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Free Pre-Lie Algebras are Free as
Lie Algebras

Frédéric Chapoton

Abstract. We prove that the S-module PreLie is a free Lie algebra in the category of S-modules and

can therefore be written as the composition of the S-module Lie with a new S-module X. This

implies that free pre-Lie algebras in the category of vector spaces, when considered as Lie algebras, are

free on generators that can be described using X. Furthermore, we define a natural filtration on the

S-module X. We also obtain a relationship between X and the S-module coming from the anticyclic

structure of the PreLie operad.

1 Introduction

A pre-Lie algebra is a vector space V endowed with a bilinear map x : V ⊗ V → V

such that

(1.1) (x x y) x z − x x (y x z) = (x x z) x y − x x (z x y),

for all x, y, z ∈ V . This kind of algebra has been used for a long time in various

areas, see [1] for a survey. In geometry, there is a pre-Lie product on the space of

vector fields of any variety endowed with an affine structure. In algebra, this kind

of product appears for instance in relation with deformation theory, operads, and

vertex algebras.

In a previous article [7], the free pre-Lie algebras have been completely described

in terms of rooted trees. The language of operads was a convenient setting for this.

In any pre-Lie algebra, the bracket [x, y] = x x y − y x x satisfies the Jacobi

identity and therefore defines a Lie algebra on the same vector space. This defines a

morphism from the Lie operad to the PreLie operad and a structure of Lie algebra on

PreLie in the category of S-modules.

The article is written using the language of S-modules. We will start by briefly

recalling the main features of this theory. This is the natural category for operads

and provides a clean way to deal with free algebras.

The main result is the fact that the S-module PreLie for pre-Lie algebras is iso-

morphic (as a Lie algebra in the category of S-modules) to the composition of the

S-module Lie for Lie algebras with a S-module X.

This implies in turn that free pre-Lie algebras are free Lie algebras for the

Lie bracket [ · , · ]. This result has been obtained before with different methods

by Foissy [8]. Our result shows that the generators can be described using the

S-module X.

Received by the editors October 15, 2007.
Published electronically June 19, 2010.
AMS subject classification: 18D50, 17B01, 18G40, 05C05.

425

https://doi.org/10.4153/CMB-2010-063-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-063-2


426 F. Chapoton

We prove our main result by using a spectral sequence; furthermore, this method

gives a natural filtration on the S-module X.

We also give a description of the character of the S-module X. This description

implies (at the level of characters) a direct relation between X and the anticyclic struc-

ture on the PreLie operad. It is still not clear what the meaning of this link is and how

to build an isomorphism that would explain it.

2 Notations and S-Modules

Let K be a fixed ground field of characteristic zero.

We will work in the Abelian category of S-modules over K or sometimes with

complexes of S-modules over K. Recall that a S-module P can be seen as either

a functor P from the category of finite sets and bijections to the category of vector

spaces over K or a sequence (P(n))n≥0 of K-modules over the symmetric groups Sn.

We will use one or the other of these equivalent definitions freely.

The category of S-modules is symmetric monoidal for the following tensor prod-

uct:

(F ⊗ G)(I) =
⊕

I= J⊔K

F( J) ⊗ G(K),

where I is a finite set and J ⊔ K is the disjoint union of the sets J and K.

There is another monoidal structure on S-modules that is nonsymmetric and

defined by

(F ◦ G)(I) =
⊕
≃

F(I/≃) ⊗
⊗

J∈I/≃

G( J),

where I is a finite set and ≃ runs over the set of equivalence relations on I.

An operad Q is essentially a monoid in the monoidal category of S-modules with

◦ as tensor product, i.e., the data of a map from Q ◦ Q to Q which is associative.

We will consider S-modules endowed with various kinds of algebraic structures.

One can define associative algebras, commutative algebras, exterior algebras, Lie alge-

bras, Hopf algebras, and pre-Lie algebras in the category of S-modules by using the

symmetric monoidal product ⊗ and the usual diagrammatic definitions. This works

in particular for algebras over any operad Q. This kind of object is sometimes called

a twisted algebra or a left-module over the corresponding operad. We will simply call

them algebras.

If Q is an operad and P is a S-module, a structure of Q-algebra on P is given by a

map from Q ◦ P to P.

