
1 Introduction
Classical Theory of Electric Dipole Radiative
Interactions

1.1 Introduction

The classical theory of the interaction of light with the electron clouds of atoms and
molecules will be discussed in this chapter. The discussion will begin with the
interaction of a steady electric field with a collection of point charges, leading to the
development of terms describing the electric dipole and quadrupole moments. The
classical Lorentz model is then introduced to describe the interaction of an oscillating
electric field with the electron cloud of an atom, and the concepts of absorption and
emission are introduced. The propagation of a light wave through a medium with
electric dipoles is then discussed. Finally, the classical theory of radiation from an
oscillating dipole is discussed.

1.2 Interaction of a Collection of Charges with a Steady Electric Field

Before beginning a discussion of the interaction of atoms and molecules with the
oscillating electric field associated with a light wave, we will first consider the
interaction of a collection of point charges with a steady electric field. The result of
this analysis will be the separation of the contributions of the electric dipole and
quadrupole moments to the energy of a system of point charges in a steady electric
field. The point charges in an atom or molecule are associated with the electrons �eð Þ
and the nuclei þZeð Þ Cð Þ, where Z is the number of protons in each nucleus. Now
consider a point charge q located at position r (m) in a steady electric field E rð Þ (V=m
or J=C-m), where

E rð Þ ¼ �rΦ rð Þ (1.1)

and Φ rð Þ J=Cð Þ is the scalar potential. The potential energy of the point charge q Cð Þ is
given by

V ¼ qΦ rð Þ: (1.2)

https://doi.org/10.1017/9781108936514.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108936514.002


Following Struve (1988), the scalar potential can be expanded in a Taylor series about
r ¼ 0:

Φ rð Þ ¼ Φ 0ð Þ þ x
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(1.3)

Equation (1.3) can be written in more compact form as

Φ rð Þ ¼ Φ 0ð Þ þ r • rΦ 0ð Þ½ � þ 1
2

X
i

X
j

xixj
∂
∂xi

qΦ
∂xj

0ð Þ
� �

þ � � � : (1.4)

The electric field is calculated from the gradient of the potential,

E 0ð Þ ¼ �rΦ 0ð Þ (1.5)

and

Ei 0ð Þ ¼ � qΦ
∂xi

0ð Þ: (1.6)

Substituting Eqs. (1.5) and (1.6) into (1.4), we obtain

Φ rð Þ ¼ Φ 0ð Þ � r •E 0ð Þ � 1
2

X
i

X
j

xixj
∂Ej

∂xi
0ð Þ þ � � � : (1.7)

For a point charge q, the interaction energy is thus given by

V ¼ qΦ 0ð Þ � qr •E 0ð Þ � q

2

X
i

X
j

xixj
∂Ej

∂xi
0ð Þ þ � � � : (1.8)

For a collection of N point charges qn with associated position vectors rn, the energy
due to the interaction with the potential Φ rð Þ is given by

V ¼ Φ 0ð Þ
XN
n¼1

qn �
XN
n¼1

qnrn

 !
•E 0ð Þ �

XN
n¼1

qn
2

X
i

X
j

xnixnj
∂Ej

∂xni
0ð Þ þ � � � , (1.9)

where

rn ¼ xnx̂þ ynŷþ znẑ ¼ xn1x̂1 þ xn2x̂2 þ xn3x̂3: (1.10)

The electric dipole moment is given by

μ ¼
XN
n¼1

qnrn: (1.11)
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The components of the electric quadrupole moment tensor for a given charge n can be
written as (Struve, 1988)

Q nð Þ
ij ¼ qn

2
3xnixnj � r2nδij
� �

: (1.12)

Substituting Eqs. (1.11) and (1.12) into Eq. (1.9), we obtain

V ¼ Φ 0ð Þ
XN
n¼1

qn � μ·E 0ð Þ � 1
6

XN
n¼1

X
i

X
j

Q nð Þ
ij

∂Ej

∂xni
0ð Þ þ � � � : (1.13)

The first term in Eq. (1.13) is the product of the sum of the charges and the scalar
potential at r ¼ 0, the second term is the dot product of the dipole moment of the
charge distribution with the electric field, and the third term describes the interaction
of the quadrupole moment of the electric field with the gradients of the electric field.

