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SUBALGEBRAS WHICH APPEAR IN QUANTUM IWASAWA
DECOMPOSITIONS

GAIL LETZTER

ABSTRACT. Let g be a semisimple Lie algebra. Quantum analogs of the enveloping
algebra of the fixed Lie subalgebra are introduced for involutions corresponding to the
negative of a diagram automorphism. These subalgebras of the quantized enveloping
algebra specialize to their classical counterparts. They are used to form an Iwasawa
type decompostition and begin a study of quantum Harish-Chandra modules.

Let g be a semisimple Lie algebra and í an involution of g. The Lie subalgebra gí of
g, consisting of those elements of g fixed by í, plays an important role in representation
theory. The classification of involutions and their invariant subalgebras, due to E. Cartan,
led to a complete list of the real forms of g which, in turn, is used to describe symmetric
spaces. There is also a well developed theory concerning the structure of U( g)-modules
under the module action restricted to gí. When a U( g)-module can be written as a direct
sum of finite-dimensional simple gí-modules, it is called a Harish-Chandra module for
the pair g, gí. The study of Harish-Chandra modules provides an algebraic approach to
understanding representations of the corresponding real Lie group of g.

The purpose of this paper is to study quantum analogs of pairs g, gí and their
Harish-Chandra modules. More precisely, let U denote the quantized enveloping algebra
associated to g introduced by Drinfeld and Jimbo. We consider subalgebras Bí of U,
corresponding to an involution í of g, which behave similarly to the enveloping algebra
of gí.

One of the difficulties in the quantum case is picking the correct subalgebra associated
to an involution. It is unclear how to use the recently proposed quantum Lie algebras and
thus we cannot start with a fixed quantum Lie subalgebra as in the classical case. On the
other hand, the associative invariant subalgebra fixed under an involution of U corre-
sponding to the original involution of g is much too large. Because of these difficulties,
we have limited our attention to involutions which restrict to diagram automorphisms
on the set of positive roots. Our criteria for picking a subalgebra Bí of the correct size,
given an involution í of g, is whether Bí can be used to form an Iwasawa type decom-
position of U (see Theorem 2.4). The motivation for obtaining this result is that in the
classical case the Iwasawa decomposition provides important information concerning
coinduced modules; these are crucial in the study of Harish-Chandra modules. We hope
to investigate coinduced modules from Bí to U in a later paper.
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The subalgebras Bí are not themselves quantized enveloping algebras (see Re-
mark 2.3) nor do they have an obvious Hopf algebra structure. They do, however,
satisfy the right coideal condition on comultiplication. We show that for each í, Bí is
the unique subalgebra in a large family of possible analogs of U( gí) which satisfies both
this right coideal condition and the quantum Iwasawa decomposition (Theorem 2.5).
Moreover, we obtain some intriguing results on the structure of U-modules under the
action restricted to Bí which suggests there is an interesting Harish-Chandra module
theory for the pair U, Bí (see Section 4).

M. Nazarov has kindly pointed out to me that Noumi and Sugitani have also stud-
ied quantum analogs of the pairs g, gí when g is classical (see the research announce-
ment [NS].) The methods used in [NS] for constructing the subalgebras are quite different
from those presented here, so it is not obvious whether these subalgebras are the same
as the Bí (see Remark 2.4.)

This paper is organized as follows. The subalgebras Bí are introduced in Section 2.
Generators and relations for these algebras are given (implicitly) in Proposition 2.3.
These subalgebras are then used to form an Iwasawa type tensor product decomposition
of U (Theorem 2.4.) Recall that U specializes to U( g) as the defining parameter q goes
to 1. In Section 3, we show that the restriction of this specialization sends Bí to the
enveloping algebra of gí. In Section 4, we show that the sum of all the finite-dimensional
Bí-modules sitting inside a U-module which admits a semisimple Cartan subgroup action
is equal to the sum of all the finite-dimensional simple U submodules. As an application,
the locally finite part of U is the maximal Harish-Chandra module contained in U for the
pair U and Bí using the adjoint action.

We do make one additional assumption that g does not contain a factor of type G2.
This assumption is necessary for Lemma 2.2 (see Remark 2.1).

ACKNOWLEDGEMENTS. The author would like to thank R. Brylinski whose questions
led to this research project, A. Joseph for his useful comments, M. Nazarov for directing
me to the current literature, the referees for constructive suggestions, and D. Farkas for
his illuminating observations.

1. Preliminaries. Let g = n� ý h ý n+ be a semisimple Lie algebra over an alge-
braically closed field k of characteristic zero. Let ∆ (resp. ∆+) denote the set of roots
(resp. positive roots) associated to g and let ã1Ò    Ò ãl denote the set of positive simple
weights. Write A = [aij] for the l ð l Cartan matrix and let di be a list of l pairwise
relatively prime integers so that [diaij] is symmetric. Let ( Ò ) denote the Cartan inner
product where (ãiÒ ãj) = diaij for 1 � iÒ j � l. For the purposes of this paper, we assume
that g does not contain a factor of type G2 (see Remark 2.1). In particular, if i 6= j, then
aij is equal to 0Ò �1Ò or �2.

Given an indeterminate q over k, we define the quantized enveloping algebra U =
Uq( g) of g as the algebra over k(q) generated by the elements x1Ò    Ò xlÒ tš1

1 Ò    Ò tš1
l Ò

y1Ò    Ò yl subject to the following relations.

(1.1) tš1
1 Ò    tš1

l generate a free abelian group T of rank l.
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(1.2) tixjt�1
i = q(ãiÒãj)xj and tiyjt�1

i = q�(ãiÒãj)yj for all 1 � iÒ j � l.

(1.3) xiyj � yjxi = éij
t2i �t�2

i

q2di�q�2di
for all 1 � iÒ j � l

(1.4) The x1Ò    Ò xl (resp. y1Ò    Ò yl) satisfy the quantized Serre relations. For example,

xixj � xjxi = 0 if aij = 0; x2
i xj � (q2di + q�2di )xixjxi + xjx2

i = 0 if aij = �1;
x3

i xj + (q4di + 1 + q�4di )(�x2
i xjxi + xixjx2

i ) � xjx3
i = 0 if aij = �2

Similar formulas hold with xi and xj replaced by yi and yj respectively. (For a more
general form of the Serre relations using quantum binomial coefficients, see [DK,
1.2.4 and 1.2.5].)

The algebra U also has a Hopf algebra structure with comultiplicationÅ, augmentation
map è, and antipode õ. More precisely, for 1 � i � l and a 2 U, we have the following.

Å(xi) = xi 
 t�1
i + ti 
 xi; Å( yi) = yi 
 t�1

i + ti 
 yi; Å(ti) = ti 
 ti
è(xi) = è( yi) = 0; è(ti) = 1

õ(xi) = �q�2di xi; õ( yi) = �q2di yi; õ(ti) = t�1
i 

In general, we will use standard Hopf algebra notation and express the sum Å(a) as
a(1)
a(2) for a typical element a 2 U (see for example [JL1, Section 2].) Using the Hopf
algebra structure, one can define an adjoint action by (ad b)a = b(1)aõ(b(2)) for a and b
in U. On the generators, the adjoint action takes the following form.