If Q is an operad and P is a S-module, the S-module Q ◦ P is the free Q-algebra

on P. The map from Q ◦ Q ◦ P to Q ◦ P is deduced from the map from Q ◦ Q to Q

defining the operad Q.

Let us consider the following S-modules.

Let λ be a partition of an integer n. Then λ is associated with an irreducible

representation of the symmetric group Sn, denoted Sλ. This can be seen as a S-

module concentrated in degree n. As a special case, S1 is the trivial module over S1.
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Let S be the direct sum of all S-modules Sn corresponding to trivial modules over

the symmetric groups.

Let T be the S-module defined as the direct sum of all the regular representations

Tn over the symmetric groups.

Let Λ be the direct sum of all S-modules Λ
n corresponding to alternating modules

over the symmetric groups.

There are morphisms of S-modules S ⊗ S → S, T ⊗ T → T, and Λ ⊗ Λ → Λ

that define associative algebras in the category of S-modules. These algebras are

essentially versions of the polynomial algebra, the tensor algebra, and the exterior

algebra.

For example, if I is a finite set, T(I) is the vector space spanned by total orders

on I. One can concatenate total orders on two sets I and J to get a total order on

I ⊔ J. This defines the map from T ⊗ T to T.

Let P be an S-module. The generating series fP associated with P is defined by

fP =
∑
n≥0

dim P({1, . . . , n})
xn

n!
.

There is a more refined object, which is a symmetric function ZP, recording the action

of the symmetric groups:

ZP =
∑
n≥0

χ(P({1, . . . , n})),

where χ is the image of the character of the Sn-module P({1, . . . , n}) in the ring of

symmetric functions. This symmetric function is a complete invariant in the sense

that two S-modules are isomorphic if and only if they share the same symmetric

function.

For more information on S-modules and operads, see [10, 11].

2.1 Relation with Usual Algebra

Each S-module P defines a functor from vector spaces to vector spaces as follows:

P(V ) =
⊕
n≥0

P(n) ⊗Sn
V⊗n.

The tensor product ⊗ of S-modules has the property

(F ⊗ G)(V ) ≃ F(V ) ⊗ G(V ),

and the tensor product ◦ of S-modules has the property

(F ◦ G)(V ) ≃ F(G(V )),

where V is a vector space.

If the S-module P is an operad and V is a vector space, then P(V ) is the free

P-algebra on V .
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Then if P is a S-module with such an algebraic structure, i.e., a Q-algebra for

some operad Q, the vector space P(V ) is endowed with the corresponding structure

of Q-algebra in the category of vector spaces.

The classical algebra structures on S(V ), T(V ) and Λ(V ) (respectively the polyno-

mial algebra, the tensor algebra, and the exterior algebra) come from the morphisms

of S-modules S ⊗ S → S, T ⊗ T → T, and Λ⊗Λ → Λ that were introduced above.

3 The Pre-Lie S-Module W

A rooted tree on a set I is a connected and simply-connected graph with vertex set I

together with a distinguished element of I called the root. Note that a rooted tree can

be canonically decomposed into its root and a set of rooted trees obtained when the

root is removed. Let W be the S-module which maps a finite set I to the vector space

spanned by the set of rooted trees on I.

It has been shown in [7] that W is the operad describing pre-Lie algebras and in

particular that W (V ) is the free pre-Lie algebra on a vector space V . There is a natural

morphism x : W ⊗W → W corresponding to the pre-Lie product. This means that

W is a pre-Lie algebra in the category of S-modules.

Let us recall briefly the definition of the map x.

Given a rooted tree S on a finite set I and a rooted tree T on a finite set J, one can

define S x T (which is a sum of rooted trees on the set I ⊔ J) as follows: consider

the disjoint union of S and T, then add an edge between the root of T and a vertex of

S and sum with respect to the chosen vertex of S. The root is taken to be that of S.

As there exists a morphism from the Lie operad to the PreLie operad induced by

[x, y] 7→ x x y − y x x,

there is a morphism [ · , · ] : W ⊗ W → W that makes W into a Lie algebra in the

category of S-modules.

The universal enveloping algebra of a Lie algebra is a well-defined associative al-

gebra in the category of S-modules, which has most of the classical properties of

the usual construction for vector spaces [13]. Let U(W ) be the universal enveloping

algebra of W .

In the sequel, a W -module is a module over the Lie algebra W or equivalently a

right module over U(W ). This notion is defined in the obvious way in the symmetric

monoidal category of S-modules.

