7-20‘5) 3’53 445 

4 37’3 19.81 18.52 18.6 14’7-21.7 4.87 4‘75 
5 46.3 24’59 2 4 1 1  23.1 15.3-23.5 5.58 4.68 

* For details of composition, see McIntyre (1970). 
t Ranges from Fig. 3 of McIntyre (1970), except values in parentheses which are from Nolan & 

Leng (1972). 

l4 r 

I I I I I I I 
0 10 20 30 40 

N intake (g/d) 

Fig. 2. Relationship between dietary nitrogen intake and plasma urea concentration in sheep 
consuming forage diets. (-), Predicted by the seven-pool model of the dynamics of N meta- 
bolism, Fig. I, and modified by equation series 12 or 15 (pp. 158 and 164 respectively); (- -), 
the regression line for values reported by Nolan, Cocimano & Leng (1970); (- - - -), 95 % con- 
fidence limits for the regression line. 

calculate plasma urea concentrations assumed that 42 % of body fluid N occurred as 
plasma urea-N. 

Predicted steady-state pool sizes were used to calculate values given in Tables 5 and 6, 
after applying equations 13 and 14 together with the assumption that rumen volumes 
ranged from 3 to 5 1 for the diets considered. These experimental results were indepen- 
dent of those used in postulating and quantifying the model in Fig. I as modified by 
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Fig. 3. The relationship between rumen fluid ammonia concentration and plasma urea con- 
centration for sheep consuming forage diets. Values, together with the regression line (- - - -), 
for prefeeding concentrations of plasma urea and rumen NH, for sheep on a range of dietary 
nitrogen intakes (after Egan & Kellaway, 1971). Predictions made by the seven-pool model of 
the dynamics of N metabolism (-), for a 3 1 rumen (the upper line) and a 5 1 rumen (the 
lower line) show concentration trends with increasing dietary N intakes. 

equation series 12. The inherent linearity of the first six pools of the model is apparent in 
the regression lines shown in Figs. 1-5 of Nolan, Cocimano & Leng (1970) which are 
predicted by the model within the 95 % confidence limit for each line. For example, 
Fig. 2 shows one such relationship between plasma urea concentration and daily dietary 
N intake. Fig. 3 (after Egan & Kellaway, 1971) gives results and the relationship 
between prefeeding concentrations of rumen NH,-N and plasma urea-N for a range 
of dietary N intakes. Assuming either a 3 or 5 1 rumen volume means that the upper 
or lower line respectively (Fig. 3) is predicted from the model which gives the sizes of 
q,, qs and q, for the range of forage diets studied by Egan & Kellaway (1971). These 
results indicate that the steady-state predictions of the model are now satisfactory. 

Simulation of dynamic responses 
The results reported above depend only upon the linearity of the transport of N 

between pools 1-6 and the net losses from them. In  effect, this is simply a form of static 
prediction that can result from any linear model with constant coefficients and with the 
correct choice of initial pool sizes. If the coefficients used are incorrect, the dynamics 
of the N metabolism model will not correspond in any way to the dynamics of N 
movement found in living sheep (Berman, 1963). 

Consequently, the seven-pool model in Fig. I was used to simulate the dynamics of 
N metabolism in sheep when inputs of N were manipulated. The experimental pro- 
cedures of McIntyre & Williams (1970) were used to give the input functions for the 
numerical quadrature of equation 3 with the matrix in Table 3 modified by 
equation series 12. Thus fi and fs were defined respectively as a food intake of 3-38 
N/d corresponding to ration 3 (McIntyre & Williams, 1970) consumed in 3 h at the 
start of each day, zero for the rest of that day, and an intravenous infusion of a total of 

https://doi.org/10.1079/BJN
19760017  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1079/BJN19760017


I 62 A. MAZANOV AND J. V. NOLAN I976 

f --- 
I r, I J 

0 4 a 12 14 

Time after first  receiving N source (h )  

