LOCALLY TRIVIAL FIBRATIONS WITH SINGULAR 1-DIMENSIONAL STEIN FIBER OVER q-COMPLETE SPACES

MIHNEA COLŢOIU AND VIOREL VÂJÂITU

Abstract. In connection with Serre's problem, we consider a locally trivial analytic fibration $\pi : E \longrightarrow B$ of complex spaces with typical fiber X. We show that if X is a Stein curve and B is q-complete, then E is q-complete.

§1. Introduction

Let $\pi: E \to B$ be a locally trivial analytic fibration of complex spaces with Stein fiber X of dimension n.

The following question was raised by Serre [17]:

Under the above assumptions, does it follow that E is Stein if B is Stein?

The answer is 'Yes' for n = 0 (Stein [23] and Le Barz [12]) and n = 1 (Mok [13]. In fact, some partial results were previously proved by various authors, Siu [19], Sibony [18], Hirschowitz [9], etc).

However, for $n \ge 2$ there are counterexamples to Serre's question (see Skoda [21], Demailly [7], and Coeuré–Loeb [3]).

Related to this circle of ideas we study the case when the base B is q-complete. The normalization is chosen such that Stein spaces correspond to 1-complete spaces.

For n = 0, *i.e.*, E is a topological covering of B, Ballico [2] proved the q-completeness of E. This is a particular case of a result due to Vâjâitu [24] which gives that if $\pi : Y \to Z$ is a locally trivial analytic fibration with hyperconvex fibre and Z is q-complete, then Y is q-complete. (A complex space S is said to be *hyperconvex* if S is Stein and has a negative exhaustion function which is continuous and plurisubharmonic.)

For n = 1, in order to generalize Mok's result, Vâjâitu [26] showed if X is non-singular, E is q-complete if B is q-complete. It remained the open problem when X is a singular Stein curve.

Received June 26, 1998.

Our main result gives a complete answer to this question. It can be stated as follows.

THEOREM 1. Let $\pi : E \to B$ be a locally trivial analytic fibration with typical fiber X. If X is a Stein curve and B is q-complete, then E is q-complete, too.

We remark that for q = 1 the above theorem can be deduced from the case when the fiber is non-singular. This is due to the fact that the class of Stein spaces is invariant under finite holomorphic surjections (see Narasimhan [14]).

When q > 1 the situation is drastically different because it is not known (see Coltoiu [6]) if the following holds:

Let $p: Y \to Z$ be a finite surjective holomorphic map of complex spaces. Assume Y is q-complete. Does it follow that Z is q-complete?

(When Z is q-complete, then Y is q-complete. See Vâjâitu [25].)

To avoid this difficulty we use essentially an approximated extension of q-convex functions defined on complex subspaces with control of the directions of positivity of the extended function. Also the quasi-plurisubharmonic functions (Peternell [15]; see also Demailly [8]) will play an important rôle in the proof.

$\S 2.$ Preliminaries

Throughout this paper all complex spaces are assumed to be reduced and with countable topology.

Let Y be a complex space and $T_y Y$ denotes the (Zariski) tangent space of Y at y. Set $TY = \bigcup_{y \in Y} T_y Y$.

A subset $\mathcal{M} \subset TY$ is said to be a linear set over Y (of codimension $\leq q-1$) if for every point $y \in Y$, $\mathcal{M}_y := \mathcal{M} \cap T_y Y \subset T_y Y$ is a complex vector subspace (of codimension $\leq q-1$). If $W \subset Y$ is an open subset, we have an obvious definition of the restriction $\mathcal{M}_{|_W}$.

Let $\pi : Z \to Y$ be an analytic morphism of complex spaces and \mathcal{M} a linear set over Y. For every $z \in Z$ we have an induced **C**-linear map of complex vector spaces $\pi_{*,z} : T_z Z \to T_y Y$, where $y = \pi(z)$. We set

$$\pi^*\mathcal{M} := \bigcup_{z \in Z} (\pi_{*,z})^{-1}(\mathcal{M}_y).$$

Clearly, $\pi^* \mathcal{M}$ is a linear set over Z. Moreover, if codim $(\mathcal{M}) \leq q - 1$, then codim $(\pi^* \mathcal{M}) \leq q - 1$.