(ad xi)a = xiati � q�2di tiaxi; (ad yi)a = yiati � q2di tiayi; (ad ti)a = tiat�1
i

Let U+ (resp. U�; Uo), denote the k(q) subalgebra of U generated by x1Ò    xl (resp.
y1Ò    yl; tš1

1 Ò    Ò tš1
l .) As a vector space, U is isomorphic to the tensor product U� 


Uo 
 U+ over k(q) ([R]).
An element v 2 U is called a weight vector of weight ï 2 hŁ if (ad ti)v = q(ïÒãi)v

for each 1 � i � l. Set Q =
P

1�i�l Zãi and Q+ =
P

1�i�l Nãi. It is well known that the
algebra U+ (resp. U�) is a direct sum of its finite-dimensional weight spaces where the
weights that appear are exactly the elements (resp. the negative of the elements) in Q+.
Recall the standard ordering on weights in hŁ: å ½ ç if å � ç 2 Q+. For å 2 hŁ, denote
the å weight space of an ad T submodule M of U by Må.

2. Involutions and Subalgebras. Given an involution í of g, let gí denote the fixed
Lie subalgebra of g. In this section we look at certain involutions and (associative)
subalgebras Bí of the quantized enveloping algebras which correspond to the enveloping
algebra U( gí). We give generators and relations for these subalgebras and use them to
form an Iwasawa type decomposition of U. We further show that the Bí are the unique
algebras among a large class of potential quantum analogs of U( gí) to satisfy both the
Iwasawa decomposition and the right coideal property on comultiplication. First, we
describe the involutions that we will be working with throughout this paper.

Let í be an automorphism of the root system of g which preserves the positive simple
roots ∆. It is standard to call í a diagram automorphism since í uniquely determines an
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automorphism of the Dynkin diagram associated to g (see [Hu, Section 12.2]). Assume
further that í2 = Id where Id denotes the identity. Clearly í induces a permutation of the
indices 1Ò    Ò l for the positive simple roots. Since the correspondence is faithful, we
frequently identify í with this permutation. Note that if g is simple, the only possibilities
for í are ([Hu, Section 12.2]):

Case 1: í = Id.
Case 2: g is of type An and í(ãi) = ãn+1�i for 1 � i � n
Case 3: g is of type E6: í(ã1) = ã6; í(ã3) = ã5; í(ã2) = ã2 and í(ã4) = ã4
Case 4: g is of type Dl: í(ãi) = ãi for 1 � i � l�2 and í(ãl�1) = ãl. Also when l = 4

we have two additional possibilities: í0(ã1) = ã3 and í0(ãi) = ãi for i = 2Ò 4; í00(ã1) = ã4

and í00(ãi) = ãi for i = 2Ò 3.
A diagram involution í induces an involution, which we also call í, on g defined

by í(ei) = fí(i), í( fi) = eí(i), and í(hi) = �hí(i) where eiÒ fiÒ hiÒ 1 � i � l are standard
generators for g. We are now ready to define the quantum subalgebras corresponding to
U( gí) which are the focus of this paper.

DEFINITION 2.1. Let í be a diagram automorphism of ∆ such that í2 = Id. For each i
between 1 and l, set

Bi = xit�1
í(i) + yí(i)t

�1
i 

Let Bí be the subalgebra of U generated by fBi j 1 � i � lg and ftit�1
í(i) j 1 � i � lg.

Throughout this paper we will be proving results about Bí that correspond to facts
about the classical enveloping algebra of gí. Unlike the classical case, however, there is no
obvious k(q) algebra automorphism of U which specializes to í and fixes the elements
of Bí. One can, though, lift í to a k-algebra automorphism í̃ such that í̃(xi) = yí(i),
í̃(ti) = tí(i), and í̃(q) = q�1. Note that í̃(Bi) = Bi for each i. Although í̃(tit�1

í(i)) 6= tit�1
í(i) for

i 6= í(i), we do have í̃(tit�1
í(i) � t�1

i tí(i))Û(q � q�1) = (tit�1
í(i) � t�1

i tí(i))Û(q � q�1) Hence í̃
fixes the elements of the k subalgebra of U generated by Bi and (tit�1

í(i)�t�1
i tí(i))Û(q�q�1),

1 � i � l. It follows from Theorem 3.1 below that this k subalgebra of Bí specializes to
U( gí). Thus the fact that this large k subalgebra of Bí consists of elements fixed by the
involution í̃ can be considered a quantum analog of the fact that gí is the set of elements
in g fixed by í.

It would be nice to use the newly proposed quantum Lie algebras to define Bí (see
for example [S] and [DG]). One of the problems however is understanding the precise
connection between the associative algebra generated by the quantum Lie algebra and
the quantized enveloping algebra U. When g = sl 2, the quantum Lie algebra generates
the locally finite part of U (see [S]); such a result is unknown in general.

Although Bí is not defined directly using an involution which specializes to í, and so
the choice of Bí might seem arbitrary, it is exactly this subalgebra which is small enough
to be used in a Iwasawa type decomposition of U (Theorem 2.4) and specializes to the
enveloping algebra of the corresponding fixed Lie subalgebra of g (Theorem 3.1). The
next lemma, which is quite computational, describes crucial relations satisfied by the Bi.
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LEMMA 2.2. Set A = Bi and B = Bj.
(2.1) If aij = 0, then AB � BA = éiÒí( j)(t2

i t�2
í(i) � t2

í(i)t
�2
i )Û(q2di � q�2di )

(2.2) If aij = �1, then

A2B�(q2di +q�2di ) ABA+BA2 = éiÒí(i)B�éiÒí( j)(q
2di +q�2di ) A(q3di t2

i t�2
í(i)+q�3di t2

í(i)t
�2
i )

(2.3) If aij = �2, then

A3B + (q4di + 1 + q�4di )(�A2BA + ABA2) � BA3 = (q2di + q�2di )2(AB � BA)

PROOF. Statement (2.1) follows quickly from the definition of the Bi. Assume that
aij = �1. Consider the terms on the left hand side of the identity in (2.2) of weight
2ãi + ãj .

xit
�1
í(i)xit

�1
í(i)xjt

�1
í( j) � (q2di + q�2di )xit

�1
í(i)xjt

�1
í( j)xit

�1
í(i) + xjt

�1
í( j)xit

�1
í(i)xit

�1
í(i)

This expression simplifies to

(24)
q(�ãí(i)Òãi+2ãj)xixixjt

�2
í(i)t

�1
í( j) � (q2di + q�2di )q(�ãí(i)Òãi+ãj)+(�ãí( j)Òãi)xixjxit

�2
í(i)t

�1
í( j)

+q(�ãí( j)Ò2ãi)+(�ãí(i)Òãi)xjxixit
�2
í(i)t

�1
í( j)

Note that (ãí(i)Ò ãj) = (ãiÒ ãí( j)) since í is an automorphism of ∆. Hence (2.4) equals

q�2(ãí(i)Òãj)�(ãí(i)Òãi)
�
xixixj � (q2di + q�2di )xixjxi + xjxixi

�
t�2
í(i)t

�1
í( j)

which is just the quantum Serre relation (identity (1.4)) and so equals zero. This agrees
with the sum of the terms of weight 2ãi + ãj on the right hand side of (2.2). A similar
argument using the quantum Serre relations shows that the sum of the terms on both the
left hand and the right hand side of identity (2.2) of weight �í(2ãi + ãj) equals zero.

