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Abstract

Let F be a totally real field and let p be an odd prime which is totally split in F . We define and study
one-dimensional ‘partial’ eigenvarieties interpolating Hilbert modular forms over F with weight
varying only at a single place v above p. For these eigenvarieties, we show that methods developed
by Liu, Wan and Xiao apply and deduce that, over a boundary annulus in weight space of sufficiently
small radius, the partial eigenvarieties decompose as a disjoint union of components which are finite
over weight space. We apply this result to prove the parity version of the Bloch–Kato conjecture
for finite slope Hilbert modular forms with trivial central character (with a technical assumption if
[F : Q] is odd), by reducing to the case of parallel weight 2. As another consequence of our results
on partial eigenvarieties, we show, still under the assumption that p is totally split in F , that the
‘full’ (dimension 1 + [F : Q]) cuspidal Hilbert modular eigenvariety has the property that many
(all, if [F : Q] is even) irreducible components contain a classical point with noncritical slopes and
parallel weight 2 (with some character at p whose conductor can be explicitly bounded), or any
other algebraic weight.

2010 Mathematics Subject Classification: 11F33 (primary); 11G40 (secondary)

1. Introduction

1.1. Eigenvarieties near the boundary of weight space. In recent work, Liu,
Wan and Xiao [LWX17] have shown that, over a boundary annulus in weight
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space of sufficiently small radius, the eigencurve for a definite quaternion algebra
over Q decomposes as a disjoint union of components which are finite over
weight space. On each component, the slope (that is, the p-adic valuation of
the Up-eigenvalue) varies linearly with the weight, and in particular the slope
tends to zero as the weight approaches the boundary of the weight space. A
notable consequence of this result is that every irreducible component of the
eigencurve contains a classical weight 2 point (with p-part of the Nebentypus
character of large conductor, so that the corresponding weight character is close
to the boundary of weight space).

The purpose of this note is to extend the methods of [LWX17] to establish
a similar result for certain one-dimensional eigenvarieties interpolating Hilbert
modular forms (Proposition 2.7.1). More precisely, we assume that the (odd)
prime p splits completely in a totally real field F , and consider ‘partial
eigenvarieties’ whose classical points are automorphic forms for totally definite
quaternion algebras over F whose weights are only allowed to vary at a single
place v|p. One can also consider the slightly more general situation where the
assumption is only that the place v is split.

We give two applications of this result. The first application, following methods
and results of Nekovář (for example, [Nek07]) and Pottharst–Xiao [PX], is to
establish new cases of the parity part of the Bloch–Kato conjecture for the Galois
representations associated to Hilbert modular forms (see the next subsection for a
precise statement). The idea of the proof is that, using the results of [PX], we can
reduce the parity conjecture for a Hilbert modular newform g of general (even)
weight to the parity conjecture for parallel weight two Hilbert modular forms,
by moving in a p-adic family connecting g to a parallel weight two form. This
parallel weight two form will have local factors at places dividing p given by
ramified principal series representations (moving to the boundary of weight space
corresponds to increasing the conductor of the ratio of the characters defining this
principal series representation). Using our results on the partial eigenvarieties,
we carry out this procedure in d = [F : Q] steps, where each step moves one
of the weights to two. An additional difficulty when F 6= Q is to ensure that
at each step we move to a point which is noncritical at all the places v′|p, so
that the global triangulation over the family provided by the results of [KPX14]
specializes to a triangulation at all of these points. At the fixed v′ = v, this follows
automatically from the construction. At v′ 6= v we show, roughly speaking, that
the locus of points on the partial eigenvariety which are critical at v′ forms a union
of connected components, so one cannot move from noncritical to critical points.

The second application (see Section 4) is to establish that every irreducible
component of the ‘full’ eigenvariety (with dimension [F : Q] + 1) for a totally
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definite quaternion algebra over F contains a classical point with noncritical
slopes and parallel weight 2, or any other algebraic weight.

1.2. The Bloch–Kato conjecture. Let g be a normalized cuspidal Hilbert
modular newform of weight (k1, k2, . . . , kd, w = 2) and level Γ0(n), over a
totally real number field F , with each ki even. We suppose moreover that the
automorphic representation associated to g has trivial central character. Here we
use the notation and conventions of [Sai09, Section 1] for the weights of Hilbert
modular forms, and in particularw = 2 corresponds to the central character of the
associated automorphic representation having trivial algebraic part. Note that in
the body of the text this will correspond to taking w = 0 in the weights we define
for totally definite quaternion algebras.

Let E be the number field generated by the Hecke eigenvalues tv(g). For
any finite place λ of E , with residue characteristic p, denote by Vg,λ the two-
dimensional (totally odd, absolutely irreducible) Eλ-representation associated to
g which satisfies

det(X − Frobv|Vg,λ) = X 2
− tv(g)X + qv

for all v - np (Frobv denotes arithmetic Frobenius).
Note that we have Vg,λ

∼= V ∗g,λ(1). The conjectures of Bloch and Kato predict
the following formula relating the dimension of the Bloch–Kato Selmer group of
Vg,λ to the central order of vanishing of an L-function:

CONJECTURE 1.2.1.

dimEλ H 1
f (F, Vg,λ) = ords=0 L(Vg,λ, s) (or, equivalently, = ords=0 L(g, s)) .

In this conjecture, the L-functions are normalized so that the local factors (at
good places) are

Lv(Vg,λ, s) = Lv(g, s) =
(
1− tvq−s−1

v + q−2s−1
v

)−1
.

We refer to the following as the ‘parity conjecture for Vg,λ’:

CONJECTURE 1.2.2.

dimEλ H 1
f (F, Vg,λ) ≡ ords=0 L(Vg,λ, s) (mod 2).

Our main result towards the parity conjecture is the following, which is proved
in Section 3:

https://doi.org/10.1017/fms.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.23


C. Johansson and J. Newton 4

THEOREM 1.2.3. Let p be an odd prime and let F be a totally real number
field in which p splits completely. Let g be a cuspidal Hilbert modular newform
for F with weight (k1, k2, . . . , kd, 2) (each ki even) such that the associated
automorphic representation π has trivial central character. Let E be the number
field generated by the Hecke eigenvalues of g and let λ be a finite place of E with
residue characteristic p.

Suppose that for every place v|p, πv is not supercuspidal (in other words, g has
finite slope, up to twist, for every v|p). If [F : Q] is odd suppose moreover that
there is a finite place v0 - p of F such that πv0 is not principal series. Then the
parity conjecture holds for Vg,λ.

REMARK 1.2.4. (1) For fixed g there is a positive density set of primes p
satisfying the assumptions of the above theorem. So combining our theorem
with the conjectural ‘independence of p’ for the (parity of the) rank of
the Selmer group H 1

f (F, Vg,λ) would imply the parity conjecture for the
entire compatible family of Galois representations associated to g (with the
assumption on the existence of a suitable v0 if [F : Q] is odd).

(2) When ki = 2 for all i , the above theorem is already contained in [PX].
Moreover, stronger results (without the finite slope hypothesis) are given by
[Nek13, Theorem 1.4] and [Nek18, Theorem C]. As far as the authors are
aware, the only prior results for higher weights are for p-ordinary forms (for
example, [Nek06, Theorem 12.2.3]), except when F = Q in which case the
above theorem follows from the results of [PX] and [LWX17] (cf. [LWX17,
Remark 1.10]), and there is also a result of Nekovář which applies under a
mild technical hypothesis [Nek13, Theorem B].

(3) When [F : Q] is odd we require the existence of the place v0 in the above
theorem in order to switch to a totally definite quaternion algebra.

2. A halo for the partial eigenvariety

2.1. Notation. We fix an odd prime number p, a totally real number field
F with [F : Q] = d > 1, and we assume that p splits completely in F . The
assumption that p is odd is not essential for this section, but it appears in the
results of [PX] and [Nek18] which we will apply later, so we have excluded the
case p = 2 throughout this paper for simplicity. We also fix a totally definite
quaternion algebra D over F , with discriminant δD, and assume that p is coprime
to δD. We fix a maximal order OD ⊂ D and an isomorphism OD ⊗OF ÔδD

F
∼=

M2(ÔδD
F ) =

∏
v-δD

M2(OF,v). Using this isomorphism, we henceforth identify
O×D,p and

∏
v|p GL2(OF,v). We fix the uniformizer $v = p of OF,v for each v|p.
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For v|p, we let T0,v =

(
O×F,v 0

0 O×F,v

)
⊂ GL2(OF,v), let

Iv,n =
{(

a b
$ n
v c d

)
| a, b, c, d ∈ OF,v

}
∩ GL2(OF,v),

I v,n =
{(

a $ n
v b

c d

)
| a, b, c, d ∈ OF,v

}
∩ GL2(OF,v)

and

Iv,1,n =
{(

a b
$vc d

)
∈ Iv,1 | b ≡ 0 (mod $ n

v )

}
,

I ′v,1,n =
{(

a $ n
v b

$vc d

)
∈ Iv,1,n | a ≡ d ≡ 1 (mod $ n+1

v )

}
.

Set

Σ+v =

{(
1 0
0 $ β

v

)
| β ∈ Z>0

}
and

Σ cpt
v =

{(
1 0
0 $ β

v

)
| β ∈ Z>0

}
.

The groups Iv,1,n will be convenient to work with later; see Lemma 2.3.1 and
Remark 2.3.2. Fix a place v|p (this will be the place where the weight varies in
our families of p-adic automorphic forms), and let K v

=
∏

v′ 6=v Kv′ be a compact
open subgroup of (OD ⊗F Av

F, f )
× such that K = K v Iv,1 is a neat subgroup of

(D⊗F AF, f )
×. More precisely, we assume that x−1 D×x ∩ K ⊂ O×,+F (the totally

positive units) for all x ∈ (D ⊗F AF, f )
×.

We make the following general definitions:

DEFINITION 2.1.1. Let K be a compact open subgroup of (D ⊗F AF, f )
× and let

N be a monoid with K ⊂ N ⊂ (D⊗F AF, f )
×. Suppose M is a left R[N ]-module

(for some commutative coefficient ring R).

(1) If f : D×\(D⊗F AF, f )
×
→ M is a function and γ ∈ N we define a function

γ | f by γ | f (g) = γ f (gγ ).