A (local) chart of Y at a point $y \in Y$ is a holomorphic embedding $\iota: U \to \widehat{U}$, where $U \ni y$ is an open subset of Y and \widehat{U} is an open subset of some euclidean space \mathbb{C}^n . Holomorphic embedding means that $\iota(U)$ is an analytic subset of \widehat{U} and the induced map $\iota: U \to \iota(U)$ is biholomorphic.

Suppose $\iota : U \to \widehat{U}$ is a local chart at y; then the differential map $\iota_{*,y} : T_y Y \to \mathbb{C}^n$ of ι at y is an injective homomorphism of complex vector spaces.

Let $D \subset \mathbf{C}^n$ be an open subset. A function $\varphi \in C^{\infty}(D, \mathbf{R})$ is said to be *q*-convex if the quadratic form

$$L(\varphi, z)(\xi) = \sum_{i,j=1}^{n} \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}(z) \xi_i \bar{\xi}_j, \, \xi \in \mathbf{C}^n,$$

has at least n - q + 1 positive eigenvalues for every $z \in D$, or equivalently, there exists a family $\{M_z\}_{z\in D}$ of (n - q + 1)-dimensional complex vector subspaces of \mathbf{C}^n such that $L(\varphi, z)_{|_{M_z}}$ is a positive definite form for all $z \in D$.

Let Y be a complex space. A function $\varphi \in C^{\infty}(Y, \mathbf{R})$ is said to be *q*-convex if every point of Y admits a local chart $\iota : U \to \widehat{U} \subset \mathbf{C}^n$ such that there is an extension $\widehat{\varphi} \in C^{\infty}(\widehat{U}, \mathbf{R})$ of $\varphi_{|_U}$ which is *q*-convex on \widehat{U} . (This definition does not depend on the local embeddings.)

We say that Y is *q*-complete if there exists a *q*-convex function $\varphi \in C^{\infty}(Y, \mathbf{R})$ which is exhaustive, *i.e.*, the sublevel sets $\{\varphi < c\}, c \in \mathbf{R}$, are relatively compact in Y.

The following is due to Peternell [15].

DEFINITION 1. Let Y be a complex space, $W \subset Y$ an open set, \mathcal{M} a linear set over W, and $\varphi \in C^{\infty}(W, \mathbf{R})$.

(a) Let $y \in W$. Then we say that φ is weakly 1-convex with respect to \mathcal{M}_y if there are: a local chart $\iota: U \to \widehat{U}$ of Y with $y \in U \subset W$, $\widehat{U} \subset \mathbf{C}^n$ open set, and an extension $\widehat{\varphi} \in C^{\infty}(\widehat{U}, \mathbf{R})$ of $\varphi_{|_U}$ such that $L(\widehat{\varphi}, \iota(y))(\iota_{*,y}\xi) \geq 0$ for every $\xi \in \mathcal{M}_y$.

We say that φ is weakly 1-convex with respect to \mathcal{M} if φ is weakly 1-convex with respect to \mathcal{M}_y for every $y \in W$.

(b) The function φ is said to be 1-convex with respect to \mathcal{M} if every point of W admits an open neighborhood $U \subset W$ such that there exists a 1-convex function θ on U with $\varphi - \theta$ weakly 1-convex with respect to $\mathcal{M}_{|_U}$. It is not difficult to see that the extension $\widehat{\varphi}$ of φ is irrelevant for the above definition. In particular, if the functions φ and ψ are (weakly) 1-convex with respect to \mathcal{M} , so is their sum $\varphi + \psi$.

