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ON μn-ACTIONS ON K3 SURFACES IN POSITIVE
CHARACTERISTIC

YUYA MATSUMOTO

Abstract. In characteristic 0, symplectic automorphisms of K3 surfaces (i.e.,

automorphisms preserving the global 2-form) and non-symplectic ones behave

differently. In this paper, we consider the actions of the group schemes μn

on K3 surfaces (possibly with rational double point [RDP] singularities) in

characteristic p, where n may be divisible by p. We introduce the notion

of symplecticness of such actions, and we show that symplectic μn-actions

have similar properties, such as possible orders, fixed loci, and quotients, to

symplectic automorphisms of order n in characteristic 0. We also study local

μn-actions on RDPs.
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§1. Introduction

K3 surfaces are proper smooth surfaces X with Ω2
X
∼=OX and H1(X,OX) = 0. The first

condition implies that X admits an everywhere nonvanishing 2-form, and such a 2-form is

unique up to scalar. An automorphism of a K3 surface is called symplectic if it preserves

the global 2-form. It is known that symplectic and non-symplectic automorphisms behave

very differently.

For example, Nikulin [Ni, §§4 and 5] proved that quotients of K3 surfaces in characteristic

0 by a symplectic action of a finite group G has only rational double points (RDPs)

as singularities and that the minimal resolutions of the quotients are again K3 surfaces.

Moreover, he determined the number of fixed points (which are always isolated) if G is

cyclic. To the contrary, the quotients by non-symplectic actions of finite groups are never

birational to K3 surfaces; instead, they are birational to either Enriques surfaces or rational

surfaces.

These results hold in characteristic p > 0 provided p does not divide the order of G (see

Theorem 5.1), but are no longer true for order p automorphisms in characteristic p. In this

case, the notion of symplecticness is useless, since any such automorphism is automatically

symplectic (since there are no nontrivial pth root of unity in characteristic p) and, for small

p, there exist examples of automorphisms with non-K3 quotients (see [DK1], [DK2]).

In this paper, we consider actions of the finite group schemes μn (n may be divisible

by p) on RDP K3 surfaces, by which we mean surfaces with RDP singularities whose

minimal resolutions are K3 surfaces. It is essential to allow RDPs since smooth K3 surfaces

never admit actions of μp (see Remark 2.2). We introduce the notion of symplecticness

and fixed points of such actions (Definitions 2.5 and 2.7). Then we prove the following

properties, which are parallel to the properties of automorphisms of order not divisible by

the characteristic.

Theorem 1.1 (Theorems 6.1 and 6.2). Let X be an RDP K3 surface in characteristic

p, equipped with a μn-action. If the action is symplectic, then the quotient X/μn is an

RDP K3 surface. If n = p and the action is non-symplectic, then the quotient X/μp is an

RDP Enriques surface if the action is fixed-point-free (which is possible only if p= 2), and

otherwise it is a rational surface.

Theorem 1.2 (Theorems 7.1 and 8.2).

• There exists an RDP K3 surface X in characteristic p equipped with a μp-action if and

only if p≤ 19.

• If X is an RDP K3 surface X in characteristic p equipped with a μn-action, then φ(n)≤ 20,

in particular n ≤ 66. Moreover, for each p, we determine the set of n for which such an

action exists.

• For each p, there exists an RDP K3 surface X in characteristic p equipped with a

symplectic μn-action if and only if n≤ 8, and we determine the number of fixed points.

To prove the main results, we first study (in §§3 and 4) μn-actions on local rings of

surfaces at smooth points and RDPs. We define the notion of symplecticness of such actions

(Definitions 3.1 and 4.1) and prove the following result.
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Theorem 1.3 (Theorem 4.6 and Propositions 4.7 and 4.9). Let X be the localization

at a closed point w of an RDP surface in characteristic p equipped with a μp-action. Let

π :X →X/μp be the quotient morphism.

• If w is not fixed by the action, then π(w) is either a smooth point or an RDP.

• If w is fixed and the action is symplectic at w, then w is an isolated fixed point and π(w)

is an RDP.

• If w is an isolated fixed point and the action is non-symplectic at w, then π(w) is a

non-RDP singularity.

We classify the possible actions in the non-fixed case (Table 3) and the symplectic case

(Table 4).

Moreover, we also give a partial classification of local μpe- and μn-actions (Propositions

4.12 and 4.13) and a complete classification of local symplectic μn-actions (Proposition

4.14). We hope that these local results would have applications other than K3 surfaces.

The results on μn-quotients, orders of symplectic μn-actions, and orders of μn-actions on

K3 surfaces are discussed in §§6–8, respectively.
In §9, we give several examples of μn-actions on K3 surfaces.

Throughout the paper, we work over an algebraically closed field k of chark = p ≥ 0.

Varieties are separated integral k -schemes of finite type (not necessarily proper or smooth),

and surfaces are two-dimensional varieties. We denote the smooth locus of a variety X by

Xsm.

§2. Preliminaries

2.1 K3 surfaces and rational double points

RDP singularities of surfaces are precisely the canonical surface singularities that are not

smooth. They are classified into types An (n≥ 1), Dn (n≥ 4), and En (n= 6,7,8) by their

dual graph of the exceptional curves of the minimal resolution, which are Dynkin diagrams

of type An, Dn, or En. The number n is equal to the number of the exceptional curves,

and we say that the RDP is of index n. The dual graph determines the formal isomorphism

class of an RDP except in certain cases in characteristics 2,3,5. For the exceptional cases,

we use Artin’s notation Dr
n and Er

n (see [A2]).