1.3 The Lorentz Classical Electron Oscillator Model

For an atom or molecule interacting with an electric field oscillating at the very high
frequencies associated with visible radiation, the electric dipole moment term is
dominant compared to the quadrupole term, except for transitions where electric
dipole transitions are forbidden. We begin our discussion of the electric dipole
interaction of laser radiation with atoms and molecules by considering the classical
electron oscillator model originally developed by Lorentz (2011). The Lorentz clas-
sical electron oscillator (CEO) model was developed before the advent of quantum
mechanics and our modern picture of the atom consisting of negatively charged
electrons orbiting a massive and positively charged nucleus. The CEO model is
schematically illustrated in Figure 1.1. In the absence of an external electric field,
the center of the electron charge cloud coincides with the positively charged nucleus
of the atom, and the electric dipole moment μ C-mð Þ of the atom is zero. When a high-
frequency oscillating electric field is applied, it is assumed that the electron cloud can
respond to the applied force �eEx tð Þ but that the position of the massive nucleus is

Figure 1.1 Schematic illustration of the CEO model.
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essentially unchanged by the interaction. It is further assumed that the restoring force
between the electron cloud and the nucleus is linearly proportional to the displacement
of the electron cloud from its equilibrium position. The response of the electron cloud
to the oscillating electric field is given by

me
d2x tð Þ
dt2

¼ �Kx tð Þ � eEx tð Þ, (1.14)

where me (kg) is the electron mass, x mð Þ the electron displacement, K N=mð Þ the
magnitude of the restoring force, e Cð Þ the magnitude of the electron charge, and Ex tð Þ
J=C-mð Þ the electric field amplitude in the x-direction. Equation (1.14) can be rewrit-
ten as

d2x tð Þ
dt2

þ ω2
ax tð Þ ¼ � e

me

� 	
Ex tð Þ: (1.15)

The term ωa ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K=me

p
s�1ð Þ is identified as the resonant frequency of the CEO. The

motion of the electron cloud is damped by processes such as spontaneous emission,
and we therefore introduce a damping constant Γ s�1ð Þ:

d2x tð Þ
dt2

þ Γ
dx tð Þ
dt

þ ω2
ax tð Þ ¼ � e

me

� 	
Ex tð Þ: (1.16)

Before discussing the solution of Eq. (1.16) in the presence of an applied electric
field, we consider the solution of the equation given a nonzero initial displacement
x 0ð Þ and zero applied electric field. The solution to Eq. (1.16) under these conditions is
given by

x tð Þ ¼ x 0ð Þ exp �Γt
2

� �
exp �iωa1tð Þ þ exp þiωa1tð Þ½ �: (1.17)

The electron amplitude given by Eq. (1.17) contains an oscillating term with fre-
quency ωa1 given by

ωa1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

a �
γ
2

� �2r
: (1.18)

For optical transitions, ωa1ffiωa. The amplitude of the initial displacement decays
with a time constant of 2=Γ. In the absence of collisions, the decay rate Γ is associated
with the rate of spontaneous emission for the CEO. The amplitude of the initial
displacement can also decay as a result of inelastic collisions.

Usually we are concerned not with the interaction of laser radiation with a single
atom but with a collection of atoms in a small volume element. Rewriting Eq. (1.16) in
terms of the electric dipole moment μx tð Þ ¼ �ex tð Þ, we obtain

d2μx tð Þ
dt2

þ Γ
dμx tð Þ
dt

þ ω2
a μx tð Þ ¼ e2

me

� 	
Ex tð Þ: (1.19)
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The macroscopic polarization per unit volume px tð Þ C-m=m3ð Þ is given by summing
over all the atoms in a small volume element and then dividing by the volume,

px tð Þ ¼ 1
8
XN
i¼1

μxi tð Þ: (1.20)

The decay rate of the macroscopic polarization is in general greater than the decay rate
of the dipole moments for the individual molecules because of elastic pure dephasing
collisions. Consider a group of three atoms with electron clouds oscillating in phase at
time zero. The amplitude of the macroscopic polarization will be a maximum at time
zero. At time t1, one of the atoms undergoes an elastic pure dephasing collision. As a
result of the collision, it is assumed that the phase of the electron cloud oscillation is
randomized. On average, the individual dipole moment of the atom that undergoes the
collision no longer contributes to the macroscopic polarization, and the amplitude of
the macroscopic polarization decreases. This is illustrated in Figure 1.2, where the
results of pure dephasing collisions at times t2 and t3 are also shown.