DEFINITION 2. Let Y be a complex space and \mathcal{M} a linear set over Y. We denote by $\mathcal{B}(Y, \mathcal{M})$ the set of all $\varphi \in C^o(Y, \mathbf{R})$ such that every point of Y admits an open neighborhood D on which there are functions $f_1, \ldots, f_k \in C^\infty(D, \mathbf{R})$ which are 1-convex with respect to $\mathcal{M}_{|_D}$ and

$$\varphi_{|_D} = \max\{f_1, \dots, f_k\}.$$

From [24] and [4] we quote

PROPOSITION 1. Let \mathcal{M} be a linear set over a complex space Y and $\varphi \in \mathcal{B}(Y, \mathcal{M})$. Then for every $\eta \in C^o(Y, \mathbf{R})$, $\eta > 0$, there exists $\widetilde{\varphi} \in C^\infty(Y, \mathbf{R})$ which is 1-convex with respect to \mathcal{M} and

$$\varphi \leq \widetilde{\varphi} < \varphi + \eta.$$

In particular, if \mathcal{M} has codimension $\leq q-1$, then $\tilde{\varphi}$ is q-convex.

From [15] we have:

PROPOSITION 2. Let Y be a complex space and $\varphi \in C^{\infty}(Y, \mathbf{R})$ a qconvex function. Then there is a linear set \mathcal{M} over Y of codimension $\leq q-1$ such that φ is 1-convex with respect to \mathcal{M} .

Motivated by Propositions 1 and 2, we say that a complex space Y is 1-complete with respect to a linear set \mathcal{M} over Y if there exists an exhaustion function $\varphi \in \mathcal{B}(Y, \mathcal{M})$. Consequently a complex space Y is q-complete if, and only if, Y is 1-complete with respect to some linear set \mathcal{M} of codimension $\leq q - 1$.

Let us recall that a Stein space S is said to be hyperconvex if there is a smooth plurisubharmonic exhaustion function $\varphi: S \to (-\infty, 0)$.

In [24] the following result has been proved:

PROPOSITION 3. Let $\pi : E \to B$ be a locally trivial analytic fibration with hyperconvex fibre. If B is 1-complete with respect to a linear set \mathcal{M} over B, then E is 1-complete with respect to $\pi^*\mathcal{M}$. In particular if B is q-complete, then E is q-complete. From this it follows

COROLLARY 1. Let $\pi : E \to B$ be a covering space with q-complete base B. Let \mathcal{M} be a linear set over B of codimension $\leq q-1$ such that B is 1-complete with respect to \mathcal{M} . Then there exists $\mu : E \to \mathbf{R}$ a smooth exhaustion function which is 1-convex with respect to $\pi^*\mathcal{M}$. In particular E is q-complete.

We shall also need the following result of M. Peternell ([15], Satz 3.1).

PROPOSITION 4. Let Y be a complex space and $A \subset Y$ a closed analytic subset. Then there is a function $h \in C^{\infty}(Y, \mathbf{R})$ such that:

- a) $h \ge 0, \{h = 0\} = A.$
- b) For every $y \in Y$ there exists an open neighborhood U of y and $\theta \in C^{\infty}(U, \mathbf{R})$ such that

$$\log(h_{|U\setminus A}) + \theta_{|U\setminus A}$$

is 1-convex.

Remark 1. The function $\log h$ is locally equal to the sum of a plurisubharmonic function and a smooth function. Such a function is called in Demailly [8] a quasi-plurisubharmonic function.

$\S 3.$ Construction of an auxiliary fibration

We recall that a complex space X is called *hyperbolic* (in the sense of Kobayashi) if the Kobayashi semidistance d_X is a distance. See the book of S. Lang [11].

Examples and properties.

1) $\mathbf{C} \setminus \{p, q\}$ with $p, q \in \mathbf{C}, p \neq q$, is hyperbolic.

2) Any open subset of a hyperbolic space is hyperbolic.

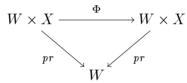
3) Let $\pi : X' \to X$ be a covering of complex spaces. Then X' is hyperbolic if and only if X is hyperbolic.