Fig. 4. Daily fluctuations in the concentrations of rumen ammonia-nitrogen - - -) and plas- 
ma urea-N (-), predicted by the seven-pool model of the dynamics of N metabolism in 
sheep consuming forage diets, when 3’3 g N/d was consumed in the first 3 h of each day (-+) 
and when 5.5 g N/d was infused intravenously as urea over the first 8 h of each day (-+). 
The ranges of concentrations represented by vertical bars are those reported by McIntyre & 
Williams (I  970). 

loss of 1% tracer from L-aspartic and L-glutamic acids in rumen fluid. These amino 
5-5 g urea-N made over the first 8 h of each day. The remaining five fi were set to 
zero. Also, the model was adjusted to be in slightly negative N balance to correspond 
with experimental findings for sheep on the ration, before urea infusion. 

This simulation experiment was run over 10 d and the results were monitored over 
the last 8 d. Model predictions of fluctuations in rumen NH,-N and plasma urea-N are 
compared with experimental results in Fig. 4. Over-all N balance post-infusion was 
found to be + 1-7 gN/d in both the simulation run and the experiment. Thus an in- 
dependent set of results has validated dynamic aspects of endogenous urea and dietary 
N metabolism in the interrelationships between the model’s plasma urea-N and the 
rumen N pools. Also, these model responses indicate that the positive N balance in the 
experiment was not simply a result of urea-N utilization in the digestive tract (contrast 
McIntyre & Williams, 1970). 

Another test of the model was made by attempting to simulate the disappearance 
of 1%-labelled amino acids from the rumen pool after a single injection of tracer. This 
utilization of rumen amino acids reflects only the flows of N out of the rumen amino 
acid-N pool, since there is no recycling of the I4C in this instance. ‘Model’ results are 
compared in Fig. 5 with the in vitro findings of Portugal & Sutherland (1966) for the 
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Time after injection 
of tracer (min) 

Fig. 5. Comparison of results obtained in vitro (after Portugal & Sutherland, 1966) for the 
disappearance of W-labelled L-glutamic acid (0) and L-aspartic acid (0 )  from the rumen 
pool after a single injection of tracer with those obtained for the mean turnover for all amino 
acids in the rumen from a simulation experiment, using the seven-pool model of the dynamics 
of nitrogen metabolism in sheep consuming forage diets. 

acids are two of the more rapidly metabolized amino acids in the rumen (Lewis & 
Emery, 1962). This finding, together with the proportions of more slowly metabolized 
amino acids that are present in the rumen fluid of sheep (Leibholz, 1969) suggests 
that the decay curve produced by the seven-pool model is generally consistent with 
the experimental results shown in Fig. 5. 

Model insufficiencies 
When an injection of tracer into pool 3 was simulated by the model, the peak con- 

centration of tracer in body fluids N, pool 6, occurred at about 18 h. This was not con- 
sistent with the peak concentration found at about 4 h by Nolan & Leng (1972). In this 
instance, the net flow of N used did not adequately describe the dynamics of N transport 
between pools 6 and 7 of Fig. I ,  since the relatively large size of pool 7 made it a sink 
for all incoming tracer. 

The net flow, r6,, from the body tissue N pool to the body fluids N pool was not an 
adequate description of that portion of the animal system. Consequently, rapidly meta- 
bolized amino acids were assumed to be involved in a two-way movement of N between 
the tissue and body fluid pools. Estimates of these N movements, that were not used up 
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to this stage, increased the flow, r6,, to 25.25 g N/d and assumed that there was a new 
pathway flow, r76, of ~ ~ - o g N / d .  With the net flow of N from pool 7 to pool 6 set at 
0.25 g N/d, the appearance of 16N tracer in pool 6 was studied, after a single injection 
of tracer into pool 3, for interacting N flows of 30, 25, 20, 15 and IogN/d. The daily 
N transfers re7 (I 5.25 g N/d) and r76 ( I  5.0 g N/d) produced a curve with a maximum 
‘ enrichment’ in pool 6 at almost exactly 4 h. Equation series 12 in this new instance 
becomes : 

I 0’1 
k,, = 7,  

k,, = - 
15i? I 

with k,, = 15.0. The use of these variable rate-coefficients again ensured that the over- 
simplified tissue N pool stayed between known bounds. 