There are two distinct W -module structures on the S-module W . The first one is

given by the adjoint action of the Lie algebra W on itself. It will be denoted by Wad.

The other one is given by the pre-Lie product x and will be denoted by WpL. The

fact that the map x is a right action results from the pre-Lie axiom (1.1).

Let us now recall results from [7, Thm. 3.3]. There is an isomorphism ψ of

W -modules between WpL and the free U(W )-module on the S-module S1. By the

description of W in terms of rooted trees and the decomposition of a rooted tree into

its root and its set of subtrees, the module WpL is isomorphic as an S-module to

S1 ⊗ S ◦W . The S-module S ◦W is spanned by forests of rooted trees. The isomor-

phism ψ can be written as Id⊗φ between S1 ⊗ S ◦ W and S1 ⊗ U(W ). This defines
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an isomorphism φ of W -modules from S ◦W to U(W ), where the action ⊳ of W on

S ◦W is deduced from the product x and is given by

(3.1) (t1t2 . . . tk) ⊳ t = t1t2 . . . tkt +
k∑

i=1

t1t2 . . . ti−1(ti x t)ti+1 . . . tk,

where the t ’s stand for some rooted trees.

From now on we will identify by the mean of φ the W -module U(W ) with the

W -module S◦W with this action ⊳. One can see from the explicit shape of the action

⊳ that the W -module U(W ) has a decreasing filtration by the number of connected

components of the forest.

The associated graded module is given by the action

(3.2) (t1t2 . . . tk) x t =

k∑
i=1

t1t2 . . . ti−1(ti x t)ti+1 . . . tk,

where we have slightly abused notation by using the symbol x for the action. This

is easily seen to be the natural W -module structure on S ◦ WpL obtained by extend-

ing the W -module WpL by derivation. This is also the symmetric algebra on the

W -module WpL.

One can see that there is only one other term in the filtered action (3.1), which is

of degree 1 with respect to the graduation by the number of connected components

and is just a product:

(3.3) t1t2 . . . tk ⊗ t 7→ t1t2 . . . tkt.

4 Two Spectral Sequences

Let us consider the usual reduced complex computing the homology of the Lie alge-

bra W with coefficients in the W -module U(W ). This is the tensor product of the

exterior algebra on W with the module U(W ) ≃ S ◦W .

As a S-module, this complex is (S ◦W ) ⊗ (Λ ◦W ). The differential ∂ is the usual

Chevalley–Eilenberg map, which uses both the bracket or the action as a contraction:

∂(x1x2 . . . xk⊗ y1∧ y2∧· · ·∧ yℓ) =

ℓ∑

j=1

±(x1x2 . . . xk)⊳ y j ⊗ y1∧· · ·∧ ŷ j ∧· · ·∧ yℓ

+
∑

1≤i< j≤ℓ

±x1x2 . . . xk ⊗ [yi , y j] ∧ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ ŷ j ∧ · · · ∧ yℓ,

where the signs are given by the Koszul sign rule.

But U(W ) is a free W -module by definition, hence the homology is concentrated

in homological degree 0 and is given by the S-module S0.

Let us now use the filtration on U(W ) to define two spectral sequences computing

the same homology. In fact, we will first define a bicomplex and then consider its two

associated spectral sequences.
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We have to introduce a triple grading on the complex (S ◦ W ) ⊗ (Λ ◦ W ). Let us

denote by n the internal degree of the S-module (seen as a collection of modules over

Sn), by p the degree with respect to the graduation of the symmetric algebra and by

q the homological degree with respect to the graduation in the exterior algebra. As

W has no component with n = 0, one has p ≥ 0, q ≥ 0, and p + q ≤ n.

Let r be n − p − q. We will use the triple grading by (n, p, r). The differential ∂
is of degree 0 with respect to the first grading. Hence one can consider each part of

fixed first degree n separately.

The differential ∂ on (S ◦W )⊗ (Λ ◦W ) decomposes into two pieces according to

the decomposition of the action ⊳ into the action x coming from (3.2) plus another

term coming from (3.3).