4) Any relatively compact open subset of \mathbf{C}^n is hyperbolic.

A proof of these facts may be found in Kobayashi [10] and Lang [11]. Let us recall also the following result. (See Siu [20], p. 176 and Royden [16], p. 311.) LEMMA 1. Let F be a hyperbolic manifold and W a connected complex space. Let $f : W \times F \to F$ be a holomorphic map such that for some $w_o \in W$ the restriction of f to $\{w_o\} \times F$ is biholomorphic onto F. Then f is independent of the variable in W, i.e., $f(w, x) = f(w_o, x)$ for all $w \in W$ and $x \in F$.

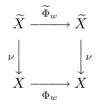
Let now X be a Stein space of pure dimension 1 (Stein curve) and W a connected complex space.

We assume that a biholomorphic map $\Phi:W\times X\to W\times X$ is given such that the diagram



is commutative. So, for every $w \in W$ we have an automorphism of X, $\Phi_w : X \to X$, given by $\Phi_w(x) = \Phi(w, x)$.

Let $\nu : \widetilde{X} \to X$ be the normalization map. Every $\Phi_w, w \in W$, lifts to a unique automorphism $\widetilde{\Phi}_w$ of \widetilde{X} such that the diagram



is commutative.

The maps $\{\widetilde{\Phi}_w\}_{w\in W}$ define a unique map $\widetilde{\Phi}: W \times \widetilde{X} \to W \times \widetilde{X}$ and we have a commutative diagram

(1)

$$W \times \widetilde{X} \xrightarrow{\widetilde{\Phi}} W \times \widetilde{X}$$

$$\overset{\operatorname{id} \times \nu}{\underset{W \times X}{\longrightarrow}} \bigvee_{W \times X} \xrightarrow{\underset{\Phi}{}} W \times X.$$

We show

LEMMA 2. $\widetilde{\Phi}$ is biholomorphic.

This will be proved in two steps.

Step 1. $\widetilde{\Phi}$ is biholomorphic if X is irreducible.

We may assume that $S := \operatorname{Sing}(X) \neq \emptyset$. Put $\widetilde{S} = \nu^{-1}(S)$. Consider the commutative diagram of isomorphisms

where $\Phi_1 := \Phi_{|_{W \times (X \setminus S)}}$ and $\widetilde{\Phi}_1 := \widetilde{\Phi}_{|_{W \times (\widetilde{X} \setminus \widetilde{S})}}$.

If $\operatorname{card}(\widetilde{S}) \geq 2$, then $\widetilde{X} \setminus \widetilde{S}$ is hyperbolic (by Examples 1), 2), and 3) in the beginning of this section). It follows from Lemma 1 that the maps Φ_1 and $\widetilde{\Phi}_1$ in diagram (2) are independent of $w \in W$, therefore also the maps Φ and $\widetilde{\Phi}$ in diagram (1) are independent of w. In particular $\widetilde{\Phi}$ is biholomorphic.

Similarly, if $\operatorname{card}(\widetilde{S}) = 1$ and $\widetilde{X} \neq \mathbf{C}$, it follows that $\widetilde{X} \setminus \widetilde{S}$ is hyperbolic and $\widetilde{\Phi}$ is biholomorphic (being independent of $w \in W$).

It remains to study the case when X has only one singular point, say $S = \{x_o\}$, at which X is locally irreducible (therefore $\operatorname{card}(\widetilde{S}) = 1$) and $\widetilde{X} = \mathbf{C}$ is its normalization. We may assume that $\nu^{-1}(x_o) = 0 \in \mathbf{C}$. It follows then easily that $\widetilde{\Phi}(w, \widetilde{x}) = f(w) \cdot \widetilde{x}$ with $f \in \mathcal{O}^*(W)$, so obviously $\widetilde{\Phi}$ is biholomorphic.

Step 2. $\widetilde{\Phi}$ is biholomorphic for arbitrary 1-dimensional Stein space X.