Clearly, steady-state and certain dynamic aspects of dietary N metabolism in sheep 
appear to have been well modelled by the seven-pool system. However the passage of 
digesta N between different parts of the digestive tract takes an appreciable time 
relative to that taken for N movement through other parts of the body (e.g. in blood). 
Information concerning time delays (lags) with respect to digesta N movement was 
available from Nolan et al. (1976). These results provided appropriate estimates of time 
delays in the gut which facilitated extension of the seven-pool model to a nine-pool 
model which includes time delays. 

A NINE-POOL L A G  MODEL 

Biological considerations and preliminary quantijications 
Nolan et al. (1976) injected (15NH4),S04 into the rumen and caecum of two different 

sheep and [15N]urea into the blood of a third sheep. The appearance and washout of 
15N was monitored in rumen fluid NH3-N, rumen bacterial N, caecal supernatant 
(‘Igooog’ supernatant fraction) NH3-N, caecal debris (‘ 19000g’ residual fraction) N, 
rectal supernatant NH3-N, rectal debris N and plasma urea-N (Nolan et al. 1976). As a 
result pool 5 (the ‘lower gut’ N pool, Fig. I) was divided into small intestinal fluid N, 
caecal fluid N and rectal fluid N pools (pools 5 ,  6 and 7 respectively) (Fig. 6). Pools 
6 and 7 in Fig. I became pools 8 and 9 respectively. Only approximate estimates were 
made initially for the steady-state sizes of the new pools but the total content of the 
‘lower gut’ N pools had to be the same as for the seven-pool model, that is, 2.5 g N. Also 
the sum of N flows to and from the new pools was initially assumed to be the same as 
for the seven-pool model. 

It was argued that the small intestine N pool would have a high level of interaction 
with the body fluids pool, and that the caecum (colon) would have a more appreciable 
net loss of N than the remainder of the large intestine. The small intestine pool was 
assumed to contain 0.8 g N, the caecum I - I  g N and the rectum 0.6 g N. Using the times 
of initial appearance of water-soluble, indigestible marker, 51Cr EDTA, at the caecum 
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Table 7. Steady-state j aws  ( g  nitrogenld) between the pools of the nine-pool lag model 
of the dynamics of N metabolism in sheep consuming forage diets 

(Delayed transfers ( g  N/d) are given in italics and the delays (min) are given 
as subscripts. Values not included are 0.0). 

Steady-state 
pool size 
(g N) ... 5 '0  0.05 0.6 5.0 0.8 1'1 0.6 5.0 

j ... I 2 3 4 5 

($3 N/d) i 
Input 

14.155 I -14.255 
2 8.35 -10.1 1'75 
3 0.055 7.85 -9.11 
4 2.25 7'5 -9.75 
5 5.85150 . 8.0,~~ -15.65 
6 .  Io'060 - 
7 
8 .  1.61 425 
9 1'4 

- 

Losses (gN/d) . 

6 7 8 
630.0 
9 

0.1 

15'25 
- 19'405 

4'055 

and the rectum gave estimates of the delays, 051, D54, D,, and D6,, in the movement of 
water from pools I and 4 to pool 5 (a guess), from pool 5 to pool 6 (by difference) and 
from pool 6 to pool 7 (by difference), respectively. 

Table 7 gives the estimated steady-state daily flows of N between the nine pools 
of the initial lag model, together with the assumed pool sizes and the time delays. It 
must be noted that the flow of N from pool 3 to the tissue N pool has been re-routed 
through the body fluids pool to make this transfer of N biologically more meaningful. 

The effect of the time delays on the mathematical description (equation series 2) of 
the dynamics of N metabolism in sheep is that transfers of N such as r51 and r54 arrive 
at their destination, pool 5 ,  delayed by times D51 and D54, respectively. That is, the 
instantaneous rate of influx of N into pool 5 from pool I, for example, is k5141(t -D5J 
instead of &q1(t). 