(2) We define

H 0(K ,M) = { f : D×\(D ⊗F AF, f )
×
→ M | u| f = f for all u ∈ K }.
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(3) If K ′ ⊂ K is a compact open subgroup then we can define a double coset
operator

[K gK ′] : H 0(K ′,M)→ H 0(K ,M)

for any g ∈ N by decomposing the double coset K gK ′ =
∐

i gi K ′ and
defining

[K gK ′] f =
∑

i

gi | f.

The following lemma is easily checked.

LEMMA 2.1.2. Suppose K is a neat compact open subgroup of (D ⊗F AF, f )
×.

Let g1, . . . , gt be double coset representatives for D×\(D ⊗F AF, f )
×/K , and let

M be an R[K ]-module on which Z(K ) := O×F ∩ K = O×,+F ∩ K acts trivially
(the equality follows from the neatness assumption).

Then the R-module map

f 7→ ( f (g1), . . . , f (gt))

gives an isomorphism H 0(K ,M) ∼= M⊕t .

Now suppose we have an integer w and a tuple of integers

kv = (kv′)v′|p,v′ 6=v

such that kv′ ≡ w (mod 2) and kv′ > 2 for all v′.
For each v′ we define a finite free Zp = OFv′ -module with a left action of Kv′ :

Lv′(kv′, w) = det(w−kv′+2)/2 Symkv′−2 O2
Fv′
,

where O2
Fv′

is the standard representation of GL2(OF,v′) ∼= O×D,v′ .
We then define a finite free Zp-module with a left action of K v:

Lv(kv, w) :=
⊗

v′|p,v′ 6=v

Lv′(kv′, w).

Let χ v be the character of T v
0 =

∏
v′|p,v′ 6=v T0,v′ given by the highest weight of

Lv(kv, w) (with respect to the upper triangular Borel). Explicitly, this character is

χ v(t1, t2) :=
∏
v′

(t1,v′)
(w+kv′−2)/2(t2,v′)

(w−kv′+2)/2.

We now recall some terminology from [JN19b]. We let R be a Banach–Tate
Zp-algebra [JN19b, 3.1] with a multiplicative pseudouniformizer $ , and let
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κ : T0,v → R× be a continuous character. Assume that the norm on R is adapted
to κ [JN19b, Definition 3.3.2] and that χ vκ is trivial on Z(K ). We call such
a κ a weight. Associated with a weight κ is a number rκ ∈ [1/p, 1) measuring
how ‘analytic’ κ is; see [JN19b, Definition 3.3.9] for the precise definition.

For r > rκ we get a Banach R-module Dr
κ [JN19b, Definition 3.3.9] equipped

with a left action of the monoid ∆v = Iv,1Σ+v Iv,1. This can be thought of as a
space of distributions, which acts (see the end of [JN19b, Section 3.3]) on a space

of functions A<r
κ on

(
1 0

$vOF,v 1

)
, which we identify with functions in a single

variable x on $vOF,v. A<r
κ carries a right action of ∆v, with the action of an

element γ =
(

a b
c d

)
∈ ∆v given by

( f · γ )(x) = κ(a + bx, (det γ )|det γ |v/(a + bx)) f
(

c + dx
a + bx

)
.

We note in passing that the action pairingDr
κ×A<r

κ → R identifiesA<r
κ as the dual

of Dr
κ (and not the other way around!). The R-module H 0(K ,Lv(kv, w)⊗Zp Dr

κ)

is the space of p-adic automorphic forms with fixed weights away from v which
we will be studying in this section.

We have a natural action of (D ⊗F Ap
F, f )

×
×∆v on Lv(kv, w)⊗Zp Dr

κ , and we
get associated double coset operators. If R is a Qp-algebra, we can extend this
to an action of (D ⊗F Av

F, f )
×
× ∆v. We will especially consider the action on

H 0(K ,Lv(kv, w)⊗Zp Dr
κ) of the Hecke operator Uv = [K

(
1 0
0 $v

)
K ]. This Hecke

operator is compact because, by [JN19b, Corollary 3.3.10], it factors as a
composition

H 0(K ,Lv(kv, w)⊗Zp Dr
κ) → H 0(K ,Lv(kv, w)⊗Zp Dr1/p

κ )

↪→ H 0(K ,Lv(kv, w)⊗Zp Dr
κ),

where the second map is induced by the natural compact inclusion Dr1/p

κ ↪→ Dr
κ .

When R is a Qp-algebra we will also use the (noncompact) Hecke operators
Uv′ = p−(w−kv′+2)/2

[K
(1 0

0 $v′

)
K ] for the places v 6= v′|p. We have normalized

the operators Uv′ so that they are consistent with Uv. In particular, when R is a
field extension of Qp, the nonzero eigenvalues for Uv′ will have p-adic valuation
between 0 and kv′ − 1.

2.2. Locally algebraic weights. Suppose κ : T0,v → E× is a weight, where E
is a finite extension of Qp, and for some positive integer k with k ≡ w (mod 2)
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the restriction of κ to an open subgroup (1+$ n
vOFv )

2 of T0,v coincides with the
character

χk(t1, t2) = (t1)
(w+k−2)/2(t2)

(w−k+2)/2.

Then, denoting the finite order character κ/χk by ε, we say that κ is locally
algebraic of weight (k, w) and character ε. If we make the standard identification
of the E-dual (right) representation Lv(k, w)∨ with homogeneous degree k
polynomials in two variables (X, Y ) then evaluation at (1, x) gives an injective
I ′v,1,n−1-equivariant map

Lv(k, w)∨→ A<r
κ .

The action of
(

1 0
0 $v

)
on the right hand side induces the action of p−(w−k+2)/2

(
1 0
0 $v

)
on the left hand side. The action of Dr

κ on Lv(k, w)∨ then gives us a surjective
I ′v,1,n−1-equivariant map

Dr
κ → Lv(k, w)⊗Zp E .

Moreover, if we let Lv(k, w, ε) denote the Iv,1,n−1-representation obtained from
Lv(k, w) ⊗Zp E by twisting the action by ε then we obtain a surjective Iv,1,n−1-
equivariant map

Dr
κ → Lv(k, w, ε).

2.3. Comparing level Iv,1 and Iv,1,n−1. We retain the set-up of the previous
subsection, so κ is a locally algebraic weight. A version of the following lemma
is commonly used in Hida theory (see for example [Ger19, Lemma 2.5.2]):

LEMMA 2.3.1.

(1) For n > 2, the endomorphism Uv of H 0(K v Iv,1,n−1,Lv(kv, w) ⊗Zp Dr
κ)

factors through the natural inclusion

H 0(K v Iv,1,n−2,Lv(kv, w)⊗Zp Dr
κ) ↪→ H 0(K v Iv,1,n−1,Lv(kv, w)⊗Zp Dr

κ).

(2) The natural inclusion

ι : H 0(K v Iv,1,Lv(kv, w)⊗Zp Dr
κ) ↪→ H 0(K v Iv,1,n−1,Lv(kv, w)⊗Zp Dr

κ)

is Uv-equivariant and if h ∈ Q>0 it induces an isomorphism between
Uv-slope 6 h subspaces:

ι : H 0(K v Iv,1,Lv(kv, w)⊗ZpDr
κ)

6h ∼= H 0(K v Iv,1,n−1,Lv(kv, w)⊗ZpDr
κ)

6h.
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Proof. First we note that (for n > 1) the action of Uv on H 0(K v Iv,1,n−1,

Lv(kv, w)⊗Zp Dr
κ) is given by

f 7→
p−1∑
i=0

(
1 0
$v i $v

)| f.

The Uv-equivariance in the second statement follows immediately from this. The
rest of the second statement follows from the first, since Uv acts invertibly on the
slope 6 h subspace.

It follows from a simple computation that the double coset operator

[Iv,1,n−1
(

1 0
0 $v

)
Iv,1,n−1]

is equal to [Iv,1,n−2
(

1 0
0 $v

)
Iv,1,n−1], and the first part follows immediately from this.

REMARK 2.3.2. The clean statement of Lemma 2.3.1(2) is the reason why we
have chosen to work with the nonstandard groups Iv,1,n−1 instead of the Iv,n . The
reader may compare this with [Buz07, Lemma 11.1]; there one works, roughly
speaking, with the Iv,n but the map relating forms of level K v Iv,1 to forms of level
K v Iv,n is not the natural inclusion.

Having done all this, composing ι with the map induced by Dr
κ → Lv(k, w, ε),

we obtain a Hecke-equivariant map

π : H 0(K v Iv,1,Lv(kv, w)⊗Zp Dr
κ)→ H 0(K v Iv,1,n−1,Lv(kv, w)⊗Zp Lv(k, w, ε)),

(2.3.1)
where the action of Uv on the target is the ?-action defined by multiplying the
standard action of Uv by p−(w−k+2)/2.

PROPOSITION 2.3.3. Let h ∈ Q>0 with h < k − 1. The map π induces an
isomorphism between Uv-slope 6 h subspaces.

Proof. By Lemma 2.3.1 it suffices to show that the map

H 0(K v Iv,1,n−1,Lv(kv, w)⊗Zp Dr
κ)→ H 0(K v Iv,1,n−1,Lv(kv, w)⊗Zp Lv(k, w, ε))

induces an isomorphism between Uv-slope 6 h subspaces, and this can be proved
as in [Han17, Theorem 3.2.5].
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2.4. The ‘Atkin–Lehner trick’. In this section we establish a result analogous
to [LWX17, Proposition 3.22]. Let n > 2 be an integer and suppose

Kv′ ⊂

(
1+$ n

v′OF,v′ OF,v′

$ n
v′OF,v′ 1+$ n

v′OF,v′

)
for each v′|p, v′ 6= v. Note that, combined with our neatness assumption, this
implies that Z(K ) is contained in 1+ pnOF .

Fix an integer k > 2 with the same parity as w, together with a finite order
character ε = (ε1, ε2) : T0,v→ E×, where ε1 and ε2 are characters of (OF,v/$

n
v )
×

and ε2/ε1 has conductor ($ n
v ).

Let εQ be the finite order Hecke character of Q×\A×Q associated to the Dirichlet
character

(Z/pnZ)× ∼= (OF,v/$
n
v )
× ε1ε2
→ E×.

We now consider the space of classical automorphic forms S(k, w, ε) :=
H 0(K v Iv,1,n−1,Lv(kv, w) ⊗ L(k, w, ε)). By Lemma 2.1.2, the dimension of this
space is equal to (k − 1)pn−1t (as we noted above, Z(K ) ⊂ 1+ pnOF , so it acts
trivially on the coefficients), where

t = |D×\(D ⊗F AF, f )
×/K v Iv,1|

∏
v′|p,v′ 6=v

(kv′ − 1).