Now consider the terms of weight 2ãi � ãí( j) on the left hand side of the identity
in (2.2).

xit
�1
í(i)xit

�1
í(i)yí( j)t

�1
j � (q2di + q�2di )xit

�1
í(i)yí( j)t

�1
j xit

�1
í(i) + yí( j)t

�1
j xit

�1
í(i)xit

�1
í(i)

This expression simplifies to

(25)

q(�ãí(i)Òãi�2ãí( j))xixiyí( j)t
�2
í(i)t

�1
í( j)

� (q2di + q�2di ) q(�ãí(i)Òãi�ãí( j))+(�ãjÒãi)xiyí( j)xit
�2
í(i)t

�1
í( j)

+ q(�ãjÒ2ãi)+(�ãí(i)Òãi)yí( j)xixit
�2
í(i)t

�1
í( j)

Using the fact that (ãiÒ ãj) = diaij = �di, expression (2.5) reduces toh
q�(ãí(i)Òãi)�2di � (q2di + q�2di )q�(ãí(i)Òãi) + q�(ãí(i)Òãi)+2di

i
x2

i yí( j)t
�2
í(i)t

�1
j

+ éiÒí( j)

"
q�di xi

 
t2
i � t�2

i

q2di � q�2di

!
+
�
q�di � (q2di + q�2di )qdi

� t2
i � t�2

i

q2di � q�2di

!
xi

#
t�3
í(i)
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which equals �q3di (q2di + q�2di )xit�3
í(i)t

2
i when i = í( j) and zero otherwise. In either case,

expression (2.5) simplifies to the same value as the sum of the terms of weight 2ãi�ãí( j)

on the right hand side of identity (2.2). The computation for showing that the sum of
terms of weight �í(2ãi � ãí( j)) on both the right and left hand side of (2.2) equals
�q�3di (q2di + q�2di )yí(i)t3

í(i)t
�2
i when i = í( j) and zero otherwise is the same.

Now consider the terms on the left hand side of (2.2) of weight ãi � ãí(i) + ãj:

xit
�1
í(i)yí(i)t

�1
i xjt

�1
í( j) + yí(i)t

�1
i xit

�1
í(i)xjt

�1
í( j)

� (q2di + q�2di )[xit
�1
í(i)xjt

�1
í( j)yí(i)t

�1
i + yí(i)t

�1
i xjt

�1
í( j)xit

�1
í(i)]

+ xjt
�1
í( j)xit

�1
í(i)yí(i)t

�1
i + xjt

�1
í( j)yí(i)t

�1
i xit

�1
í(i)

This expression simplifies to

(2.6)

h
q(�ãí(i)Ò�ãí(i)+ãj)�(ãiÒãj)xiyí(i)xj + q(�ãiÒãi+ãj)+(�ãí(i)Òãj)yí(i)xixj

�(q2di + q�2di )[q(�ãí(i)Ò�ãí(i)+ãj)+(ãí( j)Òãí(i))xixjyí(i) + q(�ãiÒãj+ãi)�(ãí( j)Òãi)yí(i)xjxi]

+q(�ãí( j)Òãi�ãí(i))+(ãí(i)Òãí(i))xjxiyí(i) + q(�ãí( j)Òãi�ãí(i))+(�ãiÒãi)xjyí(i)xi

i
t�1
í( j)t

�1
i t�1

í(i)

We can rewrite (2.6) so that each term is in the form a�a+ao where aš 2 Uš and
ao 2 Uo. In particular, the coefficent of yí(i)xixjt�1

i t�1
í(i)t

�1
í( j) in (2.6) is

q�(ãí(i)Òãj)
h
q2di+di + q�2di+di � (q2di + q�2di )(q2di�di + qdi�2di ) + q2di�di + q�di�2di

i
which simplifies to zero. Similarly, the coefficient of yí(i)xjxit�1

i t�1
í(i)t

�1
í( j) in (2.6) equals

zero. Hence, the sum of the terms of weight ãi � ãí(i) + ãj (and not contained in either
xiUo or xjUo) on both the right and left hand side of hand side of (2.2) equals zero. A
similar argument shows that the coefficients of terms of weight �ãí(i) � ãí( j) + ãi (and
not contained in either yí( j)Uo or yí(i)Uo) on both the right and left hand side of (2.2)
equals zero.

To further simplify (2.6), one needs to consider what happens when i = í( j) and
i = í(i). (Note that these are mutually exclusive cases since aij = �1 implies that i 6= j.)
We first assume that í(i) = i. Using the previous paragraph, (2.6) simplifies to

(qdi � q�di )�1
��

q4di � (q2di + q�2di )q2di
�
(t2

i � t�2
i )xj + q2di xj(t

2
i � t�2

i )
½
t�2
i t�1

j

which after some cancellation equals xjt�1
j .

Now assume that i = í( j). Expression (2.6) simplifies to

(q�3di + qdi )xi

 t2
í(i) � t�2

í(i)

q2di � q�2di

!
t�2
i t�1

í(i) � (q2di + q�2di )q3di

 t2
í(i) � t�2

í(i)

q2di � q�2di

!
xit

�2
i t�1

í(i)

which reduces to �q�3di (q2di + q�2di )xit�1
í(i)t

�2
i t2

í(i). Hence (2.6) is equal to xjt�1
j if i = í(i);

�q�3di (q2di + q�2di )xit�1
í(i)t

�2
i t2

í(i) if í(i) = j; and zero otherwise. A similar computation
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shows that the sum of the terms of weight �ãí(i) + ãi � ãí( j) equals yjt�1
j when í(i) = i,

�q3di (q�2di + q+2di )yí(i)t�1
i t�2

í(i)t
2
i if í(i) = j, and zero otherwise. Statement (2.2) now

follows.
Note that when g is simple and not simply laced, we must have í = Id. Hence if

aij = �2, it follows that í(i) = i and í( j) = j. The identity in statement (2.3) can be
proved using a routine though lengthy computation similar to the calculation for (2.2).
We only sketch the proof here and omit the details. Using the quantum Serre relations,
one can show that the terms of weight 3ãi +ãj (resp. �3ãi �ãj) on the left hand side of
(2.3) add to zero. A straightforward computation shows that the terms of weight 3ãi�ãj

(resp. �3ãi +ãj) on the left hand side of (2.3) cancel. What remains is checking that the
terms of weight ãj �ãi, �ãj +ãi, ãj +ãi, and�ãj �ãi agree on the left and right hand
sides of (2.3).