Mathematical considerations 
The difference-differential equation series that now describes the dynamics of 

N metabolism in sheep is: 

where (a4,+bij) = Ki3 and acj = o for all N transfers delayed by time D,, qi(t) is the 
quantity of N in pool i with n = g for the model in Fig. 6 and where the fi are the N 
inputs. Rate constants aij and b ,  can be calculated from Table 7 by dividing the entries 
in each column by the steady-state pool size corresponding to that column, while the 
D, (d)  can be deduced by dividing the delays (min) given in Table 7 by 1440. 

Time lags, such as those brought about by the passage of digesta in sheep, cannot be 
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LOWER GUT 
43 .55  

Fig. 6. The nine-pool lag model of the dynamics of nitrogen metabolism in sheep consuming 
forage diets, with values for daily N transfers (g N/d) and time lags (min) for a dietary N intake 
of 14.155 g N/d. Pool sizes (g N) for this diet are shown in the top right-hand corner of each 
box. 

treated here simply by inserting extra pools as suggested by Berman, Weiss & Shahn 
(1962). The number of extra pools needed to simulate a delay depends on the time 
increment, at, used to generate numerical solutions of the resulting equations and on the 
size of the extra pools used. If the extra pools are to define the estimated time delays, 
then in a finite difference numerical scheme there must be Dij + 6t extra small pools 
for each delay D,. However, theoretically, a system of instantaneously linked pools can 
never produce real delays, since tracer introduced at any point in the system appears 
instantaneously at all points in the system. 

https://doi.org/10.1079/BJN
19760017  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1079/BJN19760017


VOl. 35 Simulation of sheep N metabolism 167 
If any aij and bii in equation series 16 is a function of any qi(t) in the system (cf. 

Mazanov, 1973 a, b), then that system of equations becomes non-linear. For a linear 
system the parameters aij, b, must be zero, constant, or functions of time and environ- 
mental conditions. In this paper, non-linear systems are not considered because their 
mathematical models can become unstable with increasing complexity (more pools 
and flows between pools) or when time delays are introduced (Hale, 1971 ; May, 1973). 
Also, Mazanov (1976) has proved that linear compartment models of open biological 
systems are stable independently of complexity or the duration of any time delays, thus 
ensuring that all A, eigenvalues of such systems have negative real parts. 

Again, since the nine-pool lag model is clearly more complex than the seven-pool 
model, numerical solutions were again generated on a digital computer to study the 
dynamic responses of the model. When tracer studies were to be simulated, the steady- 
state pool sizes and dietary N input were constant and it was therefore possible to use 
constant-coefficient, lag-differential equations to simulate such experiments. However, 
when dietary N intakes were varied, the recycling and losses of N from the over- 
simplified tissue N pool in the above model again had to be varied by using equations: 

0’1 
a,, = - , 4 

5 ’  I as, = - 

19.405 j a,, = -- 6 ’  

where f;is the same as for equation series 12 (p. 158) and 15 (p. 164). 

Model refinement 
Initial experimental enrichments of 15N in pools 3,6 and 8 were estimated from the 

curves of Nolan et al. (1976) as 3, 10, and 1.7 atoms/roo atoms excess respectively. With 
the size of injection of tracer set to the quantity of 15N in that pool, and the rest of the 
pools set to zero at time zero, numerical output from the model was converted to a mea- 
sure of atoms/Ioo atoms 15N excess in each pool of the model so that the results could be 
compared with available data. 

Three separate solutions of equation series 16, with coefficients and delays calculated 
from Table 7, were generated. This resulted in three sets of data giving a decay curve 
and either build-up and decay curves in each. Curves corresponding to results of avail- 
able tracer experiments of Nolan et al. (1976) were compared with these biological 
results. The comparisons indicated that for the model defined by Table 7, the rate of 
flow of 15N from pool 3 after an intraruminal injection of tracer was far too high. Also, 
not nearly enough l5N reached the caecum, the rectum or plasma urea. For an intra- 
caecal injection of tracer, not enough 15N left the caecum and far too much 15N reached 
pools 3 and 8 and also, after the time delay, the rectum. An amount of tracer which was 
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1000 times too great was reaching the rectum down the alimentary tract. An intravenous 
injection of tracer into pool 8 indicated that too much label moved from pool 8 to pools 3 
and 7 while too little reached pool 6. 