Clearly we may assume that X has no isolated points. Let $X = \bigcup X_i$ be the decomposition of X into irreducible components. We claim first that for every index *i* there is a unique index *j* so that $\Phi(W \times X_i) = W \times X_j$. To show this, we let $\operatorname{Reg}(X) = \bigcup D_i$ be the decomposition into connected components with $X_i = \overline{D_i}$. Obviously, for each *i* there is a (unique) *j* such that $\Phi(W \times D_i) = W \times D_j$. Using the continuity of Φ the claim follows.

Now let $\widetilde{X} = \bigcup \widetilde{X_i}$ be the decomposition of \widetilde{X} into connected components. Therefore $\nu(\widetilde{X_i}) = X_i$ and $\nu_{|_{\widetilde{X_i}}} : \widetilde{X_i} \to X_i$ is the normalization of X_i .

From the above claim each connected component $W \times \widetilde{X}_i$ of $W \times \widetilde{X}$ corresponds by $\widetilde{\Phi}$ to a (unique) connected component $W \times \widetilde{X}_j$. Thus we have a commutative diagram

where $\Phi_2 := \Phi_{|_{W \times X_i}}$ and $\widetilde{\Phi}_2 := \widetilde{\Phi}_{|_{W \times \widetilde{X_i}}}$.

We fix some biholomorphic map $h: X_j \to X_i$ (e.g., $h = \Phi_{w_o}^{-1}$ for some $w_o \in W$) and consider the commutative diagram

(4)

$$W \times \widetilde{X}_{i} \xrightarrow{\widetilde{\Phi}_{2}} W \times \widetilde{X}_{j} \xrightarrow{\operatorname{id} \times \widetilde{h}} W \times \widetilde{X}_{i}$$

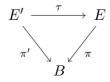
$$\overset{\operatorname{id} \times \nu}{\underset{W \times X_{i} \longrightarrow W \times X_{j} \longrightarrow W \times X_{j} \longrightarrow W \times X_{i}}} W \times X_{i} \xrightarrow{\operatorname{id} \times \mu} W \times X_{i}.$$

By step 1), $(\operatorname{id} \times \widetilde{h}) \circ \widetilde{\Phi}_2$ is biholomorphic, so $\widetilde{\Phi}_2$ is biholomorphic. It follows that $\widetilde{\Phi}$ is biholomorphic and the Lemma 2 is completely proved.

LEMMA 3. Let $\pi : E \to B$ be a locally trivial holomorphic fibration with fibre X a pure 1-dimensional Stein space.

Then there exist $\pi' : E' \to B$ a locally trivial holomorphic fibration with fibre \widetilde{X} = the normalization of X and a holomorphic map $\tau : E' \to E$ with the following properties:

1) The diagram



is commutative.

2) For every $b \in B$ the induced map

$$\tau_b: E'_b \longrightarrow E_b$$

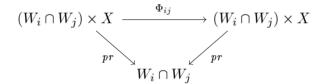
is the normalization map $\nu: \widetilde{X} \to X$.

3) Let

$$A := \bigcup_{b \in B} \operatorname{Sing}(E_b)$$

and $A' := \tau^{-1}(A)$. Then A and A' are closed analytic subsets of E and E' respectively and $\tau_{|_{E' \setminus A'}} : E' \setminus A' \to E \setminus A$ is biholomorphic.

Proof. Let $(W_i)_{i \in I}$ be a locally finite open covering of B such that $E_{|W_i|}$ is trivial and $W_i \cap W_j$ is connected for every $i, j \in I$. We have the transition functions $\Phi_{ij} : (W_i \cap W_j) \times X \to (W_i \cap W_j) \times X$ which are biholomorphic and such that the diagram



is commutative.

Therefore we have induced maps $\widetilde{\Phi}_{ij} : (W_i \cap W_j) \times \widetilde{X} \to (W_i \cap W_j) \times \widetilde{X}$ which are biholomorphisms by the previous lemma.

Then clearly $\{\Phi_{ij}\}$ define the required holomorphic fibration $\pi': E' \to B$. All other required properties in the lemma are easily verified.