Consider N0 atoms with dipole moments oscillating in phase at time t0. At time

t � t0, N0 � Ñ tð Þ of these atoms will have undergone pure dephasing collisions, where

Ñ tð Þ is given by

Ñ tð Þ ¼ N0 exp � t � t0
T2

� 	
¼ N0 �Qpd t � t0ð Þ �

: (1.21)

Figure 1.2 Effect of dephasing collisions on the macroscopic dipole polarization of the medium.
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The parameters T2 sð Þ and Qpd s�1ð Þ are the characteristic time and rate coefficient,
respectively, for pure dephasing collisions. After time t, the macroscopic polarization
of the medium will be given by

px tð Þ ¼ ~n tð Þμx tð Þ
¼ n0μx t0ð Þ exp � γ

2
þ Qpd

� �
t � t0ð Þ þ iωa t � t0ð Þ þ iφ0

h i
þ c:c:,

(1.22)

where the number densities ~n tð Þ and n0 m�3ð Þ are given by Ñ tð Þ=8 and N0=8,
respectively, and the abbreviation c.c. denotes the complex conjugate of the preceding
term. The initial phase of the oscillators at time t0 is φ0. Comparing Eqs. (1.17) and
(1.22), it is apparent that the macroscopic polarization decays with a rate coefficient of
Γ
2 þ Qpd as compared to a rate coefficient of Γ

2 for a single atomic dipole.

Incorporating the effects of the pure dephasing collisions, we rewrite Eq. (1.19) as

d2px tð Þ
dt2

þ Γþ 2Qpd

� � dpx tð Þ
dt

þ ω2
apx tð Þ ¼ ne2

me

� 	
Ex tð Þ: (1.23)

Consider the response of the medium to an oscillating electric field given by

Ex tð Þ ¼ 1
2

E0x exp þiωtð Þ þ E∗
0x exp �iωtð Þ �

: (1.24)

Assume that the applied electric field at angular frequency ω induces a polarization at
the same frequency,

px tð Þ ¼ 1
2

P0x exp þiωtð Þ þ P∗
0x exp �iωtð Þ �

: (1.25)

The steady-state response of the medium is determined by substituting Eqs. (1.24) and
(1.25) into Eq. (1.23). Rearranging and equating terms that contain exp þiωtð Þ, we
solve for the steady-state polarization amplitude,

P0x ¼ ne2

me
E0x

1

ω2
a � ω2 þ iω Γþ 2Qpd

� � : (1.26)

The resonant susceptibility χres ωð Þ is given by

χres ωð Þ ¼ P0x

ε0E0x
¼ ne2

me

� 	
1

ω2
a � ω2 þ iω Γþ 2Qpd

� � , (1.27)

where ε0 is the dielectric permittivity and has a value of 8.854187 � 10�12 C2/J m for
free space. The resonant susceptibility is a complex quantity. Following Siegman

(1986), the atomic linewidth Δωa s�1ð Þ is defined as

Δωa ¼ Γþ 2Qpd: (1.28)

Further, it is assumed that the laser frequency ω is close to the resonant frequency ωa

and the following approximation is assumed to be valid:

ω2
a � ω2 ¼ ωa þ ωð Þ ωa � ωð Þ ffi 2ωa ωa � ωð Þ for ωa ffi ω: (1.29)
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Using Eqs. (1.28) and (1.29), we rewrite Eq. (1.27) as

χres ωð Þ ¼ ne2

ε0me

1
2ωa ωa � ωð Þ þ iωaΔωa

� �
¼ �i

ne2

ε0meωaΔωa

1
1þ iΔx

, (1.30)

where the normalized detuning Δ x is given by

Δ x ¼ 2
ω� ωa

Δωa
: (1.31)