These interpretations of simulation results could easily have to be changed, since the 
dynamic nature of the flows in the model is so important that a very slight alteration of 
even a single rii could influence the shapes of the solution curves produced by the model 
to a great extent. However, if one rii is changed then the whole model must be re- 
balanced so that all influxes exactly equal the total efflux for any pool and for the model 
as a whole. After each such change all three sets of solution curves were regenerated 
with the same set of parameters and again compared with experimental results. (Also, 
enrichment calculations depend on assumed steady-state pool sizes which may have 
been inaccurately estimated.) 

Successive iteration through the above steps of modification of the flows of N, rii, in 
the model, balancing each pool and the model as a whole, and then again generating 
numerical solutions eventually gave three sets of curves which could not be improved 
further by changing the rij. At this stage, model pool sizes were altered to give slightly 
better agreement between model output and the experimental results of Nolan et al. 
(1976). 

A model validation 
The final, refined flows and pool sizes for the nine-pool lag model of the dynamics of 

N metabolism in sheep given forage diets are shown in Fig. 6. Solutions produced by 
this final model are shown in Figs. 7, 8 and 9 together with the results of three tracer 
experiments done by Nolanetal. (1976). It is important to note again that the same set of 
parameters was used to simulate all three tracer experiments. 

Optimal curves for individual sets of data could have been generated by manipulation 
of artificially selected model parameters, with or without re-balancing the model N 
flows. However, such manipulations would have been inconsistent with the intention 
of developing a model for N metabolism in sheep and such an approach, most probably, 
would not result in a set of biologically feasible coefficients. Also, individual optimiza- 
tions were not really necessary, since the character of the simulated results shown in 
Figs. 7-9 is consistent with experimental findings and is within the range of differences 
found between animals. The dynamics of the nine-pool model with lags have thus been 
validated according to the criteria of Berman (1963), and therefore the parameters used 
are characteristic of the animal metabolism system under consideration. 

In addition, since equation series 16 as modified by equation series 17 are linear for 
the nine-pool system, all the steady-state predictions that were made for the seven-pool 
model can be made equally well by the nine-pool model with lags. 

Assuming that protected protein, which escapes rumen fermentation .is effectively 
an input, f5, of N directly into pool 5 and that dietary urea N is an input into pool 3, the 
rumen NH,-N pool, the effects of different compositions of dietary N intakes could be 
simulated by the nine-pool lag model. In this instancef, would have to be replaced by 
(fi +fa +f5) in the calculation of 6 for equation series 17. Preliminary simulation studies 
currently in progress suggest that the nine-pool lag model’s predictions compare 
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Fig. 7. Enrichments of rumen ammonia-nitrogen (O), rumen bacteria N (O), caecal "€3,- 
N (A), rectal NH,-N (o), plasma urea-N ( x ) with time after a single injection of (lsNHa)aSOk 
into the rumen of a sheep (after Nolan, Norton & Leng, 1976). (-), Simulated curves 
produced by the nine-pool lag model of the dynamics of N metabolism of sheep consuming 
forage diets (Fig. 6). 
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Fig. 9. Enrichments of plasma urea-nitrogen ( x), rumen ammonia-N (O), rumen bacterial N 
(O),  caecal NH,-N (A) rectal NH,-N (0) with time after a single injection of [“N]urea 
into the blood of a sheep (after Nolan, Norton & Leng, 1976). (-), Simulated curves pro- 
duced by the nine-pool lag model of the dynamics of N metabolism of sheep consuming 
forage diets (Fig. 6). 
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favourably with available data and therefore such computer studies should serve as 
further validations of this model in due course. 

However, it must be acknowledged here that the lower curves in Figs. 7-9 are 
significantly different from the experimental values shown in these figures. This is a 
direct consequence of the over-simplification of the body fluid N pool and the flows 
assumed for N transfers from pool 6 to pools 7 and 8 in Fig. 6. 