Remark 2. The above two lemmas are trivial if we assume B to be normal. In this case (B normal) it is clear that $\tilde{\Phi}_{ij}$ are biholomorphic and it is not necessary to make the assumption that the fiber X is a 1-dimensional Stein space (X may be an arbitrary complex space).

$\S4$. The proof of the main result

In this section we shall prove the subsequent Theorem 1' which clearly implies Theorem 1 already mentioned in the introduction.

THEOREM 1'. Let $\pi: E \to B$ be a locally trivial analytic fibration with Stein fibre X of dimension 1 and assume that B is 1-complete with respect to a linear set \mathcal{M} (over B). Then E is 1-complete with respect to $\pi^* \mathcal{M}$. In particular, E is q-complete if B is q-complete. *Proof.* When the fiber is non-singular Theorem 1' is proved in [26].

Subsequently we deal with the singular fibre X.

Let $\pi': E' \to B$ be a fibration with the properties stated in Lemma 3. Denote $p := \pi_{|_A} : A \to B$ which is a covering map. In fact A can be described locally over B as follows: Let $E_{|_U} \simeq U \times X$ be a local trivialization. Then $A \cap \pi^{-1}(U) \simeq U \times \operatorname{Sing}(X)$ and $\operatorname{Sing}(X)$ is a discrete subset of X, say $\operatorname{Sing}(X) = \{a_j\}_{j \in J}$, since X is one dimensional. By Corollary 1 there exists a smooth exhaustion function $\mu : A \to \mathbf{R}$ such that μ is 1-convex with respect to $p^* \mathcal{M}$.

We shall prove the following statement:

(\clubsuit) Let $\eta : A \to (0, \infty)$ be any continuous function. Then there exists an open neighborhood V of A in E and a smooth function $\tilde{\mu} : V \to \mathbf{R}$ which is 1-convex with respect to $(\pi^* \mathcal{M})_{|_V}$ and

$$\mu \leq \widetilde{\mu} < \mu + \eta$$

on A.

To prove (\clubsuit) we follow an idea from (Coltoiu [5], Lemma 3); but we refine it in order to get extensions with controlled positivity directions which are necessary for our patching process.

We fix a non-negative smooth strictly subharmonic function $f: X \to \mathbf{R}$ such that $\operatorname{Sing}(X) = \{f = 0\}.$

Let also $\{U_i\}_{i\in I}$ and $\{W_i\}_{i\in I}$ be locally finite open coverings of B such that $U_i \subset \subset W_i \subset \subset B$ and E is trivial near \overline{W}_i . Now select $\theta_i \in C^{\infty}(B, \mathbf{R})$ with $\theta_i > 0$ on \overline{U}_i and $\theta_i < 0$ on ∂W_i .

We have $E_{|W_i} \simeq W_i \times X$ and $E_{|W_i}$ contains the sequence of mutually disjoint closed analytic subsets $W_i \times \{a_j\}, j \in J$. On $W_i \times \{a_j\}$ we consider the restriction of μ and perturb it with $\epsilon_{ij}\theta_i \circ \pi$. More precisely, we define near $\overline{W}_i \times \{a_j\}$

$$\mu_{ij} = \mu + \epsilon_{ij}\theta_i \circ \pi$$

where $\epsilon_{ij} > 0$ are small enough constants to be chosen later. For every $x \in A$ we set $\mu_1(x) = \max\{\mu_{ij}(x); (i,j) \in H(x)\}$ where $H(x) = \{(i,j) \in I \times J; x \in W_i \times \{a_j\}\}$. If ϵ_{ij} are small enough, then μ_1 is continuous on A, $\mu_1 \in \mathcal{B}(A, p^*\mathcal{M})$, and $\mu \leq \mu_1 < \mu + \eta$ on A.

Moreover, on $\partial(W_i \times \{a_i\})$ one has

$$(*) \qquad \qquad \mu_1 > \mu_{ij}$$

for every indices $(i, j) \in I \times J$.