REMARK 2.1. It seems likely and preliminary computations suggest that Lemma 2.2
extends to include a fourth identity when g contains a subfactor of type G2, and Bi, Bj

are chosen such that aij = �3. However, the calculations are lengthy and tedious, so the
case where g has a subfactor of type G2 has been left out of this paper.

Our next goal is to show that the relations in Lemma 2.2 are sufficient to define
Bí. Let B̃í be the free algebra generated by the indeterminates B̃i for 1 � i � l
and let K be the free abelian multiplicative group generated by the indeterminates
fKi j 1 � i Ú í(i) � lg. Consider the automorphism û from K to Aut B̃í defined by
û(Ki)(B̃j) = q(ãiÒãj)�(ãí(i)Òãj)B̃j. Let B = B̃í

û[K ] denote the skew group ring generated by

B̃í and K using û to glue the two together. (Here the automorphism í is understood from
context.) Note that the group generated by the Ki is isomorphic to the group generated
by the tit�1

í(i) under the map which sends Ki to tit�1
í(i).

Let I be the ideal of B generated by the elements

B̃iB̃j � B̃jB̃i � éiÒí( j)(K
2
i � K�2

i )Û(q2di � q�2di )

for all iÒ j such that aij = 0;

B̃2
i B̃j � (q2di + q�2di )B̃iB̃jB̃i + B̃jB̃2

i � éiÒí(i)B̃j

+éiÒí( j)(q2di + q�2di )B̃i(q3di K2
i + q�3di K�2

i )

for all iÒ j such that aij = �1; and

B̃3
i B̃j + (q4di + 1 + q�4di )(�B̃2

i B̃jB̃i + B̃iB̃jB̃2
i ) � B̃iB̃3

j

�(q2di + q�2di )2(B̃iB̃j � B̃jB̃i)

for all iÒ j such that aij = �2
We now define some notation which will be used in Proposition 2.3 below as well as

in Theorem 2.4 and Theorem 3.1. Let M denote the free monoid generated by the letters
w1Ò    Òwl. Given w = wi1   wim , set

B̃w = B̃i1    B̃im and Bw = Bi1    Bim 
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Let S be the subset of Zl consisting of all l-tuples with zeros in the j-th place whenever
j ½ í( j). For S 2 S, set KS =

Q
1�iÚí(i)�l Ksi

i . Note that fKS j S 2 Sg is a basis for the
group algebra k(q)[K ]. Each element in B can be written in the form

P
wÒS awÒSB̃wKS

where w 2 M , S 2 S, and awÒS 2 k(q). We can filter B by highest degree where
deg B̃w = m = deg w for w = wi1   wim and deg KS = 0 for all S 2 S.

We will be using a subalgebra of U which is a slight variation of U�. Set Fi = yit�1
í(i)

for 1 � i � l and let U�
í denote the algebra generated by the Fi, 1 � i � l. For

w = wi1   wim 2 M set Fw = Fi1   Fi2 and yw = yi1    yim . One can check that Fw is
just a power of q times ywt�1

i1 Ð Ð Ð t�1
im where both the power of q and t�1

i1 Ð Ð Ð t�1
im only depend

on the weight of yw. Hence the same quantum Serre relations hold for U�
í and, moreover,

U�
í ≤ U�. Let Ũ�

í be the free algebra generated by the indeterminates fF̃i j 1 � i � lg
and set F̃w = F̃i1    F̃im . By [JL1, Section 4], U�

í is isomorphic to the Ũ�
í modulo the

ideal generated by the Serre relations in the F̃i, 1 � i � l
Define a degree function on U by setting Deg Fi = 1 for 1 � i � l and Deg a = 0

for all a 2 U0U+. Note that every element of U can be written as a (finite) sum of
homogeneous elements using this degree function.

PROPOSITION 2.3. The algebra BÛI is isomorphic to the subalgebra Bí of U.

PROOF. Let † be the map from B to Bí defined by sending B̃i to Bi and Ki to tit�1
í(i) for

all 1 � i � l. Since tit�1
í(i)Bjt�1

i tí(i) = q(ãiÒãj)�(ãí(i)Òãj)Bj for all 1 � iÒ j � l, the map † is a
well-defined algebra homomorphism. By Lemma 2.2, †(I) = 0. We show that the kernel
of † is exactly I. Suppose that X =

P
wÒS awÒSB̃wKS is an element of minimal degree in the

kernel of † but not contained in I where the awÒS are elements of k(q), w 2 M , and S 2 S.
Set n = deg X. Given w = wi1   wim in M , set íw = wí(i1)   wí(im) By the definition of
the Bi, it follows that

(27) †(X) =
X

wÒS;deg w=n
awÒSFíw

Y
(tit�1

í(i))
si + lower degree terms in U

Now the sum of all the terms in the expansion of †(X) of degree n must be zero (where
here we are using the degree function Deg on U). From the triangular decomposition
and defining relations of U (see Section 1) we have that U�

í Uo ≤ U�
í 
 Uo is a free

U�
í -module with basis f

Q
iÚí(i)(tit�1

í(i))
si j S 2 Sg. Hence

P
w;deg w=n awÒSFíw = 0 for each

S 2 S. Therefore
P

w;deg w=n awÒSF̃íw must be an element of the ideal in Ũ�
í generated

by the Serre relations using the F̃i. A comparison of the Serre relations (1.4) with the
elements in the ideal I of B shows that

X
w;deg w=n

awÒSB̃íw

is equal to x + I for some x 2 B of lower degree than the degree of X. This contradicts
the choice of a minimal degree element X. Hence the kernel of † equals I.

In the rest of the paper we will identify the group K with the subgroup of Bí generated
by tit�1

í(i), 1 � i � l. In particular, we set Ki = tit�1
í(i) for each i.
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REMARK 2.2. The proof of Proposition 2.3 shows that † induces a map of degree
filtrations from B to U. Restrict the filtrations to Bí and U�

í k(q)[K ] and form the corre-
sponding associated graded algebras. It is straightforward to check that gr U�1

í k(q)[K ] '
U�1
í k(q)[K ] and so by the proof of the above proposition it follows that gr Bí '

U�
í k(q)[K ] We can exploit this isomorphism to construct a good basis for Bí which

will be used in Theorem 2.4 and Theorem 3.1. Now Bw = Fw+ terms of lower degree in
U. Let V be a basis for U�

í k(q)[K ] over k(q) consisting of elements of the form FwKS

where w 2 M and S 2 S. Note that these elements are homogeneous with respect to the
degree function on U. It follows that there exists a basis W of Bí consisting of elements
of the form BwKS where w 2 M and S 2 S with the following property. The map ü
sending Fw to Bíw and fixing elements of K induces a bijection from V to W such that

ü(b) = b + terms of lower degree in U

for each b 2 V . We may further assume that the subset V̄ = V \ U�
í of V is a basis

for U�
í and that V = fbKS j b 2 V̄ and S 2 Sg. Similarly, set W̄ = fü(b) j b 2 V̄ g.