D I S C U S S I O N  

Model development can be approached in many ways. The present study was based 
on the following principles. First, to be a useful addition to biological experimentation, 
the mathematical argument must be based on an understanding of the biological nature 
of the processes involved in the model; the alternative is to describe the processes by 
statistical or probability arguments based on experimental results. Secondly, model 
development is facilitated by the construction of the simplest model that produces out- 
put which can be validated. The model can then be added to as required. Each addition 
to the model must improve its ability to simulate the animal system it represents. When 
improvement does not follow an increase in complexity of the model, the effect of the 
most recent modification can be studied further. By contrast, if an initially complex 
model fails to simulate correctly, it is difficult to find the part(s) of the model at fault. 
These beliefs are illustrated in the present studies by the development of the whole- 
animal model of the N cycle in sheep. 

In the first instance, the twenty-five-pool flow model of Nolan & Leng (1972) was 
simplified to a conceptual seven-pool model by amalgamation of various parts of the 
more complex model. Then, two sets of quantitative results for sheep given high 
and low dietary N intakes were applied to this conceptual model and small adjustments 
of data were made to give the ‘high-” and ‘low-N ’ balanced models. 

A comparison of the rate-constants for corresponding processes for the ‘ high-N ’ 
and ‘ low-N ’ models indicated that these were, in general, of the same order of magni- 
tude. It was thus reasonable to suppose that these rate-constants would apply to 
N-balance situations under other dietary N intakes. Any appreciable differences in 
some of the coefficients may have resulted from over-simplifications of the biological 
nature of the processes involved. To  the extent that these differences occurred, rate- 
constants were not adequate definitions of these processes in the model. 

Actual urea metabolism results of Nolan et al. (1970) for urea and NH, metabolism, 
obtained from studies of animals in the range of N intakes and physiological conditions 
considered in this paper, were compared with model output. This comparison indicated 
that the assumption of linearity in models of N metabolism in sheep was compatible 
with these biological results. Dietary N was, therefore, assumed to be the only limiting 
factor in all our models. To  that end, the dynamic processes of N metabolism in sheep 
are adequately described by first-order kinetics. This hypothesis is supported by the 
good agreement obtained between model output and experimental results over a wide 
range of N intakes in forage diets. 

First-order kinetic models have adequately simulated relationships between N 
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intake and N metabolism as NH, and urea, and probably also as amino acids under the 
conditions of the present study. 

Generalization of this concept may also hold, with new sets of parameters, for animals 
in different physiological conditions or beyond the dietary limits used to construct 
this model. However, a gross change in the proportions of absorbed amino acids could 
markedly alter the rate-coefficients for tissue protein and urea synthesis in the animals 
considered in this study. Such a gross change in the proportions of absorbed amino 
acids is very unlikely in animals given forage diets. With these provisos, it appears that 
concentration or quantity of substrate exerts a primary influence on the quantities of 
N transferred in the body. Obviously hormonal and neural factors must have particular 
involvements as coordinators in the maintenance of over-all homoeostasis. 

When a number of steady-state models for a range of diets become available and are 
compared, the nature of the variation, if any, of the coefficients in the matrix, K, can be 
studied and a suitable variable-coefficient model can be constructed (Mazanov, 1973 u). 
Variable-coefficient models were used previously and these models would also be 
needed to simulate the dynamics of glucose metabolism in sheep, since pool sizes 
may remain constant while glucose entry rates vary from 54 to ~oomg/min (Judson 
& Leng, 1973 ; Steel & Leng, 1973). 

Time delays exist in the animal and must be allowed for explicitly. Further refine- 
ment of the nine-pool lag model can occur only when more results from animal experi- 
ments become available. Such refined models should produce better simulations and 
give better fits to tracer dilution curves such as those of Nolan et ul. (1976). 

The present study clearly illustrates our belief that whole-animal models should be 
considered and that animals should be studied as complete entities. A maximum number 
of estimates of independently measured processes may then be compared simultane- 
ously with predicted results. In  this way the strengths and weaknesses both of the 
models and of the level of understanding of metabolic processes are highlighted and 
research programmes expedited. 
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