The real and imaginary components of the susceptibility are given by

χres ωð Þ ¼ χ0 ωð Þ þ iχ00 ωð Þ ¼ �χ000
Δx

1þ Δxð Þ2 þ i
1

1þ Δxð Þ2
" #

, (1.32)

where

χ000 ¼
ne2

ε0meωaΔωa
: (1.33)

The real or dispersive component of the susceptibility is given by

χ0 ωð Þ ¼ �χ000
Δx

1þ Δxð Þ2 (1.34)

and the imaginary or absorbing component of the susceptibility is given by

χ00 ωð Þ ¼ �χ000
1

1þ Δxð Þ2 : (1.35)

The normalized line shapes for the real and imaginary components of the resonant
susceptibility are plotted in Figure 1.3. The real part of the susceptibility oscillates in
phase with the applied electric field, and the imaginary part of the susceptibility
oscillates 90� out of phase with the applied electric field. The real part of the suscepti-
bility is much greater than the imaginary part of the susceptibility when the laser field
is far from resonance Δx � 1ð Þ. Because the real part of the susceptibility oscillates in
phase with the applied field, the integral of F·v ¼ �eE·v over a complete cycle of the
electric field is zero, and there is no energy exchange with the applied field. For a laser
field in exact resonance Δx ¼ 0ð Þ, the response is purely imaginary, and the integral of
�eE·v over a complete cycle of the applied field is nonzero.

As discussed in detail by Siegman (1986), at this point some quantum mechanical
results can be incorporated into this purely classical picture of the interaction of the electron
cloud with the applied field. The resonant frequency ωa in Eq. (1.33) can be written as

ωa ¼
εe � εg
� �

h̄
, (1.36)

where εe and εg are the energies Jð Þ of the upper (excited) and lower (ground) quantum states
for an allowed radiative transition. Furthermore, the number densityn inEq. (1.33) is replaced

by the number density difference ng � ne
� �

. We can rewrite Eq. (1.33) as

71.3. The Lorentz Classical Electron Oscillator Model
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χ000 ¼
ng � ne
� �

e2

ε0meωaΔωa
: (1.37)

Whether the electron cloud gains or loses energy will depend on the relative phase of
the applied field and the electron motion. The electron cloud gains energy by absorp-
tion from the field when the population of the lower energy level of the transition is
greater than the population of the upper energy level of the transition; it loses energy
by stimulated emission when the population of the upper energy level of the transition
is greater than the population of the lower energy level of the transition.

To illustrate the energy exchange between the field and the oscillating electron
cloud, consider the case of exact resonance, ω ¼ ωa,Δx ¼ 0. If the incident plane
wave electric field is given by

E tð Þ ¼ E0x cos ωtð Þx̂, (1.38)

where E0x is a real and constant, then from Eqs. (1.27) and (1.32) we obtain

P0x ¼ �iε0 χ
00
0 E0x: (1.39)

From Eq. (1.25), the macroscopic polarization is given by

px tð Þ ¼ 1
2

�iε0 χ
00
0 E0x exp þiωtð Þ þ iε0 χ

00
0 E0x exp �iωtð Þ �

¼ ε0 χ
00
0 E0x sin ωtð Þ:

(1.40)

Figure 1.3 Normalized real and imaginary components of the complex resonant susceptibility.

8 Introduction

https://doi.org/10.1017/9781108936514.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108936514.002


We can define a displacement of the electron cloud for each atom in the medium as

xe tð Þ ¼ � px tð Þ
ng þ ne
� �

e
¼ � ε0χ000E0x sin ωtð Þ

ng þ ne
� �

e
: (1.41)

The velocity of the electron cloud is given by

ve tð Þ ¼ _xe tð Þ ¼ � ε0χ000E0x

ng þ ne
� �

e
ω cos ωtð Þ: (1.42)

Substituting for χ000 in Eqs. (1.41) and (1.42) using Eq. (1.37), we obtain

xe tð Þ ¼ � eE0x ng � ne
� �

meωΔωa ng þ ne
� � sin ωtð Þ (1.43)

and

ve tð Þ ¼ _xe tð Þ ¼ � eE0x ng � ne
� �

meΔωa ng þ ne
� � cos ωtð Þ: (1.44)