Then W = fbKS j b 2 W̄ and S 2 Sg.
The next theorem is a quantum analog of the Iwasawa decomposition. Remark 2.2 is

crucial in the proof. We also need some additional notation. Let A be the group generated
by ftití(i) j 1 � i � lg. Let T0 be the subgroup of T generated by K and A . Set Uo

í =
k(q)[T0] and U+

í = k(q)[x1t�1
í(1)Ò    Ò xlt�1

í(l)] One checks that Uí = U�
í Uo

íU
+
í is a subalgebra

of U. Furthermore, U is a finitely generated Uí-module with generators from T. Note
that the group T0 is isomorphic to the product K ð A and so Uo

í ≤ k(q)[K ]
 k(q)[A].

THEOREM 2.4. The linear map from Bí 
 A 
 U+
í to U which sends elements of the

form b
a
u to the product bau defines a vector space isomorphism Bí
A 
U+
í ≤ Uí

where the tensor product is taken over k(q).

PROOF. We keep the notation of Remark 2.2. It follows from the triangular decom-
position of U (Section 1) and the definitions of Uš

í and Uo
í that there is an isomorphism

of vector spaces

(28) Uí ≤ U�
í 
 Uo

í 
 U+
í

over k(q). Identity (2.8) implies that AU+ is isomorphic to A 
U+
í as vector spaces. Let

M be a basis for the vector space AU+
í . To prove the theorem, it is sufficient to show that

the set fbm j b 2 W Òm 2 Mg is a basis for Uí. This follows from (2.8), Remark 2.2
and induction on degree.

Unfortunately, Bí is not a Hopf subalgebra of Uq( g). ThoughÅ(tit�1
í ) = tit�1

í 
 tit�1
í

is an element of Bí 
 Bí, the same does not hold true for Å(Bi). However, the image of
Bi under Å is still rather nice. In particular,

Å(Bi) = (xit
�1
í(i) + yí(i)t

�1
i ) 
 t�1

i t�1
í(i) + tit

�1
í(i) 
 xit

�1
í(i) + t�1

i tí(i) 
 yí(i)t
�1
i 

Hence each generator b (equal to either Bi or tit�1
í ) of Bí satisfies

(29) Å(b) 2 b 
 T + (Bí \ T)
 U
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Condition (2.9) implies the right coideal property on comultiplication:

(210) Å(b) 2 Bí 
 U

for all b 2 Bí. We shall see below that (2.10) combined with the Iwasawa decomposi-
tion of Theorem 2.4 are enough to distinguish Bí from other subalgebras as potential
candidates for the quantum analog of U( gí).

Given arbitrary elements ri and si of T, let B be the subalgebra of U generated by
Ci and (tit�1

í(i))
š1 for 1 � i � l where Ci = xiri + yí(i)si. Assume further that B satisfies

Å(B) ² B 
 U. Recall that K is the group generated by tit�1
í(i) for 1 � i � l.

For each i,

(211) Å(Ci) = xiri 
 rit
�1
i + yí(i)si 
 sit

�1
í(i) + riti 
 xiri + sití(i) 
 yí(i)si

We can rewrite (2.11) Å(Ci) as

Å(Ci) = xiri 
 (rit
�1
i � sit

�1
í(i)) + Bi 
 sit

�1
í(i) + riti 
 xiri + sití(i) 
 yí(i)si

HenceÅ(Ci) 2 B
U if and only if xiri 2 B or rit�1
i = sit�1

í(i) and both riti, sití(i) 2 B\T.
When Ci = Bi for each 1 � i � l, then B = Bí and we know that xiri Û2 Bí and Bí\T = K
by Theorem 2.4. So if we assume in addition (using the notation of Theorem 2.4) that B
is used to form a quantum Iwasawa type decomposition, in particular Uí ≤ B
Uo

í 
U+
í ,

then B also satisfies xiri Û2 B and B\T = K . Thus under this assumption,Å(Ci) satisfies
the stronger coproduct condition (2.9).

The following theorem shows that B is actually equal to Bí.

THEOREM 2.5. Let B be the subalgebra of U generated by Ci and (tit�1
í(i))

š1 for 1 �
i � l where Ci = xiri + yí(i)si and ri and si are some elements of T. If B satisfies the right
coideal property (2.10) and can be used to form a quantum Iwasawa decomposition,
then B = Bí.

PROOF. Since the image of Ci under Å satisfies (2.9), we must have sit�1
í(i) = rit�1

i 
Hence there exists ai 2 T such that t�1

í(i)ai = ri and t�1
i ai = si. But we also have

riti = ait�1
í(i)ti 2 K and since t�1

í(i)ti 2 K , it follows that ai 2 K . Therefore Cia�1
i = Bi is

an element of B and B is generated by Bi and (tit�1
í(i))

š1 for 1 � i � l. Thus B = Bí.

REMARK 2.3. In the next section we show that the subalgebras Bí specialize to
the enveloping algebra of gí at q = 1. However, when gí is semisimple, Bí is not
isomorphic to the Drinfeld-Jimbo quantization Uq( gí). To see this, recall [JL1] that the
set of invertible elements of U is exactly T. Hence the set of invertible elements of Bí

is Bí \ T. By Theorem 2.4, this group is just the group K generated by the tit�1
í(i) for

1 � i � l. This is a maximal subgroup of Bí which, one checks using the specializations
in Corollary 3.2, has rank strictly smaller than the rank of the Cartan subgroup of Uq( gí).
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REMARK 2.4. When g = sl(n) and í = Id, it is easy to show that Bí is isomorphic to
the quantization of so(n) introduced by [GK]. By [NS, pp. 4, 6] it follows that in this case
Bí is also isomorphic to the subalgebra constructed by Noumi and Sugitani. For other
pairs of classical Lie algebra g and involution í it is not clear whether the subalgebras
constructed in [NS] have a connection to the Bí. However, the Bí satisfy the right coideal
condition (4.10), an important property of the subalgebras considered in [NS].

3. Specialization. In this section, we determine the specialization at q = 1 of the
subalgebras Bí defined in Section 1. More precisely, set A equal to the localization of
k[qÒ q�1] at the ideal generated by q � 1. Let Û be the free A-module generated as an
algebra by xiÒ yiÒ tš1

i Ò (ti � 1)Û(q � 1) for 1 � i � l. Note that Uo \ Û is generated by
the elements ti and (ti � 1)Û(q� 1) as i ranges from 1 to l. The tensor product Û 
A k is
isomorphic to U( g)[tš1 Ò    Ò t

š
l ] where the ti are now central elements such that t4

i = 1.
Further modding out by the ideal generated by fti � 1 j 1 � i � lg recovers the ordinary
enveloping algebra U( g). (See for example [JL2, 6.11] or [KD, Prop 1.5].) This process
of tensoring and then modding out is called specialization at q = 1.