The first part is defined as follows:

∂pL(x1x2 . . . xk⊗y1∧y2∧· · ·∧yℓ) =

ℓ∑

j=1

±(x1x2 . . . xk) x y j⊗y1∧· · ·∧ ŷ j∧· · ·∧yℓ

+
∑

1≤i< j≤ℓ

±x1x2 . . . xk ⊗ [yi , y j] ∧ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ ŷ j ∧ · · · ∧ yℓ.

One can recognize the differential ∂pL of degree (0, 0, 1) which computes the homol-

ogy of the Lie algebra W with coefficients in the graded W -module (S ◦WpL, x).

The remaining terms of the differential are

∂K(x1x2 . . . xk ⊗ y1 ∧ y2 ∧ · · · ∧ yℓ) =

ℓ∑
j=1

±x1x2 . . . xk y j ⊗ y1 ∧ · · · ∧ ŷ j ∧ · · · ∧ yℓ.

The map ∂K has degree (0, 1, 0) and no longer uses the bracket of the Lie algebra W .

This is nothing but the differential in the Koszul complex relating the exterior algebra

Λ ◦W on W and the symmetric algebra S ◦W on W [12].

The two differentials ∂pL and ∂K are of degree (0, 0, 1) and (0, 1, 0) and their sum

is also a differential. Hence they define a bicomplex, and one can consider the two

spectral sequences associated with this bicomplex.

Proposition 4.1 The spectral sequence beginning with ∂K degenerates at the first step.

Proof As it is known that the exterior and symmetric algebras are Koszul dual of

each other and Koszul, the homology of ∂K is concentrated in homological degree 0

and is given by S0.

Before studying the other spectral sequence, one needs the two following results.

Let us first recall a classical lemma.

Lemma 4.2 Let A be a Hopf algebra and let N be a right A-module. Then N ⊗ A is

isomorphic as a right A-module to the free right A-module generated by N.

Proof The argument uses the antipode of A to define an isomorphism, see for in-

stance [9, §3.6 and §3.7].
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We will also need the following property of some W -modules.

Proposition 4.3 Let λ be a nonempty partition. Then Sλ ◦ WpL is a projective

U(W )-module.

Proof Recall that WpL is isomorphic to the free U(W )-module S1 ⊗ U(W ).

Hence, for each integer k ≥ 1, the W -module Tk ◦ WpL is isomorphic to the

module Tk ⊗ (Tk ◦U(W )), where W acts on the right factor only. Here, we have used

the property of the S-module T that T ◦ (A ⊗ B) ≃ (T ◦ A) ⊗ (T ◦ B).

As U(W ) is a Hopf algebra, one can apply Lemma 4.2, which implies that Tk ◦
U(W ) is a free U(W )-module. It follows that Tk ◦WpL is also a free U(W )-module.

Now, for each partition λ, Sλ is usually defined as a direct factor of T|λ|, where

|λ| is the size of λ. So Sλ ◦ W is a direct factor of T|λ| ◦ W . As T|λ| ◦ W is a free

U(W )-module, Sλ ◦W is a projective U(W )-module.

Remark It may be that all the U(W )-modules Sλ ◦W are in fact free.

Let us now go back to the bicomplex. To illustrate the computation of the hori-

zontal spectral sequence starting with ∂pL, we will draw the component of fixed first

degree n of the bicomplex in the first quadrant, with the p grading increasing from

bottom to top and the r grading from left to right.

We have the following description of the homology with respect to ∂pL.

The bottom line (p = 0) of the bicomplex is the complex S0 ⊗ (Λ◦W ) computing

the homology of the Lie algebra W with coefficients in the trivial module. This is

what we would like to compute.

The other lines (p > 0) of the bicomplex are the complexes (Sp ◦ WpL) ⊗ (Λ ◦
W ) computing the homology of the Lie algebra W with coefficients in the modules

(Sp ◦ WpL). As we know that these modules are projective by Proposition 4.3, the

homology is concentrated in degree q = 0 i.e., r = n − p.

So the first step of the spectral sequence looks like

∗
0 ∗
0 0 ∗
0 0 0 ∗
0 0 0 0 ∗
∗ ∗ ∗ ∗ ∗ ∗ ,

where a ∗ represents a possibly nonzero homology group.

As the spectral sequence converges to S0 because the homology of the total com-

plex is S0, one deduces from the shape above that the homology of the bottom row is

concentrated in degree q = 1 i.e., r = n − 1. So in fact, the first step looks like

(4.1)

∗
0 ∗
0 0 ∗
0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 ∗ 0 .
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Let us denote these homology groups by H(n, p, r).