Denote the slopes of Uv appearing in S(k, w, ε) by α0(ε), . . . , α(k−1)pn−1t−1(ε)

in nondecreasing order. If γ an element of some field, we let ur(γ ) be the
character on F×v which is trivial on O×Fv and takes uniformizers to γ .

LEMMA 2.4.1. We have αi(ε) = k − 1 − α(k−1)pn−1t−1−i(ε
−1) for i = 0, . . . ,

(k − 1)pn−1t − 1. In particular, the sum (with multiplicities) of the Uv slopes
appearing in S(k, w, ε)⊕ S(k, w, ε−1) is (k − 1)2 pn−1t .

Proof. First we fix an embedding ι : E ↪→ C. Using this embedding, we regard εQ
and ε as complex valued characters. The space S(k, w, ε)⊗E,ιC can be described
in terms of automorphic representations for D. If π contributes to this space, the
local factor πv is a principal series representation of GL2(Fv) obtained as the
normalized induction of a pair of characters

ur(α−1ζ pw)ε−1
1 × ur(α)ε−1

2

where ζ is a root of unity. To see this, we first note that πv has a nonzero subspace
on which Iv,1,n−1 acts via the character ε−1 (these are the vectors in πv which
contribute to S(k, w, ε) ⊗E,ι C). So πv ⊗ ε2 ◦ det has a nonzero subspace on
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which Iv,1,n−1 acts via
(

a b
c d

)
7→ (ε2/ε1)(a). Applying

(
1 0
0 $ n−1

v

)
to this subspace,

we get a nonzero subspace where the action of Iv,n is given by the same formula.
Therefore the conductors of both πv ⊗ ε2 ◦ det and its central character ε2/ε1 are
($ n

v ). It follows (for example, by [Tem14, Lemma 3.3]) that πv ⊗ ε2 ◦ det is the
normalized induction of µ1 × µ2 with µ1|O×F,v = ε2/ε1 and µ2|O×F,v = 1. The rest
of the claim is deduced from the fact that the central character of πv is the product
of a finite order unramified character and ε−1

1 ε−1
2 | · |

−w
v .

We now need to compute the eigenvalue for the standard Uv action on the
subspace of πv where Iv,1,n−1 acts via

(
a b
c d

)
7→ ε1(a)−1ε2(d)−1. Conjugating by(

1 0
0 $

)
, we can do the same for the standard Uv action defined with respect to

I v,n , and we get Uv-eigenvalue αp1/2. Using the ?-action we therefore get Uv-
eigenvalue αp(k−1−w)/2.

Twisting by εQ gives a π ′ with local factor π ′v the normalized induction of

ur(α−1ζ pw)ε2 × ur(α)ε1,

which contributes to S(k, w, ε−1) with ?-action Uv-eigenvalue α−1ζ p(w+k−1)/2.
Summing the two slopes together we get (k − 1), which gives the desired
result.

2.5. The weight space of the partial eigenvariety. We are going to construct
a ‘partial eigenvariety’ out of the spaces H 0(K ,Lv(kv, w) ⊗Zp Dr

κ). The
underlying weight space W is defined by letting

W(A) = {κ ∈ Homcts(T0,v, A×) : χ vκ|Z(K ) = 1}

for algebras A of topologically finite type over Qp. We let ∆ denote the torsion
subgroup of O×F,v.

LEMMA 2.5.1. We have an isomorphism WCp
∼=
∐

η,ω DCp where D is the open
unit disc and η, ω run over pairs of characters η : O×v → C×p , ω : ∆×∆→ C×p
such that χ vη|Z(K ) = 1 and ω restricted to the diagonal copy of ∆ is equal to η|∆.

The isomorphism is given by taking κ to κ(exp(p), exp(p)−1) − 1 in the
component labelled by η(tv) = κ(tv, tv) and ω(δ1, δ2) = κ(δ1, δ2).

Proof. This follows from the fact that the closure of Z(K ) in T0,v is a finite index
subgroup of O×v centrally embedded in T0,v.

REMARK 2.5.2. The condition that χ vη|Z(K ) = 1 is equivalent to the condition
that η(tv) = twv η̃(tv) where η̃ is a finite order character, trivial on Z(K ).
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In particular, there are finitely many possibilities for η. Moreover, for each η, if we
denote by Eη the finite extension of Qp generated by the values of η then the open
and closed immersion

∐
ω DCp ↪→ WCp given by restricting to the components

labelled by η is defined over Eη. For each pair η, ω we therefore denote by Wη,ω

the corresponding connected component (which is isomorphic to the open unit
disc over Eη) of WEη .

If κ is a point of WCp we denote by zκ the corresponding point of DCp . If
r ∈ (0, 1) ∩ Q, the union of open annuli given by r < |zκ |p < 1 is denoted
by W>r .

2.6. Lower bound for the Newton polygon. In this section we establish a
result analogous to [LWX17, Theorem 3.16], following the approach of [JN19b,
Section 6.2]. We now return to our general situation: R is a Banach–Tate Zp-
algebra with a multiplicative pseudouniformizer $ , and κ : T0,v → R× is a
continuous character such that the norm on R is adapted to κ and χ vκ is trivial
on Z(K ).

As in [JN19b, (3.2.1)], for α ∈ Z>0, we define

n(r,$, α) =

⌊
α logp r

logp |$ |

⌋
.

LEMMA 2.6.1. Assume that there is no x ∈ R with 1 < |x | < |$ |−1. Let

t = |D×\(D ⊗F AF, f )
×/K v Iv,1|

∏
v′|p,v′ 6=v

(kv′ − 1).

If we define

λ(0) = 0, λ(i + 1) = λ(i)+ n(r,$, bi/tc)− n(r 1/p,$, bi/tc),

then the Fredholm series

det(1− T Uv|H 0(K v Iv,1,Lv(kv, w)⊗Zp Dr
κ)) =

∑
n>0

cnT n
∈ R{{T }}

satisfies |cn| 6 |$ |λ(n).

Proof. This is essentially [JN19b, Lemma 6.2.1]. Our global set-up is slightly
different to that in [JN19b, Lemma 6.2.1], but the proof goes through verbatim.
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We now fix a component Wη,ω of weight space. Let E := Eη ⊂ Cp be the
subfield generated by the image of η (it is generated by a p-power root of unity).
We fix a uniformizer $E ∈ E and normalize the absolute value | · | on E by
|p| = p−1. Let Λ = OE [[X ]]. We have a universal weight

κ(η,ω) : T0,v → Λ×

determined by κ|∆×∆ = ω, κ(tv, tv) = η(tv) and κ(exp(p), exp(p)−1) = 1+ X .
We give the complete local ring Λ the mΛ = ($E , X)-adic topology. Let

Wη,ω = Spa(Λ,Λ), denote its analytic locus by Wan
η,ω and let U1 ⊂ Wan

η,ω be
the rational subdomain defined by

U1 = {|$E | 6 |X | 6= 0}.

Pulling back U1 to the rigid analytic open unit disc Wη,ω gives the ‘boundary
annulus’ |X | > |$E |.

We let R = O(U1). More explicitly, we can describe the elements of R◦ as
formal power series{∑

n∈Z

an X n
: an ∈ OE , |an$

n
E | 6 1, |an$

n
E | → 0 as n→−∞

}
.

X is a topologically nilpotent unit in R and so equipping R with the norm
|r | = inf{|$E |

n
| r ∈ X n R◦, n ∈ Z} makes R into a Banach–Tate Zp-algebra.

Note that the restriction of this norm to OE ⊆ R coincides with (the restriction
of) the absolute value on E , so the fact that we are using the notation | · | should
hopefully not cause any confusion. The norm | · | on R has the explicit description:∣∣∣∣∣∑

n∈Z

an X n

∣∣∣∣∣ = sup{|an$
n
E |}. (2.6.1)

Note that X is a multiplicative pseudouniformizer and there is no x ∈ R with
1 < |x | < |X |−1.

LEMMA 2.6.2. The norm we have defined on R is adapted to κ(η,ω). Moreover, for
t ∈ T1 = (1+$vOF,v)

2 we have |κ(η,ω)(t)− 1| 6 |$E |.

Proof. If t ∈ T1 we have κ(η,ω)(t) − 1 = uζ(1 + X)α − 1 for some α ∈ Zp,
u ∈ 1 + pOE and ζ ∈ OE a p-power root of unity. So uζ ∈ 1 + $EOE and
|κ(η,ω)(t)− 1| 6 |$E |.

We can now apply Lemma 2.6.1.
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COROLLARY 2.6.3. Consider the Fredholm series

det(1− T Uv|H 0(K v Iv,1,Lv(kv, w)⊗Zp D|$E |
κ )) =

∑
n>0

cnT n
∈ R{{T }}.

Let
t = |D×\(D ⊗F AF, f )

×/K v Iv,1|
∏

v′|p,v′ 6=v

(kv′ − 1).

(1) We have cn =
∑

m>0 bn,m Xm
∈ Λ for all n.

(2) Moreover, |bn,m$
m
E | 6 |$

λ(n)
E | for all m, n > 0, where λ(0) = 0, λ(1), . . .

is a sequence of integers determined by

λ(0) = 0, λ(i + 1) = λ(i)+ bi/tc − bi/ptc.

(3) For z ∈ Cp with 0 < vp(z) < vp($E), we have vp(cn(z)) > λ(n)vp(z) for
every n > 0, with equality holding if and only if bn,λ(n) ∈O×E . If bn,λ(n) /∈O×E ,
then

vp(cn(z)) > λ(n)vp(z)+min{vp(z), vp($E)− vp(z)}.

Proof. The first two parts follow from Lemma 2.6.1, exactly as in [JN19b,
Theorem 6.3.2]. Note that n(|$E |, X, bi/tc) = bi/tc and n(|$E |

1/p, X, bi/tc) =
bp−1
bi/tcc = bi/ptc.

Let z ∈ Cp with 0 < vp(z) < vp($E). It follows immediately from the second
part that vp(cn(z)) > λ(n)vp(z) for every n > 0, with equality holding if and only
if bn,λ(n) ∈ O×E . Finally, if bn,λ(n) /∈ O×E then vp(bn,λ(n)) > vp($E) and the rest of
the third part is easy to check.