We shall prove that μ_1 has an extension $\widetilde{\mu_1}$ to a neighborhood V of A such that $\widetilde{\mu_1} \in \mathcal{B}(V, \pi^*\mathcal{M})$ and this clearly will conclude the proof of (\clubsuit) in view of the approximation Proposition 1.

For this we choose open neighborhoods $D_j \subset X$ of the points a_j such that $\overline{D_j} \cap \overline{D_{j'}} = \emptyset$ if $j \neq j'$. The functions μ_{ij} defined on $W_i \times \{a_j\}$ can be extended to smooth functions $\widetilde{\mu_{ij}}$ on $W_i \times D_j$ which are 1-convex with respect to $\pi^* \mathcal{M}$. Indeed, if p'_{ij} and p''_{ij} denote the projections of $W_i \times D_j$ on $W_i \times \{a_j\}$ and on D_j respectively, then one may set

$$\widetilde{\mu_{ij}} := \mu_{ij} \circ p'_{ij} + f_{|_{D_j}} \circ p''_{ij}$$

Put

$$\Omega := \bigcup_{(i,j)\in I\times J} W_i \times D_j$$

and for $x \in \Omega$, $\widetilde{\mu_1}(x) = \sup\{\widetilde{\mu_{ij}}(x); (i,j) \in \Gamma(x)\}$ where $\Gamma(x) = \{(i,j) \in I \times J; x \in W_i \times D_j\}.$

If $V \subset \Omega$ is a small enough open neighborhood of A, it follows then from (*) that $\widetilde{\mu_1}$ is continuous on V and in fact $\widetilde{\mu_1} \in \mathcal{B}(V, \pi^*\mathcal{M})$, whence the proof of statement (\clubsuit).

We now go back to the proof of Theorem 1'. Since Theorem 1' holds for E', there exists a smooth exhaustion function $\psi' : E' \to \mathbf{R}$ which is 1-convex with respect to $(\pi')^* \mathcal{M}$.

We fix some smooth function $\tilde{\mu} > 0$ defined near \overline{V} , where V is a sufficiently small open neighborhood of A such that $\tilde{\mu}_{|_{\overline{V}}}$ is proper and $\tilde{\mu}$ is 1-convex with respect to $\pi^* \mathcal{M}$ near \overline{V} .

By Proposition 4 there is a quasi-plurisubharmonic function $\beta : E \to [-\infty, \infty)$ with $A = \{\beta = -\infty\}$. Also we may assume $\beta = 0$ on $E \setminus V$. Then $\beta' = \beta \circ \tau$ is quasi-plurisubharmonic on E' and $A' := \tau^{-1}(A) = \{\beta' = -\infty\}$. Since ψ' is a smooth exhaustion function on E' which is 1-convex with respect to $(\pi')^*\mathcal{M}$, there is a strictly increasing smooth convex function $\delta : (0, \infty) \to (0, \infty)$ such that $\delta \circ \psi' + \beta'$ is 1-convex with respect to $(\pi')^*\mathcal{M}$ on $E' \setminus A'$, and

$$\delta \circ \psi' + \beta' > \widetilde{\mu} \circ \tau$$

on $\tau^{-1}(\partial V)$.

Now *E* is covered by the open subsets $V_1 := V$ and $V_2 := E \setminus A$. On V_1 we consider the function $\varphi_1 = \tilde{\mu}$ and on V_2 the function $\varphi_2 = \delta \circ \psi' \circ \tau^{-1} + \beta$ and we define the function $\psi_1 : E \to \mathbf{R}$ given by $\psi_1(x) := \max\{\varphi_k(x); k \in K(x)\}$, where $K = \{1, 2\}$ and $K(x) = \{k \in K; x \in V_k\}$.

Then ψ_1 is a continuous exhaustion function on E and $\psi_1 \in \mathcal{B}(E, \pi^* \mathcal{M})$. Thus the proof of Theorem 1' is complete.