Proposition 4.4 Let n ≥ 1. The dimension of H(n, 0, n − 1) is (n − 1)n−1. The

dimension of H(n, p, n − p) is
(

n
p

)
(p − 1)(n − 1)n−p−1 for 1 ≤ p ≤ n. There is a

filtration on the unique nonvanishing homology group H(n, 0, n − 1) of the bottom line

whose graded pieces are isomorphic to the homology groups H(n, p, n − p) of the other

lines.

Proof Using once again the fact that the spectral sequence converges to S0, one can

see that the component of first degree n of the horizontal spectral sequence cannot

degenerate before the n-th step and that the successive pages of the spectral sequence

provide the expected filtration on H(n, 0, n − 1). More precisely, all the higher dif-

ferentials of the spectral sequence have to be surjective, and their successive kernels

define decreasing subspaces of H(n, 0, n − 1), hence a filtration.

Let fW be the generating series associated with W :

(4.2) fW =
∑
n≥1

nn−1 xn

n!
.

The function − fW (−x) is usually called the Lambert W function [4].

Let us consider now the graded S-module S ◦ W . We introduce a variable s to

encode the p grading. The associated generating series is fS◦W = es fW .
For the graded exterior S-module Λ ◦ W , we introduce a variable −t to encode

the q grading. The minus sign in front of t is convenient here ; specialization at t = 1

gives the Euler characteristic. The associated generating series is fΛ◦W = e−t fW .
The associated generating series for the bicomplex is then given by

f(S◦W )⊗(Λ◦W ) = es fW e−t fW = e(s−t) fW = 1 + (s − t)
∑
n≥1

(n + s − t)n−1 xn

n!
.

Here the Taylor expansion is a classical result, see for example [4, Formula (2.36)].

Taking the horizontal Euler characteristic is given by substituting t = 1:

(4.3) es fW e− fW = e(s−1) fW = 1 + (s − 1)
∑
n≥1

(n + s − 1)n−1 xn

n!
.

As we know by (4.1) where the horizontal homology of the bicomplex is con-

centrated, computing the Euler characteristic is enough to get the dimension of the

homology.

Let us first compute the constant term of (4.3) with respect to s. One gets

1 −
∑
n≥1

(n − 1)n−1 xn

n!
.

Hence the dimension of H(n, 0, n − 1) is (n − 1)n−1 as expected.

One can also easily compute the coefficient of sp for p > 0 and get the expected

formula for the dimension of H(n, p, n − p).
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Remark The filtration on H(n, 0, n−1) with quotients H(n, p, n−p) for 1 ≤ p ≤ n

gives a nice interpretation of the classical identity

(n − 1)n−1
=

n∑
p=1

(
n

p

)
(p − 1)(n − 1)n−p−1,

which can be found for instance in [3, Prop. 2] and goes back to Cayley [2].

5 Description of the Symmetric Group Action

We will denote by X the S-module corresponding to the collection of Sn-modules

H(n, 0, n − 1) for n ≥ 1. Note that one does not include the degree 0 component in

this definition.

One can get not just the dimensions of H(n, 0, n − 1) but a description of the

action of the symmetric groups on X.

In [6, Prop. 7.2], the symmetric function ZΛ◦W was computed with a parameter

−t accounting for the cohomological grading. Putting t = 1 in the formula there

and removing the constant term, one finds the symmetric function for X.

Let us denote by pλ the power-sum symmetric functions. If λ is a partition, let

λk be the number of parts of size k in λ and fk(λ) be the number of fixed points of a

permutation of type λ. Let zλ be the product over k of kλk (λk)!, a classical constant

associated with a partition.

Proposition 5.1 The symmetric function ZΛ◦W has the following expression

1 + (−t)
∑

λ,|λ|≥1

(λ1 − t)λ1−1
∏

k≥2

(
( fk(λ) − tk)λk − kλk( fk(λ) − tk)λk−1

) pλ

zλ
,

and the symmetric function ZX has the following expression

(5.1)
∑

λ,|λ|≥1

(λ1 − 1)λ1−1
∏

k≥2

(
( fk(λ) − 1)λk − kλk( fk(λ) − 1)λk−1

) pλ

zλ
,

where the sums are over the set of non-empty partitions λ.