2.7. The spectral curve and partial eigenvariety. We can now construct the
spectral curve ZUv (kv, w)→W for the compact operator Uv acting on the spaces
H 0(K v Iv,1,Lv(kv, w)⊗Zp Dr

κ), for κ = κU ranging over the weights induced
from affinoid open U ⊆ W , as well as the pullback ZUv (kv, w)>r

η,ω → W>r
η,ω for

r ∈ (0, 1) ∩Q and Wη,ω a component of weight space.

PROPOSITION 2.7.1. Fix a component Wη,ω of weight space, and let E = Eη =

Qp(ζpc) ⊂ Cp be the subfield generated by the image of η as before. Set s0 = 1 if
w is even and s0 = 2 if w is odd. Then

ZUv (kv, w)>|$E |
η,ω = Z0 tZ(0,s0) t

∐
k>2

k≡w mod 2

Zk−1 tZ(k−1,k+1)
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is a disjoint union of rigid analytic spaces ZI (with I denoting an interval as in the
displayed formula) which are finite and flat over W>|$E |

η,ω . For each point x ∈ ZI ,
with corresponding Uv-eigenvalue λx , we have vp(λx) ∈ (p − 1)pcvp(zκ(x)) · I .

Note that s0 is the highest slope appearing in the spaces of classical automorphic
forms with minimal weight, under the restriction that the weight has the same
parity as w.

Proof. This follows from Corollary 2.6.3 and Lemma 2.4.1, as in [LWX17, Proof
of Theorem 1.3]. We sketch the argument. Recall the finite order character
η̃ associated with η from Remark 2.5.2, and note that η̃ factors through
(OF,v/$

c+1)× (if c > 1, the conductor of η̃ is ($ c+1); if c = 0, η̃ is either
tame or trivial). By passing to a normal compact open subgroup of K v we may
assume that

Kv′ ⊂

(
1+$ c+2

v′ OF,v′ OF,v′

$ c+2
v′ OF,v′ 1+$ c+2

v′ OF,v′

)
for each v′|p, v′ 6= v. Now we consider points κ ∈ W(Cp) which are
locally algebraic of weight (k, w) and character ε, with the εi factoring through
(OF,v/$

c+2)× and ε2/ε1 of conductor ($ c+2). We furthermore insist that κ is in
the component Wη,ω. This amounts to requiring that κ|∆×∆ = ω and η̃ = ε1ε2. We
have

vp(zκ) = vp(exp(p)k−2(ε1/ε2)(exp(p))− 1) = 1/φ(pc+1) < vp($E) = 1/φ(pc)

and hence κ ∈W>|$E |
η,ω (Cp).

For k ∈ Z>2 with k ≡ w (mod 2) we set nk = (k − 1)pc+1t = dim S(k, w, ε),
where

t = |D×\(D ⊗F AF, f )
×/K v Iv,1|

∏
v′|p,v′ 6=v

(kv′ − 1)

as in the beginning of Section 2.4. We now carry out ‘Step I’ of [LWX17, Proof
of Theorem 1.3]: this identifies certain points on the Newton polygon of the
characteristic power series

∑
n>0 cn(zκ)T n of Uv at the weight κ . We have

vp(zκ)λ(nk) =
1

φ(pc+1)

(k−1)pc+1t−1∑
i=0

(⌊
i
t

⌋
−

⌊
i
pt

⌋)

=
1

φ(pc+1)

t
(k−1)pc+1

−1∑
i=0

i − pt
(k−1)pc

−1∑
i=0

i
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=
(k − 1)2 pc+1t

2
.

So, by Lemma 2.4.1, vp(zκ)λ(nk) is equal to half the sum of the Uv-slopes
on S(k, w, ε) and S(k, w, ε−1). Combining this with Corollary 2.6.3(3) (at the
weights corresponding to both (k, w, ε) and (k, w, ε−1)), we deduce that the sum
of the first nk Uv-slopes on H 0(K v Iv,1,Lv(kv, w)⊗Zp D|$E |

κ ) is ((k − 1)2 pc+1t)/2
and that the Newton polygon of

∑
n>0 cn(zκ)T n passes through the point

Pk = (nk, λ(nk)vp(zκ)).
‘Step II’ of [LWX17, Proof of Theorem 1.3] can now be carried over (replacing

q with pc+1), and this establishes the rest of the proposition. We denote the first
coordinate of the vertices of the Newton polygon either side of Pk by n−k and n+k
(if Pk is itself a vertex we have n−k = n+k = nk). If n−k 6= n+k then the slope of
the segment containing Pk is (k − 1) (since this is the slope of the lower bound
Newton polygon) and n−k ∈ [nk − t, nk], n+k ∈ [nk, nk + t]. Whether or not n−k
equals n+k , it now follows from Corollary 2.6.3(3) that n−k is the minimal index i
in [nk − t, nk] with bi,λ(i) ∈ O×E and n+k is the maximal index i in [nk, nk + t] with
bi,λ(i) ∈ O×E . If we specialize to z ∈W>|$E |

η,ω we have, for all i > 0:

vp(cnk−i(z)) > vp(z)λ(nk − i) > vp(z)(λ(nk)− (k − 1)φ(pc+1)i)

where the first equality is strict if nk − t 6 nk − i < n−k (minimality of n−k ) and
the second inequality is strict if nk − i < nk − t . These strict inequalities have
difference between the two sides at least min{vp(z), vp($E) − vp(z)}. A similar
inequality holds for nk+ i > n+k . We get equalities when nk− i = n−k and nk+ i =
n+k . We deduce that, if n−k 6= n+k then (n−k , λ(n

−

k )vp(z)) and (n+k , λ(n
+

k )vp(z)) are
consecutive vertices of the Newton polygon of

∑
n>0 cn(z)T n for all z ∈W>|$E |

η,ω .
The slope of the segment connecting these vertices is (k − 1)φ(pc+1)vp(z) and it
therefore passes through (nk, λ(nk)vp(z)). If n+k = n−k = nk then (nk, λ(nk)vp(z))
is a vertex of the Newton polygon for all z ∈ W>|$E |

η,ω . Now for an interval I as
in the statement of the proposition we define ZI to be the (open) subspace of
ZUv (kv, w)>|$E |

η,ω given by demanding that the slope lies in (p − 1)pcvp(zκ(x)) · I .
Each ZI pulls back to an affinoid open of (the pullback of) ZUv (kv, w)>|$E |

η,ω over
every affinoid open of W>|$E |

η,ω (when I is an open interval we use the bound in
terms of min{vp(z), vp($E)− vp(z)} to see that we still get an affinoid open). By
our control over the Newton polygons (or Hida theory for Z0), it follows from
[Buz07, Corollary 4.3] that the ZI are finite flat over W>|$E |

η,ω .

REMARK 2.7.2. (1) In the above Proposition, we are proving that the partial
eigenvariety exhibits ‘halo’ behaviour over a boundary annulus whose
radius depends on the conductor of the character η̃. This dependence may
well be an artefact of the method of proof.
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(2) The rest of the arguments in [LWX17] also generalize to this situation,
showing that the slopes over a sufficiently small boundary annulus in weight
space are a union of finitely many arithmetic progressions with the same
common difference.

(3) Another way to obtain one-dimensional families of p-adic automorphic
forms for the quaternion algebra D is to allow the weight to vary in the
parallel direction. The methods described here do not seem sufficient to
establish ‘halo’ behaviour for these one-dimensional families—one reason
is that there is no longer a sharp numerical classicality theorem in terms of
a single compact operator in this case.

Now we fix an integer n > 1 and assume that Kv′ = I ′v′,1,n−1 for each place v′|p
with v′ 6= v. We set K = K v Iv,1. Let S be the set of finite places w of F where
either w|p, Dw is nonsplit or Dw is split but Kw 6= O×D,w. For w /∈ S we have
Hecke operators

Sw =
[

K
(
$w 0
0 $w

)
K
]
, Tw =

[
K
(

1 0
0 $w

)
K
]
,

which are independent of the choice of uniformizer $w ∈ Fw.
The spaces H 0(K ,Lv(kv, w) ⊗Zp Dr

κ) give rise to a coherent sheaf H over
ZUv (kv, w), equipped with an action of the Hecke operators {Uv′, v

′
|p} and

{Sw, Tw : w /∈ S}. If we let T denote the free commutative Zp-algebra generated by
these Hecke operators, and letψ : T→ End(H) be the map induced by the Hecke
action, then we have an eigenvariety datum (W ×A1,H,T, ψ). Here we use the
notion of eigenvariety datum as defined in [JN19a, Section 3.1], and we refer
to [JN19a, Section 3.1] for the construction of the eigenvariety associated with
an eigenvariety datum (we remark that we could also have used the eigenvariety
(ZUv (kv, w),H,T, ψ), since H is supported on ZUv (kv, w)). We denote the
associated eigenvariety by E(kv, w) and, if r ∈ (0, 1), denote its pullback to W>r

by E(kv, w)>r .

DEFINITION 2.7.3. A classical point of E(kv, w) is a point with locally algebraic
weight corresponding to a Hecke eigenvector with nonzero image under the
map π of (2.3.1), whose systems of Hecke eigenvalue do not arise from one-
dimensional automorphic representations of (D ⊗F AF)

×.

The points excluded in the above definition do not correspond to classical
Hilbert modular forms under the Jacquet–Langlands correspondence. They all
have parallel weight 2, and their Uv′ eigenvalues αv′ satisfy vp(αv′) = 1 for all
v′|p.
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PROPOSITION 2.7.4.

(1) E(kv, w) is equidimensional of dimension 1 and flat over W .

(2) Let C be an irreducible component of E(kv, w) and let k > 2 be an
integer with the same parity as w. Then C contains a point which is locally
algebraic of weight (k, w) and Uv-slope < k − 1 (in particular, this point is
classical).

Proof. (1) This part is proved in the same way as the well-known analogous
statement for the Coleman–Mazur eigencurve (for example, see [JN19b,
Section 6.1]).