Normalized values of the electric field, the position and velocity of the electron cloud,
and the force acting on the electron cloud will now be plotted for the case of a
“normal” population distribution ng > ne

� �
and a population inversion ng < ne

� �
. The

normalized input electric field is given by Ex tð Þ=E0x. The normalized force on the
electron cloud is given by

F̃x tð Þ ¼ Fx tð Þ
eE0x

¼ � eEx tð Þ
eE0x

¼ � cos ωtð Þ: (1.45)

The normalized electron cloud displacement is given by

~xe tð Þ ¼ 1
2

xe tð ÞmeωΔωa ng þ ne
� �

eE0x ng � ne
�� �� ¼ � ng � ne

� �
2 ng � ne
�� �� sin ωtð Þ: (1.46)

The factor of 1
2 is introduced in Eq. (1.46) to make it easier to see the difference

between the electric field and the electron cloud displacement. The normalized
electron cloud velocity is given by

~ve tð Þ ¼ 1
2

ve tð ÞmeΔωa ng þ ne
� �

eE0x ng � ne
�� �� ¼ � ng � ne

� �
2 ng � ne
�� �� cos ωtð Þ: (1.47)

Again, the factor of 1
2 is introduced to make it easier to see the difference between the

normalized force on the electron cloud and the normalized electron velocity.
The normalized position of the electron cloud is plotted as a function of the normalized

electric field in Figure 1.4. The “normal” population distribution case is shown in
Figure 1.4a, and the population inversion case is shown in Figure 1.4b. Note that in both
cases the electron position is oscillating 90� out of phase with the driving electric field.

The normalized velocity of the electron cloud is plotted as a function of the
normalized force on the electron in Figure 1.5. The “normal” population distribution

91.3. The Lorentz Classical Electron Oscillator Model
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case is shown in Figure 1.5a, and the population inversion case is shown in
Figure 1.5b. For the “normal” population distribution case, the velocity of the electron
cloud is in phase with the force imposed by the driving field. Thus, the electron cloud
continually gains energy due to its interaction with the driving field, which results in a
decrease of energy for the driving electric field, or in other words through stimulated
absorption of the input plane wave electromagnetic field. Conversely, for the popula-
tion inversion case, the velocity of the electron cloud is 180� out of phase with the
driving field. The electron cloud continually loses energy, resulting in an increase of
energy for the input electromagnetic field. The medium is said to exhibit “gain” in the
case of a population inversion due to the phenomenon of stimulated emission.

Figure 1.4 Normalized electric field and electron cloud displacement for (a) a “normal”
population distribution and (b) a population inversion.

Figure 1.5 Normalized force on the electron and electron velocity for (a) a “normal” population
distribution and (b) a population inversion.
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There are further refinements to the CEO model that would be necessary to develop
a model of the resonance that is rigorously correct. Rather than incorporate these
quantum mechanical details at this point, we will discuss the quantum structure of
atoms and molecules in Chapters 2 and 3 and the quantum mechanical theory of
resonance interactions in Chapter 4.

1.4 Propagation of an Applied Laser Field through an Absorbing or
Emitting Medium

In Section 1.2 expressions for the macroscopic polarization of a medium were
developed. In this section the effect of the medium’s polarization on the propagation
of a plane wave electromagnetic field is discussed. The equation for a plane wave
propagating in free space is given by (Siegman, 1986)

r2E� μ0ε0
∂2E
∂t2

¼ ∂2E
∂z2

� μ0ε0
∂2E
∂t2

¼ 0, (1.48)

where the magnetic permeability μ0 has a value of 4π � 10�7 J s2/C2 m for free space.
The speed of light in free space is given by

c ¼ c0 ¼ 1ffiffiffiffiffiffiffiffiffi
μ0ε0

p : (1.49)

For a plane wave polarized in the x-direction and propagating in the z-direction, the
solution to the wave equation is given by

E z, tð Þ ¼ x̂
1
2
E0 exp þi kz� ωtð Þ½ � þ 1

2
E∗
0 exp �i kz� ωtð Þ½ �

� �
, (1.50)

where the propagation constant k m�1ð Þ is given by

k ¼ 2π
λ
, (1.51)

where λ mð Þ is the wavelength of the plane wave. The angular frequency ω is
given by