Let í be a diagram automorphism as in Section 2. Recall that í induces a Lie algebra
involution on g which sends ei to fí(i) and hi to �hí(i). Here ei, fi, hi, 1 � i � l are
standard generators of g such that xi (resp. yi) specializes to ei (resp. fi.) We also refer to
this induced automorphism as íwith the meaning clear from context. The Lie subalgebra
fixed by í is denoted by gí.

THEOREM 3.1. The subalgebra Bí \ Û of Û specializes to the subalgebra U( gí) of
U( g).

PROOF. Let B̄í denote the image of Bí \ Û in U( g) under the specialization of Û at
q = 1. Note that Bi specializes to ei + fí(i) for each 1 � i � l. Furthermore, for each i,

t2
i t�2
í(i) � t�2

i t2
í(i)

q � 1
=

t�2
í(i)(t

2
i � t�2

i ) � t�2
i (t2

í(i) � t�2
í(i))

q � 1

is an element of Û \ Bí which specializes to hi + hí(i) up to a (nonzero) scalar. Now
[ei + fí(i)Ò ej + fí( j)] = [eiÒ ej] + [fí(i)Ò fí( j)] + éií( j)(hi � hí(i)) Hence eã + fí(ã) is also an
element of B̄í for all positive roots ã. Therefore U( gí) is a subalgebra of B̄í.

Let S+ denote the intersection of S with the set of l-tuples with nonnegative entries.
For S 2 S+, set  

K � 1
q � 1

!S

=
Y

1�iÚí(i)�l

 
Ki � 1
q � 1

!si

where recall that Ki is identified with tit�1
í(i). Recall the notation of Remark 2.2 of Section 2.

Given X 2 Bí one can find M 2 S such that XKM is a linear combination over k(q) of

elements of the form Bw

�
K�1
q�1

�S
with Bw 2 W̄ and S 2 S+. Hence X can be written in

the form

X =

0B@ X
Bw2W̄ ÒS2S+

awÒSBw

 
K � 1
q � 1

!S
1CAK�M
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where awÒS 2 k(q) Assume that X 2 Bí \ Û and let n be the maximum degree such there
exists a nonzero awÒS with Deg Bw = n. It follows that the highest degree term of X,

X
fwÒS:Deg Bw=ng

awÒSFíwÒ

is an element of Û for each choice of S 2 S+. By Remark 2.2 of Section 2, the set
V̄ = V \ U�

í = fü�1(Bw) j Bw 2 W̄ g is a basis for U�
í . Therefore awÒS 2 A for each

S 2 S+ and Bw 2 W̄ with Deg Bw = n. Hence

X � (
X

Bw2W̄ ÒS2S+;Deg Bw=n

awÒSBw

 
K � 1
q � 1

!S

)K�M

is an element of Bí \ Û of lower degree. By (reverse) induction on Deg X, we have that
X 2 Bí\ Û if and only if awÒS 2 A for all Bw and S. In particular Bí\ Û is spanned over A

by elements of the form Bw

�
K�1
q�1

�S
KM where Bw 2 W̄ and S 2 S+ It is straightforward

to check that the specialization of Bw

�
K�1
q�1

�S
KM is an element of U( gí). It follows

that the specialization of Bí is a subalgebra of U( gí) which completes the proof of the
theorem.

REMARK 3.1. Consider the A subalgebra B̂í of Bí generated by the Bi,�
(tit�1

í(i)) � 1
�
Û(q � 1), and (tit�1

í(i))
š1 for 1 � i � l. We can specialize Bí directly to

the algebra (B̂í 
A k)Ûhtit�1
í(i) � 1i. It follows from the proof of Theorem 3.1 that the

direct specialization of Bí is isomorphic to the specialization of Bí \ Û considered as a
subalgebra of Û.

We can now use the description of such algebras in the classical case (due to E. Cartan)
to determine the specializations of the quantum subalgebras Bí. For a simple Lie algebra g
and an involution í induced from a diagram automorphism as above, it is straightforward
to show that the dimension of gí is equal to j∆+j + #fi j i Ú í(i)g.

COROLLARY 3.2. Let g be a simple Lie algebra over the complex numbers k = C
and let í be a diagram automorphism. The image B̄í ≤ U( gí) of Bí \ Û under the
specialization of Û at q = 1 can be described as follows.

(3.1) If g = sl(n) and í = Id, then B̄í ≤ U
�
so(n)

�
.

(3.2) If g = sl(n) and í is defined as in Case 2 of Section 1, then B̄í ≤ R where R is the
subalgebra generated by hp and eiÒ fi for 1 � i � n � 1 and i 6= p with p = nÛ2
(resp. (n � 1)Û2) if n is even (resp. odd).

(3.3) If g = so(2n + 1) (n ½ 2) and í = Id then B̄í ≤ U
�
so(n)ý so(n + 1)

�


(3.4) If g = sp(n), n = 2m ½ 2, and í = Id then B̄í ≤ U
�
gl(m)

�


(3.5) If g = so(2n) and í = Id then B̄í ≤ U
�
so(n)ý so(n)

�


(3.6) If g = so(2n) and í 6= Id then B̄í ≤ U
�
so(n� 1)ý so(n + 1)

�
.

(3.7) If g is of type E6 and í = Id, then B̄í ≤ U
�
sp(4)

�
.
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(3.8) If g is of type E6 and í 6= Id, then B̄í ≤ U
�
sl(6)ý sl(2)

�
.

(3.9) If g is of type E7 and í = Id, then B̄í ≤ U
�
sl(8)

�
.

(3.10) If g is of type E8 and í = Id, then B̄í ≤ U
�
so(16)

�
.

(3.11) If g is of type F4 and í = Id, then B̄í ≤ U
�
sp(3)ý sl(2)

�
.

PROOF. When í = Id, the algebra Bí specializes to the Lie subalgebra gí generated
by ej + fj, 1 � j � l. By [He, Definition on p. 426] and [He, p. 183, Theorem 7.2], gí

corresponds to the complexification of the fixed subalgebra in the Cartan decomposition
of the normal (or split) real form of g. Thus the cases when í = Id follows from
[He, pp. 451–455, 517, 518] by taking the complexification of the appropriate fixed
subalgebras. For í 6= Id, we can compute the dimensions of the gí and this is enough
to determine the desired fixed Lie algebras. In particular, for (3.2), dim gí = (n2 � 2)Û2
when n is even and equals (n2 � 1)Û2 when n is odd; for (3.6), dim gí = n2 � n + 1;
and for (3.8), dim gí = 38. The result now follows by comparing dimensions of the
complexified fixed subalgebras in [He, pp. 451–455, 518].

4. Quantum Harish-Chandra Modules. In this section we begin the the study of
quantum Harish-Chandra modules for the pair U, Bí. These modules are defined exactly
as in the classical case (see [D, Section 9.1.4]). In particular, we have the following.

DEFINITION 4.1. Let V be a subalgebra of U. A Harish-Chandra module for V is a
U-module which can be written as a direct sum of finite-dimensional simple V-modules.