(2) This is a consequence of Proposition 2.7.1. Indeed, C maps to a single
component Wη,ω of weight space, and we let E = Qp(ζ

c) be as in that
proposition. Then any irreducible component C ′ of C>|$E | is finite flat over
an irreducible component of ZUv (kv, w)>|$E |. It follows from Proposition
2.7.1 that C ′ is finite flat over W>|$E |

η,ω and there is an interval I such that
for each point x ∈ C ′, with corresponding Uv-eigenvalue λx , we have
vp(λx) ∈ (p − 1)pcvp(zκ(x)) · I . If vp(zκ(x)) is sufficiently small, then
vp(λx) < k − 1. To finish the proof, we note that we can find a locally
algebraic point of weight (k, w) in W>|$E |

η,ω with vp(zκ(x)) as small as we
like, by choosing a character ε = (ε1, ε2) (compatible with η and ω) such
that ε1(exp(p))/ε2(exp(p)) is a p-power root of unity of sufficiently large
order.

REMARK 2.7.5. The existence of partial eigenvarieties (where weights vary
above a proper subset of the places dividing p) is probably well known to experts,
but they have not been utilized so much in the literature. They were discussed (for
definite unitary groups) and used in works of Chenevier [Che] and Chenevier–
Harris [CH13] to remove regularity hypotheses from theorems concerning the
existence and local–global compatibility of Galois representations associated to
automorphic representations. They can be viewed as eigenvarieties defined with
respect to certain nonminimal parabolic subgroups of the relevant group (see
[Loe11])—to recover the setting of this article we let P ⊂ (ResF/Q GL2)Qp =∏

v′|p ResFv′ /Qp GL2 be the parabolic with component labelled by our fixed place
v equal to the upper triangular Borel and other components equal to the whole
group GL2. See, for example, [Din18] for another application of eigenvarieties
defined with respect to a nonminimal parabolic. We also note that partial Hilbert
modular eigenvarieties have been used recently by Barrera, Dimitrov and Jorza to
study the exceptional zero conjecture for Hilbert modular forms [BDJ17].
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3. The parity conjecture

We can now apply the preceding results to establish some new cases of the
parity conjecture for Hilbert modular forms, using [PX, Theorems A and B].
First we need to discuss the family of Galois representations carried by the partial
eigenvarieties and their p-adic Hodge theoretic properties.

3.1. Galois representations. We begin by noting that there is a continuous
2-dimensional pseudocharacter T : G F → OE(kv ,w) with T (Frobw) = Tw for
all w /∈ S. This follows from [Che04, Proposition 7.1.1], the Zariski density of
classical points in E(kv, w) and the existence of Galois representations associated
to Hilbert modular forms.

We denote the normalization of E(kv, w) by Ẽ , and we also denote by T the
pseudocharacter on Ẽ obtained by pullback from E(kv, w). We denote by Ẽ irr

⊂

Ẽ the (Zariski open, see [Che14, Example 2.20]) locus where T is absolutely
irreducible. Note also that Ẽ irr is Zariski-dense in Ẽ , since classical points have
irreducible Galois representations.

PROPOSITION 3.1.1. There is a locally free rank 2 OẼ irr -module V equipped with
a continuous representation

ρ : G F,S → GLOẼirr (V )

satisfying
det(X − ρ(Frobw)) = X 2

− TwX + qwSw

for all w /∈ S (where Frobw denotes an arithmetic Frobenius).

Proof. First we recall that T canonically lifts to a continuous representation
ρ : G F,S → A× where A is an Azumaya algebra of rank 4 over Ẽ irr, by [Che04,
Corollary 7.2.6] (see also [Che14, Proposition G]). It remains to show that A is
isomorphic to the endomorphism algebra of a vector bundle.

On the other hand, [CM98, Theorem 5.1.2] and the remark appearing after this
theorem show that there is an admissible cover of Ẽ irr by affinoid opens {Ui}i∈I ,
together with continuous representations

ρi : G F,S → GL2(O(Ui))

lifting the pseudocharacters T |Ui .
By the uniqueness part of [Che04, Lemma 7.2.4], we deduce that

for each affinoid open Ui , we have an isomorphism of O(Ui)-algebras
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A(Ui) ∼= M2(O(Ui)). Now, by the standard argument relating the Brauer group
to cohomology (see [Mil80, Theorem IV.2.5]; the constructions using either Čech
cohomology or gerbes can be applied, since Čech cohomology coincides with
usual cohomology on Ẽ irr by [vdP82, Proposition 1.4.4]) we can associate to A
an element FA of H 2(Ẽ irr,O×Ẽ irr) (crucially, this is the cohomology on the rigid
analytic site, not étale cohomology). This element is trivial if and only if A is
isomorphic to the endomorphism algebra of a vector bundle.

Since Ẽ irr is separated and one-dimensional, H 2(Ẽ irr,F) vanishes for any
Abelian sheaf F by [dJvdP96, Corollary 2.5.10, Remark 2.5.11]. In particular,
FA is trivial and we are done.

REMARK 3.1.2. In fact, [CM98, Theorem 5.1.2] applies over the whole
of Ẽ , not just the irreducible locus, so there are representations ρi :

O(Ui)[G F,S] → M2(O(Ui)) lifting T over each member of an admissible
affinoid cover {Ui}i∈I of Ẽ . Shrinking the cover if necessary, we may
assume that the intersection of any two distinct covering affinoids Ui ∩ U j

is contained in Ẽ irr, so we obtain a canonical isomorphism of OUi∩U j -algebras
M2(OUi∩U j )

∼= M2(OUi∩U j ) intertwining the representations ρi and ρ j .
This gives the gluing data necessary to define a Galois representation to an

Azumaya algebra, which as above is isomorphic to the endomorphism algebra
of a vector bundle (by the vanishing of H 2(Ẽ,O×Ẽ )). So we finally obtain a

(possibly noncanonical) Galois representation on a vector bundle over Ẽ , although
in what follows we will just work over the irreducible locus as this suffices for our
purposes.

If z is a point of Ẽ irr we denote by Vz the specialization of V at z, which
we regard as a 2-dimensional representation of G F over the residue field k(z).
Note that we obtain a continuous character det ρ : G F → Γ (Ẽ irr,OẼ irr)× with
det ρ(z) = det Vz . In fact det ρ is constant on connected components of Ẽ irr.
Indeed, for every classical point z, det ρ(z) is Hodge–Tate of weight −1 − w
at every place dividing p, and the results cited in the proof of Proposition 3.1.8
below show that this property extends to all points z. Class field theory and the fact
that Hodge–Tate characters are locally algebraic [Ser98, Theorem 3, Appendix to
Ch. III] shows that each det ρ(z) is the product of a finite order character and the
(1 + w)-power of the cyclotomic character, so det ρ is constant on connected
components. Before proceeding we fix some conventions on local class field
theory. If γ an element of some field, we recall that we have denoted by ur(γ )
the character on F×v which is trivial on O×Fv and takes uniformizers to γ . We will
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freely interpret characters of F×v as characters of WFv via the Artin reciprocity
map, normalized to take a uniformizer to a geometric Frobenius.

We use covariant Dieudonné modules so the cyclotomic character has Hodge–
Tate weight −1.

PROPOSITION 3.1.3. Let z be a classical point of Ẽ irr, locally algebraic of
weight (k, w) and character ε, and with Uv-eigenvalue α. Set α̃ = αp1+(w−k)/2.
Then Vz|G Fv

is potentially semistable with Hodge–Tate weights (−(w + k)/2,
−(1+ (w − k)/2)), and the associated (Frobenius-semisimplified) Weil–Deligne
representation is of the form

W D(Vz|G Fv
)F−ss

=
(
ur(β̃)−1ε1 ⊕ ur (̃α)−1ε2, N

)
for some β̃ ∈ Cp (determined by the determinant of Vz) which satisfies vp (̃α) +

vp(β̃) = 1+ w. N is nonzero if and only if ε1 = ε2 and α̃/β̃ = p−1.

Proof. This follows from the local–global compatibility theorem of Saito [Sai09],
as completed by Skinner [Ski09] and Liu [Liu12]. Note that α is an eigenvalue
for the ?-action of Uv on S(k, w, ε) so α̃ is the corresponding eigenvalue for the
standard action of Uv.

DEFINITION 3.1.4. We say that a classical point z of weight (k, w) is critical if
Vz|G Fv

is decomposable and vp(Uv(z)) = k − 1.

REMARK 3.1.5. It follows from weak admissibility that W D(Vz|G Fv
) fails to be

Frobenius-semisimple if and only if the two characters ur(β̃)−1ε1, ur (̃α)−1ε2 are
equal (in which case we also have N = 0).

In what remains of this section we give details about the triangulations of the
p-adic Galois representations for noncritical classical points of Ẽ irr and apply
the results of [KPX14] to establish the existence of global triangulations for the
family of Galois representations over this eigenvariety. Everything here should
be unsurprising to experts, but we have written out some details because in the
literature it is common to restrict to the semistable case, whilst it is crucial for us
to consider classical points which are only potentially semistable.

3.1.1. Triangulation at v for classical points. Suppose z ∈ Ẽ irr(L) is a
noncritical classical point (with L/Qp finite), locally algebraic of weight
(k, w) and character ε, and with Uv-eigenvalue α. Suppose moreover that
Vz|G Fv

is indecomposable and potentially crystalline. It follows from Proposition
3.1.3 that this representation becomes crystalline over an Abelian extension of Fv.
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So the L-Weil–Deligne representation W D(Vz|G Fv
) has an admissible filtration

after extending scalars to the Qp-algebra L∞ =
⋃

N L ⊗Qp Qp(ζpN ) (see [Col08,
Section 4.4]). Moreover, we can explicitly describe this admissible filtered Weil–
Deligne module Dz as in [Col08, Section 4.5]. Indeed, when the action of WFv
on Dz is semisimple, we let e1 and e2 be basis vectors with WFv action given by
ur(β̃)−1ε1 and ur (̃α)−1ε2, respectively. When the action of WFv is not semisimple,
we have ur(β̃)−1ε1 = ur (̃α)−1ε2 and there are basis vectors e1, e2 with WFv action
given by σe1 = ur(β̃)−1ε1(σ )e1 and σe2 = ur(β̃)−1ε1(σ )(e2 − (deg(σ ))e1)

(σ maps to the deg(σ ) power of arithmetic Frobenius in the absolute Galois
group of the residue field). The filtration is given by

Fili(L∞ ⊗L Dz) =


0 if i > −

(
1+

w − k
2

)
L∞ · (γ e1 + e2) if −

w + k
2

< i 6 −
(

1+
w − k

2

)
L∞ ⊗L Dz if i 6 −

w + k
2

where γ ∈ L∞ is the (invertible) value of a certain Gauss sum in the semisimple
case and γ = 0 in the nonsemisimple case.