References

- A. Andreotti and H. Grauert, *Théorèmes de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France, **90** (1962), 193–259.
- [2] E. Ballico, Coverings of complex spaces and q-completeness, Riv. Mat. Univ. Parma, (4), 7 (1981), 443–452.
- [3] G. Coeuré and J.J. Loeb, A counterexample to the Serre problem with a bounded domain of C² as fiber, Annals of Math., **122** (1985), 329–334.
- [4] M. Colţoiu, Complete pluripolar sets, J. reine angew. Math., 412 (1992), 108–112.
- [5] _____, n-concavity of n-dimensional complex spaces, Math. Z., **210** (1992), 203–206.
- [6] _____, q-convexity. A survey., In: Complex analysis and geometry, Pitman Research Notes in Mathematics Series, 366 (1997), 83–93.
- [7] J.-P. Demailly, Un example de fibré holomorphe non de Stein à fibre C² ayant pour base le disque ou le plan, Invent. Math., 48 (1978), 293–302.
- [8] _____, Cohomology of q-convex spaces in top degrees, Math. Z., **204** (1990), 283–295.
- [9] A. Hirschowitz, Domaines de Stein et fonctions holomorphes bornées, Math. Ann., 213 (1975), 185–193.
- [10] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, New York, Marcel Dekker, 1970.
- [11] S. Lang, Introduction to complex hyperbolic spaces, Springer Verlag, 1987.
- [12] P. Le Barz, A propos des revêtements ramifiés d'espace de Stein, Math. Ann., 222 (1976), 63–69.
- [13] N. Mok, The Serre problem on Riemann surfaces, Math. Ann., 258 (1981), 145–168.
- [14] R. Narasimhan, A note on Stein spaces and their normalizations, Ann. Sc. Norm. Sup. Pisa, 16 (1962), 327–333.
- [15] M. Peternell, Algebraische Varietäten und q-vollständige komplexe Räume, Math. Z., 200 (1989), 547–581.
- [16] H. Royden, Holomorphic fiber bundles with hyperbolic fiber, Proc. A.M.S., 43 (1974), 311–312.
- [17] J.-P. Serre, Quelques problèmes globaux relatifs aux variétés de Stein, Colloque sur les fonctions de plusieurs variables, Bruxelles (1953), 53–68.

- [18] N. Sibony, Fibrés holomorphes et métrique de Carathéodory, C.R.A.S., 279 (1974), 261–264.
- [19] Y.-T. Siu, All plane domains are Banach-Stein, Manuscripta math., 14 (1974), 101–105.
- [20] _____, Holomorphic fibre bundles whose fibers are bounded Stein domains with zero first Betti number, Math. Ann., 219 (1976), 171–192.
- [21] H. Skoda, Fibrés holomorphes à base et à fibre de Stein, Invent. Math., 43 (1977), 97–107.
- [22] J.-L. Stehlé, Fonctions plurisousharmoniques et convexité holomorphe dans certain fibrés analytiques, Lecture Notes in Math., 474 Sém. P. Lelong 1973/74, 155–180.
- [23] K. Stein, Überlagerungen holomorph vollständiger komplexer Räume, Arch. Math., 7 (1956), 354–361.
- [24] V. Vâjâitu, Approximation theorems and homology of q-Runge pairs in complex spaces, J. reine angew. Math., 449 (1994), 179–199.
- [25] _____, Some convexity properties of proper morphisms of complex spaces, Math. Z., 217 (1994), 215–245.
- [26] _____, One dimensional fibering over q-complete spaces, Nagoya Math. J., 151 (1998), 99–106.

Mihnea Colţoiu

Institute of Mathematics of the Romanian Academy P.O. Box 1-764, RO 70700, Bucharest, Romania mcoltoiu@stoilow.imar.ro

Viorel Vâjâitu Institute of Mathematics of the Romanian Academy P.O. Box 1-764, RO 70700, Bucharest, Romania vvajaitu@stoilow.imar.ro