In the classical case, Harish-Chandra modules arise naturally inside a typical g module
as the sum of all the finite-dimensional simple gí submodules. The proof uses the Hopf
structure, or more precisely, the diagonal map of U( gí). Though Bí satisfies the coideal
property on comultiplication (4.10), it is not enough to make the same argument work
for the pair U, Bí. In this section, using different methods, we prove a quantum analog
for U-modules on which the subgroup T acts semisimply.

One of the basic U-modules is U itself considered as a module using the adjoint
action. Recall [JL1] that U contains a large locally finite subalgebra which we denote
F(U). Note that F(U) is the sum of all the finite-dimensional simple (ad U)-modules
contained in U. As a consequence of our results on general U-modules in this section, it
follows that the (ad U)-module F(U) is the maximal Harish-Chandra module for the pair
U, Bí inside U.

For the purposes of this section, we assume that k = C. The Chevalley anti-
automorphism î on U is a k(q) anti-automorphism of U which sends xi to yi, yi to
xi, and fixes elements of T. Let UR(q) denote the R(q) subalgebra of U generated over
R(q) by xi, yi, and tš1

i for 1 � i � l. The anti-automorphism î can be restricted to the
real quantized enveloping algebra UR(q) and then extended to the anti-automorphism îŁ

of U using complex conjugation“ �". In particular, îŁ(av) = āî(v) where a 2 C and
v 2 UR(q).

Our first goal is to show that any finite-dimensional U-module is a Harish-Chandra
module. We use a twisted version of the quantum Shapovalov form which behaves nicely
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in terms of the Bí action. To define this form, first twist the antiautomorphism îŁ using
elements of hŁ as follows. Set hŁZ = fï 2 hŁ j (ïÒ ãi) 2 Z for each 1 � i � lg. For
ï 2 hŁZ and a vector v of weight å in UR(q), set

(41) îï(v) = q(ïÒå)î(v)

Define îŁï(aw) as āîï(w) where a 2 C and w 2 UR(q).
Let ß denote the Harish-Chandra map of U onto Uo using the direct sum decomposi-

tion U = (UU+
+ + U�

+ U) ý Uo. (Here U+
+ÒU

�
+ denote the augmentation ideals of U+ÒU�

respectively.) Set G� = k(q)[yiti j 1 � i � l] and G+ = k(q)[xiti j 1 � i � l] Note that
îŁï(G�) = G+ and îŁï(G+) = G�.

Recall that finite-dimensional simple U-modules can be parametrized by pairs ç,
(ò1Ò    òl) where ç is a dominant integral weight and (ò1Ò    òl) is a sequence of fourth
roots of unity (see [L] and [R]). In particular, given such a pair ç and (ò1Ò    òl), set Λ
equal to the algebra homomorphism from Uo to C(q) defined by Λ(ti) = òiq(çÒãi). The
corresponding finite-dimensional simple U module L(Λ) is generated by a highest weight
vector vΛ such that xivΛ = 0 and tivΛ = òiq(çÒãi)vΛ for 1 � i � l. It is easy to check that
G�vΛ = L(Λ). Define a conjugate linear form S = SΛ

ï on L(Λ) using îŁï as follows. Set

S(vΛÒ vΛ) = 1 and S( f vΛÒ gvΛ) = Λ
�
ß
�
îŁï( f )g

��
where f and g are elements of G�\UR(q).

It is straightforward to check that S( f wÒ v) = S
�
wÒ îŁï( f )v

�
for any wÒ v in L(Λ) and f 2 U.

When òi = 1 for each i, we simply write L(ç) for the corresponding finite-dimensional
simple module with highest weight vector vç and Sç

ï for the corresponding bilinear form.
The next nondegeneracy result uses specialization to the classical case.

LEMMA 4.2. Let S = SΛ
ï be the conjugate linear form on L(Λ) as described above.

Then S(wÒw) 6= 0 for any nonzero w in L(Λ).

PROOF. Let ç be a dominant integral weight and let ò1Ò    Ò òl be a sequence of
fourth roots of unity. Set Λ equal to the homomorphism from Uo to C(q) such that
Λ(ti) = òiq(çÒãi) for each 1 � i � l.

Note that ß
�
îŁï(a)b

�
2 C(q)[t4

1Ò    Ò t
4
l ] for any choice of aÒ b 2 G�. Since Λ(t4

i ) =
q4(çÒãi) for each i, it follows that SΛ

ï ( f vΛÒ bvΛ) = Sç
ï ( f vçÒ bvç) for each f Ò b 2 G�. Since

G�vΛ = L(Λ), it is sufficient to prove the lemma for simple modules of the form L(ç)
where ç is a dominant integral weight.

Recall the definition of Û (Section 3) and set dL(ç) = Ûvç. Note that dL(ç) specializes to
the simple finite-dimensional U( g)-module L1(ç) with highest weight generating vector
v1 which is the image of vç under specialization (see for example [JL1, Lemma 5.10]).

Let î1 denote the conjugate linear antiautomorphism of U( g) defined by î1(ei) = fi,
î1( fi) = ei, î1(hi) = hi for each 1 � i � l. Write ß1 for the classical Harish-Chandra
map (see, for example, [D, Section 7.4.3]). Define a conjugate linear form S1 on L1(ç) by

S1(v1Ò v1) = 1 and S1( f v1Ò bv1) = ç
�
ß1

�
î1( f )b

��
for f Ò b 2 U( g). Note that S1( fiwÒm) =

S(wÒ eim) and S1(eiwÒm) = S1(wÒ fim) for all wÒm 2 L1(ç) and 1 � i � l. Hence this form
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agrees with the one defined in [K, Section 11.5]. By [K, Theorem 11.7], S1 is positive
definite on L1(ç).

For any b 2 Û, îï(b) specializes to î1(b1) where b1 denotes the specialization of b.
Furthermore for wÒm 2 dL(ç), we have Sï(mÒw) specializes to S1(m1Òw1) where m1Òw1

denotes the images of m and w under specialization. Now consider a nonzero element
w 2 L(ç). Multiplying by a suitable integer power of q�1 we may assume that w 2 dL(ç)
and w Û2 (q � 1) dL(ç). In particular the image w1 of w under specialization is nonzero.
Hence Sï(wÒw) is nonzero since it specializes to S1(w1Òw1) which is positive. It follows
that S(wÒw) 6= 0 for all nonzero w 2 L(ç).

Now choose ï such that (ïÒ ãi) = �(ãí(i)Ò ãi) for each 1 � i � l. Note that

îŁï(Bi) = q�(ãí(i)Òãi)t�1
í(i)yi + q(ãiÒãí(i))t�1

i xí(i)

= yit�1
í(i) + xí(i)t

�1
i = Bi

and hence îŁï(b) = b for all b 2 Bí \ UR(q). It follows that

(42) îŁï(Bí) = Bí

LEMMA 4.3. When k = C, each finite-dimensional simple U-module is a Harish-
Chandra module for the pair UÒBí .