It follows from [Col08, Proposition 4.13] that Vz|G Fv
is trianguline. To describe

the triangulations we adopt the notation of [Col08]. So R denotes the Robba ring
over L and if δ : Q×p → L× is a continuous character R(δ) denotes that (φ, Γ )-
module obtained by multiplying the action of φ on R by δ(p) and the action of
γ ∈ Γ = Gal(Qp(µp∞)/Qp) by δ(χcyc(γ )). If V is an L-representation of GQp

we denote by Drig(V ) the slope zero (φ, Γ )-module over R associated to V by
[Col08, Proposition 1.7].

Now we have recalled the necessary notation we can recall the precise
statement of [Col08, Proposition 4.13]: we have two triangulations (they coincide
in the nonsemisimple case)

0→ R(x (w+k)/2ur(β̃)−1ε1)→ Drig(Vz)→ R(x (1+(w−k)/2)ur (̃α)−1ε2)→ 0

0→ R(x (w+k)/2ur (̃α)−1ε2)→ Drig(Vz)→ R(x (1+(w−k)/2)ur(β̃)−1ε1)→ 0.

We can rewrite the first of these triangulations as

0→ R(δ−1 det ρ(z))→ Drig(Vz)→ R(δ(z))→ 0

where we define the continuous character δ : F×v → Γ (Ẽ irr,OẼ irr)× by δ(p) =
U−1
v and δ|O×Fv = κ|{1}×O×Fv .
Next, we consider the case where Vz|G Fv

is not potentially crystalline. Following
[Col08, Section 4.6] we can describe the associated admissible filtered Weil–
Deligne module Dz: letting e2 and e1 be basis vectors with WFv action given by

https://doi.org/10.1017/fms.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.23


Hilbert modular eigenvarieties and the parity conjecture 23

ur(pα̃)−1ε2 and ur (̃α)−1ε2, respectively, we have Ne1 = e2, Ne2 = 0, and the
filtration is given by

Fili(L∞ ⊗L Dz) =


0 if i > −

(
1+

w − k
2

)
L∞ · (e1 −L e2) if −

w + k
2

< i 6 −
(

1+
w − k

2

)
L∞ ⊗L Dz if i 6 −

w + k
2

for some L ∈ L .
It follows from [Col08, Proposition 4.18] that Vz|G Fv

is trianguline. Indeed, we
have a triangulation

0→ R(x (w+k)/2
|x |ur (̃α)−1ε2)→ Drig(Vz)→ R(x (1+(w−k)/2)ur (̃α)−1ε2)→ 0

which again can be rewritten as

0→ R(δ−1 det ρ(z))→ Drig(Vz)→ R(δ(z))→ 0.

The final case we have to consider is when Vz|G Fv
is decomposable. Then we

have vp(α) = 0 (by the noncritical assumption on z) and

Drig(Vz) = R(x (w+k)/2ur(β̃)−1ε1)⊕R(x (1+(w−k)/2)ur (̃α)−1ε2).

We can summarize our discussion in the following:

PROPOSITION 3.1.6. Suppose z ∈ Ẽ irr is a noncritical classical point. Then there
is a triangulation

0→ R(δ−1 det ρ(z))→ Drig(Vz)→ R(δ(z))→ 0

where we define the continuous character δ : F×v → Γ (Ẽ irr,OẼ irr)× by δ(p) =
U−1
v and δ|O×Fv = κ|{1}×O×Fv . Moreover, this triangulation is strict in the sense of

[KPX14, Definition 6.3.1].

Proof. Let D = Drig(Vz) ⊗R R(δ−1 det ρ)−1(z). The only thing remaining to
be verified is that the triangulation is strict, which comes down to checking
that Dφ=1,Γ=1 is one-dimensional over the coefficient field L . Suppose for a
contradiction that this space has dimension 2. Then, by [Col08, Proposition 2.1]
we have (δ−1 det ρ)(z) = x iδ(z) for some i ∈ Z>0. Comparing these characters
on the intersection of the kernels of ε1 and ε2 we deduce that i = k − 1. We
have (δ−1 det ρ)(z) = x k−1δ(z) if and only if the characters ur(β̃)−1ε1, ur (̃α)−1ε2
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appearing in Dz are equal. It follows from the correspondence between filtered
Weil–Deligne modules and potentially semistable (φ, Γ )-modules established
by [Ber08, Theorem A] that D[1/t]Γ=1 is two-dimensional with nontrivial
unipotent φ action, so D[1/t]φ=1,Γ=1 is one-dimensional which gives the desired
statement.

We can now apply the results of [KPX14] to establish the existence of a global
triangulation for the family of Galois representations V . In the below statement
we adopt the notation of [KPX14, 6.2.1, 6.2.2] so for a rigid space X/Qp and
a character δX : Q×p → Γ (X,OX )

× we have a free rank one (φ, Γ )-module
RX (δX ) over the sheaf of Robba rings RX . We also have a rank two (φ, Γ )-
module Drig(V |G Fv

) over RẼ irr .

COROLLARY 3.1.7.

(1) Drig(V |G Fv
) is densely pointwise strictly trianguline in the sense of [KPX14,

Definition 6.3.2], with respect to the ordered parameters δ−1 det ρ, δ and the
Zariski-dense subset of noncritical classical points.

(2) There are line bundles L1 and L2 over Ẽ irr and an exact sequence

0→ RẼ irr(δ
−1 det ρ)⊗OẼirr L1 → Drig(V |G Fv

)→ RẼ irr(δ)⊗OẼirr L2

with the cokernel of the final map vanishing over a Zariski open subset
which contains every noncritical classical point. In particular, this sequence
induces a triangulation of Drig(Vz|G Fv

) at every noncritical classical point.

Proof. The first assertion follows immediately from Proposition 3.1.6. The
existence of the global triangulation and the fact that the cokernel of the final
map vanishes over a Zariski open subset containing every noncritical classical
point follows from [KPX14, Corollary 6.3.10]. To apply this Corollary we have to
check that there exists an admissible affinoid cover of Ẽ irr such that the noncritical
classical points are Zariski-dense in each member of the cover—this property
is the definition of ‘Zariski-dense’ in [KPX14, Definition 6.3.2]. We prefer to
reserve the terminology Zariski-dense for the standard property that a set of
points is not contained in a proper analytic subset. The (a priori) stronger density
statement needed to apply [KPX14, Corollary 6.3.10] follows from [CHJ17,
Lemma 5.9]. To apply this, we show that Ẽ irr has an increasing cover by affinoids
as in [CHJ17, Remark 5.10]. Indeed, Ẽ has an increasing cover by affinoids
(Vn)n>1 since it is finite over W × A1. We claim that the Zariski open subsets
Vn ∩ Ẽ irr

⊂ Vn can also be covered by an increasing union of affinoids (Vn,m)m>1.
Assuming the claim, we have Ẽ irr

=
⋃

n,m Vn,m . By quasicompactness of affinoids
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we can find a sequence m1,m2, . . . such that Vn,mn contains Vn−1,mn−1 and Vi, j for
all i 6 n and j 6 n, and therefore Ẽ irr

=
⋃

n Vn,mn is covered by an increasing
union of affinoids. To show the claim, it suffices to show that a Zariski open subset
of a one-dimensional affinoid V is an increasing union of affinoids. If U ⊂ V has
complement cut out by functions f1, f2, . . . , fk then U =

⋃
n>1

⋃k
i=1{| fi |> 1/n}.

The finite union of affinoids
⋃k

i=1{| fi | > 1/n} ⊂ V is itself affinoid, by [Fie80,
Satz 2.1].

3.1.2. p-adic Hodge theoretic properties at v′ 6= v. Now we let v′|p be a place
of F with v′ 6= v.

PROPOSITION 3.1.8.

(1) Let z ∈ Ẽ irr. Then Vz|G F
v′

is potentially semistable with Hodge–Tate weights
−(w + kv′)/2 and −(1+ (w − kv′)/2).

(2) The restriction to IFv′ of the Weil–Deligne representation W D(Vz|G F
v′
)

depends only on the connected component of z in Ẽ irr.

(3) If z is a classical point with Uv′(z) = α 6= 0, and we set α̃ = αp1+(w−kv′ )/2

then the associated (Frobenius-semisimplified) Weil–Deligne representation
is of the form

W D(Vz|G F
v′
)F−ss

=
(
ur(β̃)−1ψ1 ⊕ ur (̃α)−1ψ2, N

)
for some characters ψi of O×F,v′ and β̃ ∈ Cp (determined by the determinant
of Vz) satisfying vp (̃α)+vp(β̃) = 1+w. N is nonzero if and only if ψ1 = ψ2

and α̃/β̃ = p−1.

Proof. For classical points, the first and third assertions follow from local–global
compatibility, as in Proposition 3.1.3. Note that for the third part, a calculation
similar to Lemma 2.3.1 shows that we can assume that the integer n defining the

level at the place v′ is minimal such that the relevant space of invariants π
I ′
v′,1,n−1
v′

is nonzero. The rest of the Proposition then follows from [BC08, Theorems B,
C], which were generalized to reduced quasicompact (and quasiseparated) rigid
spaces in [Che, Corollary 3.19], and [BC09, Lemma 7.5.12] (which allows us
to identify the Hodge–Tate weights precisely). Note that every point of Ẽ irr is
contained in a quasicompact open subspace with a Zariski-dense set of classical
points (as in the proof of Corollary 3.1.7, see [CHJ17, Lemma 5.9]).
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DEFINITION 3.1.9. We denote by Ẽv′−fs the Zariski open subspace of Ẽ irr where
Uv′ is nonzero.

LEMMA 3.1.10.

(1) If z ∈ Ẽv′−fs, with Uv′(z) = α 6= 0, and we set α̃ = αp1+(w−kv′ )/2 then
the associated (Frobenius-semisimple) Weil–Deligne representation is of the
form

W D(Vz|G F
v′
)F−ss

=
(
ur(β̃)−1ψ1 ⊕ ur (̃α)−1ψ2, N

)
for some characters ψi of O×F,v′ and β̃ ∈ Cp (determined by the determinant
of Vz) satisfying vp (̃α)+ vp(β̃) = 1+ w.

(2) Ẽv′−fs is a union of connected components of Ẽ irr.