ω ¼ 2πc
λ

¼ 2πn , (1.52)

where n (Hz) is the optical frequency of the plane wave.
For propagation in a dielectric medium containing atoms or molecules with electric

dipole resonance transitions, the wave equation becomes

∂2E
∂z2

� μ0ε0
∂2E
∂t2

¼ μ0
∂2P
∂t2

, (1.53)

where

P ¼ χres ωð Þε0E: (1.54)
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We will assume that a plane wave defined by Eq. (1.50) enters the dielectric medium
at z ¼ 0, i.e.,

E 0, tð Þ ¼ x̂
1
2
E0 exp �iωtð Þ þ c:c:

� �
: (1.55)

The solution for the wave equation in the dielectric medium is

E z, tð Þ ¼ 1
2
x̂E0 exp þi k þ Δkresð Þz� ωt½ �f g exp þαreszð Þ þ c:c:, (1.56)

where

Δkres ¼ k

2

� 	
χ0 ωð Þ (1.57)

and

αres ¼ k

2

� 	
χ00 ωð Þ: (1.58)

The effect of the medium’s polarization is thus to induce both a phase shift and an
amplitude change in the propagating EM wave. The phase shift is due to the real part
of the resonant susceptibility, and the amplitude change is due to the imaginary part of
the susceptibility.

1.5 Emission of Electromagnetic Radiation by the Classical
Electron Oscillator

In this section the electromagnetic field radiated by the classical electron oscillator is
discussed. For an arbitrary distribution of charge and current, the scalar and vector
potentials, Φ r, tð Þ and A r, tð Þ, respectively, are given by (Becker 1964; Marion and
Heald 1980)

Φ r, tð Þ ¼ 1
4πε0

ððð
ρ r0, τð Þ
r� r0j j dx

0dy0dz0 ¼ 1
4πε0

ð
8

ρ r0, τð Þ
r� r0j j d8

0, (1.59)

A r, tð Þ ¼ μ0
4π

ð
8

J r0, τð Þ
r� r0j j d8

0, (1.60)

where ρ is the charge density C=m3ð Þ, J is the current density A=m2ð Þ, and the
variable τ sð Þ is the retarded time,

τ ¼ t � r� r0j j
c

: (1.61)

For the calculation of the radiation field from the oscillating dipole, we assume that the
dipole is confined to a volume element at the origin with a characteristic dimension d
that is very small compared to our region of interest d 	 r ¼jrjð Þ. The coordinate
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system for the calculations is shown in Figure 1.6. The dipole is located the origin of
the coordinate system so that

r ¼ jr j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
: (1.62)

With this assumption we can rewrite Eq. (1.60) as

A r, tð Þ ¼ μ0
4πr

ð
8
J r0, τð Þd80: (1.63)

The current density is the product of charge density and velocity,

J r0, τð Þ ¼ ρ r0, τð Þv r0, τð Þ: (1.64)

For a collection of discrete charges within the volume element, the integral in Eq.
(1.63) reduces to

A r, tð Þ ¼ μ0
4πr

ð
8
ρ r0, τð Þv r0, τð Þd80 ¼ μ0

4πr

X
i

qivi r
0, τð Þ: (1.65)

Specializing to the case where an electron (cloud) is executing harmonic motion about
an atomic nucleus, we obtain

A r, tð Þ ¼ μ0
4πr

�eve r0, τð Þ½ � ¼ μ0
4πr

�e
dre r0, τð Þ

dτ

� �
¼ μ0

4πr
dμ r0, τð Þ

dτ
: (1.66)

The magnetic field of the emitted radiation is given by

B r, tð Þ ¼ r � A r, tð Þ ¼ μ0
4π

r� 1
r

dμ τð Þ
dτ

� �

¼ μ0
4π

r 1
r

� 	
� dμ τð Þ

dτ
þ μ0
4πr

r� dμ τð Þ
dτ

� 	

¼ � μ0
4πr3

r� ·μ τð Þ þ μ0
4πr

r� ·μ τð Þ:

(1.67)

In the far field, the first term on the right-hand side is negligible compared to the
second term. Eliminating the first term, we obtain