PROOF. Let L = L(Λ) be a finite-dimensional simple U-module and write S for the
corresponding conjugate linear form SΛ

ï on L. Let M be a nonzero Bí submodule of L.
If M = L then we are done. Otherwise set M? = fm 2 L j S(mÒM) = 0g. Recall that
S satisfies S(af vçÒ bvç) = S

�
f vçÒ îŁï(a)bvç

�
for all a 2 U. Using (4.2) it follows that

S(BírÒ s) = S
�
rÒ îŁï(Bí)s

�
= S(rÒBís) for all rÒ s 2 L. Hence M? is a Bí module. By the

previous lemma, S restricted to M is nondegenerate so M \ M? = 0 and M ý M? is
isomorphic to L. Now apply induction to M and M?.

Consider U-modules on which T acts semisimply. The next lemma allows one to
embed finite-dimensional Bí submodules of U-modules which admit a semisimple T
action inside a direct sum of simple finite-dimensional U-modules.

Let k(q)Ł denote the multiplicative group generated by the nonzero elements in k(q).
We expand the notion of weight given in Section 1. Let M be a U-module. For Λ 2
Hom

�
TÒ k(q)Ł

�
, set MΛ = fv 2 M j tiv = Λ(ti)v for all ti, 1 � i � lg Given å 2 hŁ, let

qå denote the element of Hom
�
TÒ k(q)Ł

�
which sends ti to q(åÒãi). (Note that the notation

here differs from the notation defined in Section 1 concerning weight spaces.) We can
extend the standard partial order on weights in hŁ to Hom

�
TÒ k(q)Ł

�
as follows: Λ ½ Λ0

if Λ = qåΛ0 for some å 2 Q+. Now let M be a U-module which admits a semisimple T
action. We can write M = ýMΛ where Λ runs over nonzero elements of Hom

�
TÒ k(q)Ł

�
.

So each element in M can be written as a sum of T weight vectors
P

Λ2Hom
�

TÒk(q)Ł
� vΛ

where vΛ 2 MΛ. Define the support of v by supp(v) = fΛ j vΛ 6= 0g and set max
�
supp(v)

�
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equal to the set of maximal weights in the support of v with respect to the partial order
on Hom

�
TÒ k(q)Ł

�
. Write v̄ for the element

P
Λ2max

�
supp(v)

� vΛ.

LEMMA 4.4. Let M be a U-module such that the action of T on M is semisimple.
Let W be a finite-dimensional Bí submodule of M. Then W generates a semisimple U
submodule of M.

PROOF. Let v 2 W. Choose 1 � i � l. Note that Bm
i v = (xit�1

í(i))
mv̄+ terms of non-

maximal weight. By assumption,fBm
i v j m ½ 0g spans a finite-dimensional vector space.

Now the supports of (xit�1
í(i))

mv̄ are distinct for different choices of m, hence for large m,
(xit�1

í(i))
mv̄ = 0 It follows that for large m, xm

i vΛ = (xit�1
í(i))

mvΛ = 0 for all Λ in the support
of v̄.

Set v1 = v� v̄. Given Λ 2 Hom
�
TÒ k(q)Ł

�
, (Bm

i v̄)Λ is a linear combination of terms of
the form

(43) xm1
i yn1

í(i) Ð Ð Ð xmr
i ynr

í(i)vΛ0

where M =
P

mi, N =
P

ni, qMãi�Nãí(i)Λ0 = Λ, and Λ0 2 supp(v̄). Using the defining
relation (1.3) of Section 1, we have xm1

i yn1
í(i) Ð Ð Ð xmr

i ynr
í(i) 2 UxM�N

i for M ½ N. Hence (4.3)

is zero whenever M � N is large. It follows that supp
�
(xit�1

í(i))
mv̄1

�
has zero intersection

with supp Bm
i v̄ for m large enough. As before, the supports of (xit�1

í(i))
mv̄1 are disjoint for

different choices of m and so (xit�1
í(i))

mv̄1 = 0 for large m. Therefore for m large enough,
xm

i vΛ = (xit�1
í(i))

mvΛ = 0 for all Λ in the support of v̄1. Repeat this argument using the fact
that supp(v) is a finite set to show that xm

i vΛ = (xit�1
í(i))

mvΛ = 0 for very large m and for all
Λ 2 supp(v).

We have shown that for each 1 � i � l, xi acts nilpotently on Tv, the T-module
generated by v, and hence on the T-module TW generated by W. A similar argument
holds for yi.

Recall that F(U) denotes the (maximal) locally finite subalgebra of U (see [JL1]).
Using the Hopf algebra structure on U, it is straightforward to check that aF(U)TW =�
(ad a(1))F(U)

�
a(2)TW for a 2 U. In particular using standard Hopf algebra notation,

properties of Hopf algebras (see for example [JL1, Section 2], and the definition of ad
(see Section 1),

�
(ad a(1))F(U)

�
a(2)TW = a(1)F(U)õ(a(2) )a(3)TW

= a(1)F(U)è(a(2) )TW

= a(1)è(a(2))F(U)TW = aF(U)TW

Given the image of xm
i and ym

i underÅ (see [JL1, Section 3.7]) and the fact that xi and yi

act locally nilpotent on F(U) using the adjoint action, it follows that xi and yi act locally
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nilpotent on F(U)TW. Clearly, T acts semisimply on F(U)TW. Now F(U) Ł (TW) =�
F(U)T

�
Ł W and F(U)T = U by [JL1]. Hence F(U)TW is just the U-module generated

by W and the theorem follows from applying [JL1, Theorem 5.9].
Putting Lemma 4.3 and Lemma 4.4 together yields:

THEOREM 4.5. Assume k = C. Let M be a U-module with a semisimple T action.
Then the sum of all the finite-dimensional simple Bí submodules is a (maximal) Harish-
Chandra module for Bí and equals the sum of all the finite-dimensional simple U
submodules of M.

PROOF. By Lemma 4.4, each simple finite-dimensional Bí submodule is contained
in a direct sum of finite-dimensional simple U submodules of M. By Lemma 4.3, each
of these simple U-modules can be written as a direct sum of finite-dimensional simple
Bí-modules. Hence the sum of all the simple Bí submodules of M is equal to the sum
of all the simple finite-dimensional U submodules of M, which clearly is a U-module. It
follows immediately that this sum is the maximal Harish-Chandra module for the pair
U, Bí contained inside M.

The locally finite part F(U) of U can be realized as a direct sum of all the finite-
dimensional ad U simple submodules of U. Hence Theorem 4.5 implies the following.

COROLLARY 4.6. Assume k = C. The (ad U)-module F(U) is the maximal Harish-
Chandra module for the pair U, Bí inside of U.

REMARK 4.1. The results of this section can be extended to F(Ǔ) the locally finite
part of the simply connected quantized enveloping algebra. For definition of the simply
connected quantized enveloping algebra, see [JL2, Section 3.1]. The reader is also
referred to comments following Remark 8.3 in [JL3].
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