Proof. We begin by establishing the first part. Suppose z ∈ Ẽv′−fs. It follows
from the second and third parts of Proposition 3.1.8 that the Weil–Deligne
representation at z has a reducible Weil group representation. Since the Weil–
Deligne representation varies analytically over Ẽ irr [BC08, Theorem C], we can
consider the characteristic polynomial of a lift of Frobv′ over Ẽ irr. The third
part of Proposition 3.1.8 and Zariski density of classical points implies that
p1+(w−kv′ )/2Uv′ is a root of this polynomial over Ẽv′−fs, and this proves that the
Weil–Deligne representation has the desired form over all of Ẽv′−fs.

For the second part, we suppose that z ∈ Ẽ irr is an element of the Zariski
closure of Ẽv′−fs. We need to show that Uv′(z) 6= 0. The same argument we
used to establish the first part shows that the Weil–Deligne representation at
z has a reducible Weil group representation with a Frobv′ eigenvalue given by
p1+(w−kv′ )/2Uv′(z). It follows immediately that Uv′(z) 6= 0.

LEMMA 3.1.11. The locus of points z ∈ Ẽv′−fs with Vz|G F
v′

reducible is equal to
the locus of points with vp(Uv′(z)) = 0 or kv′ − 1.

Moreover, this locus is a union of connected components of Ẽv′−fs.

Proof. It follows from Lemma 3.1.10 and the explicit description of admissible
filtered Weil–Deligne modules [Col08, Section 4.5] that Vz|G F

v′
is reducible if and

only if vp(Uv′(z)) = 0 or kv′−1. Since reducibility of a representation is a Zariski
closed condition, and the conditions on the slope are open, we deduce that the
reducible locus is a union of connected components.
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DEFINITION 3.1.12. We denote the locus of z ∈ Ẽv′−fs with Vz|G F
v′

irreducible

or reducible with vp(Uv′(z)) = 0 by Ẽv′−fs,good (the preceding lemma implies that
this is a union of connected components of Ẽv′−fs).

COROLLARY 3.1.13. There are line bundles L1 and L2 over Ẽv′−fs,good, a
continuous character δ : F×v′ → Γ (Ẽv′−fs,good,OẼ)

× with δ(p) = U−1
v′ and a short

exact sequence

0→RẼv′−fs,good(δ
−1 det ρ)⊗L1→ Drig(VẼv′−fs,good |G F

v′
)→RẼv′−fs,good(δ)⊗L2→ 0.

Proof. This is proved exactly as Corollary 3.1.7.

Finally, we note that if δ : Q×p → L× is a continuous character such that there
exists i ∈ Z with δ(x) = x i for all x in a finite index subgroup of Z×p , then R(δ)
is de Rham of Hodge–Tate weight −i (as defined in [PX, Section 2.2]). We can
now give the proof of Theorem 1.2.3.

Proof of Theorem 1.2.3. If [F : Q] is even, we let D/F be the totally definite
quaternion algebra which is split at all finite places. If [F : Q] is odd, we let D/F
be the totally definite quaternion algebra which is split at all finite places except
for the fixed place v0.

By the Jacquet–Langlands correspondence, we can find a compact open
subgroup K p

⊂ (D ⊗F Ap
F, f )

×, an integer n > 1, a finite order character
ε =

∏
v|p εv :

∏
v|p T0,v → E×λ and a Hecke eigenform

f ∈ H 0

(
K p

∏
v|p

Iv,1,n−1,
⊗
v|p

L(kv, 0, εv)

)

with associated Galois representation V f isomorphic to Vg,λ. Moreover, if g is v-
(nearly) ordinary at a place v|p we choose f so that its Uv-eigenvalue αv satisfies
vp(αv) = 0. In particular, we have vp(αv) < kv − 1 for all v|p.

Triviality of the central character of g implies that each character εv has trivial
restriction to the diagonally embedded copy of O×v . The determinant det(V f ) is
the cyclotomic character.

Now we choose an ordering v1, v2, . . . , vd of the places v|p. We can now
apply the results of Sections 2.7 and 3.1 fixing the place v = v1. By Proposition
2.7.4, we deduce that we can find an integer n1 > n, a finite extension E1/Qp,
a finite order character ε1 =

∏
v|p ε1,v :

∏
v|p T0,v → E×1 and a Hecke eigenform

f1 ∈ H 0(K p ∏
v|p Iv,1,n1−1,L(2, 0, ε1,v1)

⊗d
i=2 L(kvi , 0, ε1,vi )) such that f and f1

give rise to classical points of a common irreducible component C of E(kv1, 0).
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Moreover, the Uv-eigenvalues αv of f1 satisfy v(αv) < kv − 1 for all v|p. For v1

this is part of the statement of Proposition 2.7.4. For the other places, this follows
from Lemma 3.1.11.

Now we can apply Corollaries 3.1.13 and 3.1.7, together with [PX, Theorem A]
to deduce that the validity of the parity conjecture for Vg,λ is equivalent to
the validity of the parity conjecture for V f1 . For the reader’s convenience, we
reproduce here the statement of [PX, Theorem A]:

THEOREM. Let X be an irreducible reduced rigid analytic space over Qp, and T
a locally free coherent OX -module equipped with a continuous, OX -linear action
of G F,S , and a skew-symmetric isomorphism j : T

∼

→ T ∗(1). Assume given, for
each vi |p, a short exact sequence

Si : 0→ D+i → Drig(T |G Fvi
)→ D−i → 0

of (ϕ, Γ )-modules over RX , with D+i Lagrangian with respect to j .
For a (closed) point P ∈ X, we put V = T ⊗OX κ(P) and Si =Si ⊗OX κ(P).

Let Xalg be the set of points P ∈ X such that (1) for all i , the sequence
Si describes Drig(V |G Fvi

) as an extension of a de Rham (ϕ, Γ )-module with
nonnegative Hodge–Tate weights by a de Rham (ϕ, Γ )-module with negative
Hodge–Tate weights (this is called the ‘Panchiskin condition’ in [PX]), and
(2) for all w ∈ S\S∞ where T |G Fw

is ramified, the associated Weil–Deligne
representation W D(V |G Fw

) is pure.
Then the validity of the parity conjecture for V , relating the sign of its global

ε-factor to the parity of the dimension of its Bloch–Kato Selmer group, is
independent of P ∈ Xalg.

Letting U ⊂ Ẽ be a Zariski open subset containing every noncritical classical
point, as in the second part of Corollary 3.1.7, we apply the above theorem with
X = U ∩ (

⋂
v′ 6=v1|p Ẽ

v′−fs,good) (note that X contains the points arising from both
f and f1). The short exact sequences Si are given by Corollary 3.1.7 (for i = 1)
and Corollary 3.1.13 (for the other i). We can fix a skew-symmetric isomorphism
j (it exists since our Galois representations have cyclotomic determinant). The
specialization of D+i at a noncritical classical point of weight (k1, 0) is de Rham
of Hodge–Tate weight−ki/2, and the specialization of D−i is de Rham of Hodge–
Tate weight (ki − 2)/2 (see Proposition 3.1.6). It follows from this and local–
global compatibility at places in S\S∞ that Xalg contains all the noncritical
classical points of X (in particular, the points arising from f and f1). Therefore
the validity of the parity conjecture for V f is equivalent to the validity of the parity
conjecture for V f1 .
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We apply this argument d − 1 more times, and deduce that the validity of the
parity conjecture for Vg,λ is equivalent to the validity of the parity conjecture for
V fd , for a Hecke eigenform

fd ∈ H 0

(
K p

∏
v|p

Iv,1,nd−1,

d⊗
i=1

L(2, 0, εd,vi )

)
.

We moreover know that fd does not generate a one-dimensional representation
of (D⊗F AF)

× (since it has noncritical slope). Finally, by the Jacquet–Langlands
correspondence and [Nek18, Theorem C], the parity conjecture holds for V fd

(note that our Galois representations all have cyclotomic determinant, so the
automorphic representation associated to fd has trivial central character), so the
parity conjecture holds for V f .

4. The full eigenvariety

4.1. Notation and preliminaries. In this section we will consider an
eigenvariety for automorphic forms on the quaternion algebra D where the
weights are allowed to vary at all places v|p. The set-up is very similar to
Section 2.5 so we will be brief.

We set T0 =
∏

v|p T0,v, I1 =
∏

v|p Iv,1 and I1,n =
∏

v|p Iv,1,n , and fix a compact
open subgroup K p

=
∏

v-p Kv ⊂ (OD ⊗F Ap
F, f )

× such that K = K p I1 is neat.
We let X p denote the kernel of NF/Q : O×F,p → Z×p .
The weight space W full is defined by letting

W full(A) = {κ ∈ Homcts(T0, A×) : κ|Z(K ) = 1 and κ|X p has finite order}

for Qp-affinoid algebras A. We have dim(W full) = 1+d and the locally algebraic
points (defined as in the partial case) are Zariski-dense in W full. If the p-adic
Leopoldt conjecture holds for F then Z(K ) has closure in X p a finite index
subgroup, and the second condition in the definition of the points of weight space
is automatic.

For weights κ ∈W full(A) (together with a norm on A which is adapted to κ) and
r > rκ we get a Banach A-module of distributions Dr

κ equipped with a left action
of the monoid

∏
v|p ∆v. We therefore obtain an A-module H 0(K ,Dr

κ) equipped
with an action of the Hecke algebra T.

We let Up =
∏

v|p Uv, which is a compact operator on H 0(K ,Dr
κ). We have

its spectral variety Z full
→W full and a coherent sheaf Hfull on Z full coming from

the modules H 0(K ,Dr
κ), equipped with a map ψ : T → End(Hfull). We write

E full for the eigenvariety associated to the eigenvariety datum (W full
× A1,Hfull,

T, ψ) (or, equivalently, (Z full,Hfull,T, ψ)). E full is reduced and equidimensional
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of dimension 1+ d , with a Zariski-dense subset of classical points which we now
describe.

Given integers k = (kv)v|p and w all of the same parity, and a finite order
character ε : T0 → E× which is trivial on

∏
v|p(1 + $

n
vOFv )

2, we have an
I1,n−1-representation L(k, w, ε) = ⊗v|pLv(kv, w, ε). As in Section 2.2, k, w and
ε correspond to a character κ : T0 → E×, which we suppose is a point of W full

(in other words we suppose κ|Z(K ) = 1 and κ|X p has finite order). We say that κ is
locally algebraic of weight (k, w) and character ε.