Figure 1.6 Geometry for the calculation of the electromagnetic radiation emitted by a distribution
of current confined within a region with a characteristic dimension d.
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B r, tð Þ ¼ μ0
4πr

r� ·μ τð Þ: (1.68)

At this point we solve for the x-component of the magnetic field. Using Eq. (1.62) we
obtain

Bx r; tð Þ ¼ μ0
4πr

∂ _μz τð Þ
∂y

� ∂ _μy τð Þ
∂z

� �
¼ μ0

4πr
∂ _μz τð Þ
∂τ

∂τ
∂y

� ∂ _μy τð Þ
∂τ

∂τ
∂z

� �

¼ μ0
4πr

μ̈z τð Þ ∂τ
∂y

� μ̈y τð Þ ∂τ
∂z

� �
¼ μ0

4πr
μ̈z τð Þ � y

cr

� �
� μ̈y τð Þ � z

cr

� �h i
¼ μ0

4πcr2
μ̈y τð Þz� μ̈z τð Þy
h i

: (1.69)

A similar analysis for the y- and z-components of the magnetic field results in

By r, tð Þ ¼ μ0
4πcr2

μ̈z τð Þx� μ̈x τð Þz �
Bz r, tð Þ ¼ μ0

4πcr2
μ̈x τð Þy� μ̈y τð Þx �

:
(1.70)

Generalizing, we obtain

B r, tð Þ ¼ μ0
4πcr2

μ̈ τð Þ � r: (1.71)

The electric field due to the dipole is given by

E r, tð Þ ¼ B r, tð Þ � r
r
¼ μ0

4πcr3
μ̈ τð Þ � rð Þ � r: (1.72)

Now consider an electron cloud executing harmonic motion along the z-axis. The
polarization and the second derivative of the polarization are given by

μ τð Þ ¼ a cos ωτð Þẑ μ̈ τð Þ ¼ �ω2a cos ωτð Þẑ, (1.73)

where a mð Þ is the amplitude of the harmonic motion of the electron cloud (the symbol
μ0 would have been more appropriate for the amplitude but would be too easy to
confuse with the magnetic permeability). The magnetic and electric fields due to the
harmonic motion of the dipole are given by

B r, tð Þ ¼ μ0
4πcr3

�ω2a cos ωτð Þẑ� r
 � ¼ � μ0ω

2a cos ωτð Þ
4πcr

sin θφ̂, (1.74)

E r, tð Þ ¼ μ0
4πcr3

�ω2a cos ωτð Þẑ� r
 �� r ¼ � μ0ω

2a cos ωτð Þ
4πcr

sin θ θ̂, (1.75)

The Poynting vector for the dipole is given by

S r, tð Þ ¼ E r, tð Þ �H r, tð Þ ¼ μ20ω
4a2 cos 2 ωτð Þ
16π2c2r2

sin 2θ: (1.76)

We calculate the total powerW radiated by the dipole oscillator by integrating over all
solid angles and averaging over a single cycle of the oscillator. The result is
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W ¼ dεd
dt

¼ � ω4a2

12πε0c3
: (1.77)

The energy associated with the harmonic oscillation of the electron cloud is given by

εd ¼ 1
2
Ka2 ¼ 1

2
meω

2a2: (1.78)

Substituting Eq. (1.78) into Eq. (1.77) and rearranging, we obtain

W ¼ dεd
dt

¼ � e2ω2εd
6πmeε0c3

: (1.79)

If an oscillator has an initial energy εd0 in the absence of an applied field, the time
dependence of the dipole energy is given by

εd ¼ εd0 exp �γrad,ceo t
� �

, (1.80)

where

γrad,ceo ¼
e2ω2

6πmeε0c3
: (1.81)

The radiative decay rate γrad,ceo s�1ð Þ is proportional to the square of the angular
frequency of the electric dipole operator. For electric dipole transitions in atoms and
molecules, spontaneous emission is responsible for the decay of the induced electric
dipole, and the spontaneous emission rate coefficient Γspe s�1ð Þ is analogous to the
radiative decay rate. The radiative decay rate of the classical electron oscillator is an

upper limit on the decay rate Γspe s�1ð Þ for an actual atomic or molecular electric
dipole transition.
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