Recall that it was proved in [5] that the PreLie operad is an anticyclic operad. This

implies in particular that there is an action of the symmetric group Sn+1 on the space

PreLie(n). Let us denote by Ŵ the corresponding S-module and let us compute the

symmetric function Z bW describing this action of the symmetric group Sn+1 on the

space PreLie(n).

From [5, Eq. (50)], this symmetric function is characterized by the relation

(5.2) 1 + Z bW = p1(1 + ZW + 1/ZW ).

Proposition 5.2 The symmetric function Z bW is given by

(5.3)
∑

λ,|λ|≥1,λ1 6=1

(λ1 − 1)λ1−2
∏

k≥2

(
( fk(λ) − 1)λk − kλk( fk(λ) − 1)λk−1

) pλ

zλ
.
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Proof One has (see [6])

(
p1 exp

(
−

∑
k≥1

pk/k
))

◦ ZW = p1.

Let us introduce new variables yℓ = pℓ ◦ ZW , for ℓ ≥ 1. Then the inverse map is

given by pℓ = yℓ exp(−
∑

k ykℓ/k).
Let λ be a partition with longest part at most r. To compute the coefficient of pλ

in the symmetric function 1 + Z bW , it is enough to compute the residue

∫∫∫
(1 + Z bW )

r∏
i=1

dpi

pλi +1
i

,

which is equal by formula (5.2) to

∫∫∫
p1(1 + ZW + 1/ZW )

r∏
i=1

dpi

pλi +1
i

.

One can assume without restriction that all variables y j and p j vanish if j > r.

We will change the variables to get a residue in the variables y instead. One has to

use the formula

r∏
i=1

dpi = exp
(
−

∑
i

∑
k

yik/k
) r∏

i=1

(1 − yi)dyi .

We therefore have to compute the residue

∫∫∫
y1 exp

(
−

∑
k

yk/k
)(

1 + y1 + 1/y1

)
exp

(∑
i

λi

∑
k

yik/k
) r∏

i=1

(1 − yi)

yλi +1
i

dyi .

Gathering the exponentials and reversing the order of summation, one finds

∫∫∫
exp

(∑
k

( fk(λ) − 1)yk/k
)

(1 + y1 + y2
1)

r∏
i=1

(1 − yi)

yλi +1
i

dyi .

This integral decomposes as a product of residues in each variable yi .

Let us discuss first the integral with respect to y1:

∮
exp

(
(λ1 − 1)y1

) (1 − y3
1)

yλ1+1
1

dy1.

This is the sum of two terms:

∮
exp

(
(λ1 − 1)y1

) 1

yλ1+1
1

dy1 =
(λ1 − 1)λ1

λ1!
,
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and
∮

exp
(

(λ1 − 1)y1

) (−y3
1)

yλ1+1
1

dy1. = −
(λ1 − 1)λ1−3

(λ1 − 3)!
.

Note that some care must be taken in the second term when λ1 ≤ 2. The resulting

sum is zero if λ1 = 1 and

(λ1 − 1)λ1−2

λ1!
if λ1 6= 1.

Let us then discuss the integral with respect to yk for k ≥ 2.

∮
exp

(
( fk(λ) − 1)yk/k

) (1 − yk)

yλk+1
k

dyk.

This is also the sum of two terms

( fk(λ) − 1)λk/kλk/λk! − ( fk(λ) − 1)λk−1/kλk−1/(λk − 1)!.

This can be rewritten as

( fk(λ) − 1)λk − kλk( fk(λ) − 1)λk−1

kλkλk!
.

Gathering all terms and removing the contribution of the empty partition gives

the result.

From this, one deduces the following relation.

Theorem 5.3 One has ZX − p1 = (p1∂p1
− Id)Z bW , i.e., the action of Sn on X(n)

is obtained from the action of Sn on Ŵ (n) by taking the inner tensor product with the

reflection module of dimension n − 1 of Sn.

Proof This is a computation using Proposition 5.1 and 5.2. Indeed, the operator

(p1∂p1
− Id) acts by multiplication of pλ by λ1 − 1. There is one subtle point to

check, though. In formula (5.3) for Z bW , the summation is over all partitions of size

at least 2 with λ1 6= 1, whereas in Formula (5.1) for ZX − p1, the summation is

over all partitions of size at least 2 without further condition. Let λ be any partition

of size at least 2 with λ1 = 1. Let k be the size of the next-to-smallest part of λ.