We then obtain a map (as in (2.3.1))

π : H 0(K ,Dr
κ)→ H 0(K p I1,n−1,L(k, w, ε)),

where for each v|p the action of Uv on the target is the ?-action defined by
multiplying the standard action of Uv by p−(w−kv+2)/2.

PROPOSITION 4.1.1. For each v|p, let hv ∈ Q>0 with hv < kv − 1. The map π
induces an isomorphism between the subspaces where Uv acts with slope 6 hv
for all v|p.

Proof. As for Proposition 2.3.3, this can be proved using the method of [Han17,
Theorem 3.2.5].

We say that a point of E full is classical if its weight is locally algebraic and the
point corresponds to a Hecke eigenvector with nonzero image under the map π
above. We say that a classical point (with weight (k, w)) has noncritical slope if
the corresponding Uv-eigenvalues have slope < kv − 1 for each v|p.

LEMMA 4.1.2. Let z ∈ E full be a classical point of weight (k, w) and character
ε with noncritical slope. Let ε = (ε1, ε2), where εi is a character of O×F,p. If
ε1|O×Fv

= ε2|O×Fv
suppose moreover that vp(Uv(z)) 6= (kv − 1)/2. Then E full is étale

over W full at z.

Proof. This can be proved as in [Che11, Theorems 4.8, 4.10]. Under our
assumptions, the Hecke algebra T acts semisimply on the space of classical
automorphic forms of fixed weight and character. We denote the residue field
k(κ(z)) by L . Replacing z by a point (which we also call z) lying over it in E full

L ,
it suffices to show that E full

L is étale over W full
L at z. By the construction of the

eigenvariety, we can suppose that we have a geometrically connected (smooth)
L-affinoid neighbourhood B of the weight κ(z) ∈ W full

L and a finite locally free
O(B)-module M , equipped with an O(B)-linear T-action such that:
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(1) The affinoid spectrum V of the image of O(B) ⊗ T in EndO(B)(M) is an
open neighbourhood of z ∈ E full.

(2) For each point x ∈ B and algebraic closure k(x) of the residue field k(x)
there is an isomorphism of k(x)⊗ T-modules

M ⊗O(B) k(x) ∼=
⊕

y∈κ−1(x)∩V

⊕
ι∈Homk(x)(k(y),k(x))

H 0(K ,Dr
x)⊗k(x) k(x)[ι ◦ ψy],

where ψy denotes the (k(y)-valued) system of Hecke eigenvalues associated
to y, and [ι ◦ ψy] denotes the generalized eigenspace.

(3) κ−1(κ(z)) = {z} and the natural L-algebra surjection O(V ) → k(z) has a
section.

Now we apply the classicality criterion (Proposition 4.1.1), strong multiplicity
one, and [Che11, Lemma 4.7] as in [Che11, Theorem 4.10] to deduce that there
is a Zariski-dense subset Z0 ⊂ B of locally algebraic weights with residue field
L such that κ is étale at each point of κ−1(Z0), and for each χ ∈ Z0, κ−1(χ) ∩ V
consists of a single point with residue field k(z).

We can now show that the map k(z) ⊗L O(B) → O(V ) obtained from
assumption (3) is an isomorphism. Since k(z) ⊗L O(B) is a normal integral
domain, it suffices to show that the map π : Spec(O(V ))→ Spec(k(z)⊗L O(B))
is birational. By generic flatness, there is a dense open subscheme U of the target
such that π |U is finite flat. Since π maps irreducible components surjectively
onto irreducible components, π−1(U ) is a dense open subscheme of the source.
Since Z0 ∩ U is nonempty, π |U has degree one and is therefore an isomorphism,
which shows that π is birational as desired. In fact, it is not necessary to use
the normality of B (as explained to us by Chenevier)—O(V ) is a subalgebra of
Endk(z)⊗LO(B)(k(z)⊗L M) and each element of O(V ) acts as a scalar in k(z) when
we specialize at a weight χ ∈ Z0. Since B is reduced and Z0 is Zariski-dense
in B, this is enough to conclude that each element of O(V ) acts as a scalar (in
k(z)⊗L O(B)) on k(z)⊗L M .

4.2. Mapping from partial eigenvarieties to the full eigenvariety. Now we
fix a place v|p and consider the eigenvariety E(kv, w) for fixed kv, w as in
Section 2.7. For this partial eigenvariety, we fix the level structure K ′v′ = I ′v′,1,n−1
for each place v′|p with v′ 6= v, and let K ′ = K p Iv,1

∏
v′ 6=v K ′v′ . We denote by

E(kv, w)Up− f s
⊂ E(kv, w) the union of irreducible components (with the reduced

subspace structure) given by the image of
⋂

v 6=v′|p Ẽv
′
− f s (see Definition 3.1.9).

We can also construct a spectral variety ZUp(kv, w) and eigenvariety
EUp(kv, w) using the compact operator Up instead of Uv. The closed points
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of EUp(kv, w) and E(kv, w)Up− f s correspond to the same systems of Hecke
eigenvalues, so the following lemma should be no surprise.

LEMMA 4.2.1. There is a canonical isomorphism EUp(kv, w)red ∼= E(kv, w)Up− f s ,
over W , compatible with the Hecke operators.

Proof. Suppose we have a slope datum (U, h) (see [JN19b, Definition 2.3.1])
corresponding to an open subset ZUp

U,h ⊂ ZUp(kv, w). We therefore have a slope
decomposition

H 0(K ′,Lv(kv, w)⊗Zp Dr
U ) = M = M6h ⊕ M>h

and a corresponding factorization det(1−UvT ) = QS of the characteristic power
series of Uv on M , so we obtain a closed immersion

Z(Q) := {Q = 0} ↪→ ZUv (kv, w)|U .

The module M6h defines a coherent sheaf on Z(Q).
Gluing, we obtain a rigid space ZUp,Uv equipped with a closed immersion

ZUp,Uv ↪→ ZUv (kv, w), together with a coherent sheaf HUp,Uv on ZUp,Uv .
Over ZUp

U,h , EUp(kv, w) is given by the spectrum of the affinoid algebra

TU,h = im(T⊗Zp O(U )→ EndO(U ) M6h).

The eigenvariety associated to the datum (W × A1,HUp,Uv ,T, ψ) has the
same description (since Uv ∈ T), so these two eigenvarieties are canonically
isomorphic.

On the other hand, we can identify the closed points of E(kv, w)Up− f s and
EUp(kv, w), since they correspond to the same systems of Hecke eigenvalues.
It follows from [JN19a, Theorem 3.2.1], applied to the eigenvariety data
(W × A1,HUp,Uv ,T, ψ) and (W × A1,H,T, ψ) that there is a canonical closed
immersion EUp(kv, w)red ↪→ E(kv, w), which induces the desired isomorphism

EUp(kv, w)red ∼= E(kv, w)Up− f s .

To compare E(kv, w)Up− f s with E full, we need to fix a character

εv :
∏
v′ 6=v

Iv′,1,n−1/I ′v′,1,n−1 → Q×p ,

and consider the eigenvarieties EUp(kv, w, εv), E(kv, w, εv) given by replacing
the coherent sheaf H in the eigenvariety data with the εv-isotypic piece H(εv).
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These are unions of connected components in the original eigenvarieties. They are
supported over the union of connected components W(εv) ⊂W given by weights
κv such that κvεvχ v|Z(K ) = 1, where χ v is the highest weight of Lv(kv, w). Note
that in general points κv ∈W satisfy the weaker condition that κvχ v|Z(K ′) = 1.

DEFINITION 4.2.2. We write ι(kv ,w,εv) :W(εv) ↪→W full for the closed immersion
defined by

ι(kv ,w,εv)(κv) = κvε
vχ v,

where χ v is the highest weight of Lv(kv, w).

LEMMA 4.2.3. There is a canonical closed immersion

E(kv, w, εv)Up− f s ↪→ E full,

lying over the map ι(kv ,w,εv) : W(εv) ↪→ W full, compatible with the Hecke
operators.

Proof. Applying Lemma 4.2.1, we replace E(kv, w, εv)Up− f s in the statement
with EUp(kv, w, εv)red. The classical points of EUp(kv, w, εv)red naturally
correspond to a subset of the classical points of E full, and we apply [JN19a,
Theorem 3.2.1] to obtain the desired closed immersion.

COROLLARY 4.2.4. Let C be an irreducible component of the full eigenvariety
E full. Then C contains a noncritical slope classical point of weight (2, . . . , 2, 0)
(or any other algebraic weight).

Proof. First we note that C contains a noncritical slope classical point x0 of
weight (k1, . . . , kd, w) and character ε = (ε1, ε2) with w even (since the image of
C in weight space is Zariski open). We can moreover assume that the characters
ε1|O×Fv

and ε2|O×Fv
are distinct for all v|p (for example by considering weights in

a sufficiently small ‘boundary poly-annulus’ of the weight space). We do this to
ensure that x0 will be étale over weight space. As in the proof of Theorem 1.2.3,
we obtain a sequence x1, x2, . . . , xd of noncritical slope classical points where
each xi has a weight k(i)with k(i)1 = k(i)2 = · · · = k(i)i = 2, with the remaining
weight components the same as x0. The vi+1 part of the character ε changes when
we move from xi to xi+1, but it keeps the property that it has distinct components.
So, by Lemma 4.1.2, the map from E full to W full is étale at each of the points xi .

For each i , xi and xi+1 lie in the image of an irreducible component of
E(k(i)vi+1, w, εvi+1)Up− f s under the closed immersion of Lemma 4.2.3 (for some
choice of εvi+1 ). It follows that xi and xi+1 lie in a common irreducible component
of E full.
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Since the map from E full to W full is étale at each of the points xi , xi is a smooth
point of E full and is therefore contained in a unique irreducible component of E full.
We deduce that xi ∈ C for all i . The point xd has weight (2, . . . , 2, w). Finally,
there is a one-dimensional family of twists by powers of the cyclotomic character
connecting xd to a noncritical slope classical point of weight (2, . . . , 2, 0), which
gives the desired point of C .

REMARK 4.2.5. At least for irreducible components C whose associated mod
p Galois representation ρ is absolutely irreducible, one can deduce cases of
the parity conjecture directly from the above corollary, using [PX, Theorem A].
Without this assumption on ρ, the Galois pseudocharacter over C cannot be
automatically lifted to a genuine family of Galois representations over C . This
is why our proof of Theorem 1.2.3 instead uses one-dimensional families coming
from the partial eigenvarieties, where we can apply Proposition 3.1.1.
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