Then fk(λ) = kλk + 1, and hence the expression ( fk(λ) − 1)λk − kλk( fk(λ) − 1)λk−1

vanishes. It follows that all such partitions do not contribute to ZX − p1 and that one

can deduce the expected equation.

That the operator (p1∂p1
− Id) corresponds to the inner tensor product by the

reflection module is a classical fact in the theory of symmetric functions.

6 Freeness from Homology Concentration

We will use the knowledge of the homology of the bottom line of the bicomplex to

show that the free pre-Lie algebracs are free as Lie algebras.
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6.1 General Setting

Let P be an operad and assume that P(1) = K1 and let P+ be the S-module such that

P = K1 ⊕ P+. Let A be a P-algebra in the category of S-modules.

The structure of P-algebra on A is given by a morphism µ : P ◦ A → A. Let us

define for each k ≥ 0 a subspace A≥k of A. Let A≥0 be A. By induction, let A≥k

be the image by µ of P+ ◦ A≥k−1. This is a decreasing filtration of A by subspaces.

By construction, this filtration is in fact a filtration of P-algebras. We will further-

more assume that this filtration is separating, which is true for instance if A has some

auxiliary grading concentrated in positive degrees.

Let us define H0(A) to be the degree 0 component A≥0/A≥1 of the associated

graded P-algebra grA. Let us choose a section of H0(A) in A. Let FreeP(H0(A)) be the

free P-algebra on H0(A). Then there exists a unique morphism θ of P-algebras from

the free P-algebra FreeP(H0(A)) to A extending the chosen section.

Proposition 6.1 The morphism θ is surjective.

Proof Because the filtration is assumed to be separating, it is enough to prove that

the associated morphism of graded algebras is surjective.

This is done by induction on the degree associated with the filtration. It is true in

degree 0 because the map θ comes from a section.

Now let [x] be a class in grAk with k ≥ 1. Pick a representative x ∈ A≥k of the

class [x]. Then by hypothesis, x can be written as a sum
∑

a µ(ya, za), where ya ∈ P+

and za ∈ A≥k−1.

Then it follows from the fact that we used a filtration of P-algebras that the class

[x] itself can be written as
∑

a µ(ya, [za]), where ya ∈ P+ and za ∈ A≥k−1. Each class

[za] in grAk−1 belongs to the image of θ by induction. Therefore [x] belongs to the

image of θ.

To show that the morphism θ is an isomorphism, an argument of equality of di-

mension (in some appropriate sense) between A and FreeP(H0(A)) is therefore suffi-

cient.

6.2 Application

Let us apply the general setting above to the case that we are studying. The operad

P is the operad Lie. The P-algebra A is the S-module W . As W has no component

in degree 0, one can apply the previous construction. The space X is exactly the

homology group H0(A).

Theorem 6.2 The S-module W is isomorphic as a Lie algebra in the category of

S-modules to the free Lie algebra Lie ◦X on the S-module X.

Corollary 6.3 For any vector space V , the free pre-Lie algebra on V is isomorphic as a

Lie algebra to the free Lie algebra on X(V ).

Proof As follows from Subsection 6.1, there is a map θ from Lie ◦X to PreLie which

is surjective. To prove the theorem, it suffices to compare the dimensions.

https://doi.org/10.4153/CMB-2010-063-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-063-2


Free Pre-Lie Algebras are Free as Lie Algebras 437

Let fX be the generating series

(6.1)
∑
n≥1

(n − 1)n−1 xn

n!
,

which is associated with the S-module X of indecomposable elements of PreLie as a

Lie algebra. We have to check that the generating series of the free Lie algebra Lie ◦X

on X is equal to fW . As the series fLie is − log(1 − x), this amounts to the equality

− log(1 − fX)
?
= fW , which can be rewritten as e− fW ?

= 1 − fX. The constant term

in x is 1 on both sides. Therefore it is enough to compare the derivatives with respect

to x:

− f ′
W e− fW ?

= − f ′
X = −(1 + x f ′

W ),

where the right equality is by comparison of the Taylor expansions (4.2) and (6.1).

But we have by definition fW = xe fW , hence f ′
W = e fW + x f ′

W e fW . This proves the

expected equality and hence the Theorem.
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