We recall the classification, given by Bombieri and Mumford [BM2], of proper smooth

surfaces X with numerically trivial canonical divisor KX : they consist of four classes, with

the characterizing properties as reported in Table 1. Here, bi = dimHi
ét(X,Ql) is the ith

l -adic Betti number for an auxiliary prime l �= chark. Enriques and (quasi-)hyperelliptic

surfaces in characteristics 2 and 3 may have unusual values of dimH1(OX) and ord(KX).

The distinction between hyperelliptic and quasi-hyperelliptic surfaces is not important

in this paper. Furthermore, the choice of the origin of an abelian surface is not important.

Definition 2.1. RDP surfaces are surfaces that have only RDPs as singularities (if

any). Hence, any smooth surface is an RDP surface by definition.

RDP K3 surfaces are proper RDP surfaces whose minimal resolutions are (smooth) K3

surfaces. We similarly define RDP abelian, RDP Enriques, and RDP (quasi-)hyperelliptic

surfaces.

However, since abelian surfaces and (quasi-)hyperelliptic surfaces do not admit smooth

rational curves, any RDP abelian or RDP (quasi-)hyperelliptic surface is smooth.
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Table 1. Surfaces with numerically trivial canonical divisors.

dimH1(OX) b1 b2 ord(KX) char

Abelian 2 4 6 1 Any
K3 0 0 22 1 Any
Enriques 0 0 10 2 Any
Enriques 1 0 10 1 2
(Quasi-)hyperelliptic 1 2 2 2,3,4,6 Any
(Quasi-)hyperelliptic 2 2 2 1 2,3

Remark 2.2. Smooth K3 surfaces in characteristic p > 0 admit no nontrivial global

vector fields ([RS, Th. 7], [Ny1, Cor. 3.5]), and hence admit no nontrivial actions of μp (or

αp). However, RDP K3 surfaces may admit such actions.

Proposition 2.3. For any RDP surface X, the pullback by the morphism Xsm ∼=
X̃ \E ↪→ X̃ to the minimal resolution X̃ of X induces an isomorphism H0(Xsm,(Ω2

X)⊗n)∼=
H0(X̃,(Ω2

X̃
)⊗n), where E is the exceptional divisor. Nonvanishing forms on one side

correspond to nonvanishing ones on the other side.

Proof. This follows from the following local version applied repeatedly.

Proposition 2.4. Let (A,m) be the localization at a closed point of an RDP surface.

Then H0(SpecA\{m},Ω2
A/k) is a free A-module of rank 1. If A is smooth, then this space

is isomorphic to H0(SpecA,Ω2
A/k). If A is an RDP and (A′,m′) is the localization at a

closed point of BlmA, then any generator of the above space extends to a generator of

H0(SpecA′ \{m′},Ω2
A′/k).

Proof. If A is smooth, then Ω2
A/k is free of rank 1 and the assertion is clear. Suppose A

is an RDP. Then it is a hypersurface isolated singularity, and it is well known that for such

singularities, the canonical divisor is trivial, and then the former assertion follows. Since an

RDP is a canonical singularity, the pullback of the canonical divisor to BlmA is also trivial,

and hence the latter assertion follows.

2.2 Group schemes of multiplicative type

Recall that we are working over an algebraically closed field k.

We consider finite commutative group schemes G of multiplicative type over k. This

means that G is of the form
∏

j μnj for some positive integers nj . The Cartier dual

G∨ = Hom(G,Gm) of G is a finite étale group scheme and can be identified with the

finite group G∨(k) of k -valued points. Using this finite commutative group G∨, we have

the following explicit description: G = Speck[ti]i∈G∨/(titj − ti+j , t0 − 1), with the group

operations m : G×G → G, e : Speck → G, i : G → G given by m∗(ti) = ti⊗ ti, e
∗(ti) = 1,

i∗(ti) = t−i.

An action α : G × SpecB → SpecB corresponds, via α∗(b) =
∑

i∈G∨ ti ⊗ pri(b), to

decompositions B =
⊕

i∈G∨ Bi to k -vector subspaces satisfying BiBj ⊂ Bi+j . We say an

element b or a subset of Bi to be homogeneous of weight i and we write wt(b) = i.

Such a decomposition B =
⊕

iBi naturally extends to a decomposition Ω∗
B/k =⊕

i(Ω
∗
B/k)i satisfying d(Bi)⊂ (Ω1

B/k)i and (Ω∗
B/k)i(Ω

∗
B/k)j ⊂ (Ω∗

B/k)i+j .

If G acts on a scheme X that is not necessarily affine but admits a covering by G-stable

affine open subschemes (which is the case if, e.g., X is quasi-projective or G is local),
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then the G-action admits a quotient π : X → X/G, and induces decompositions π∗OX =⊕
i(π∗OX)i, π∗Ω

∗
X/k =

⊕
i(π∗Ω

∗
X/k)i, and H0(X,(Ω∗

X/k)
⊗n) =

⊕
i(H

0(X,(Ω∗
X/k)

⊗n))i,

compatible with multiplications.

If chark does not divide the order of G∨, then Bi are the eigenspaces for the action of

G(k) with eigenvalues i ∈G∨(k) = Hom(G(k),k∗).

If chark = p > 0 and G∨ is cyclic of order p (hence G ∼= μp = Speck[t1]/(t
p
1 − 1) for a

choice of a generator 1 of G∨), then giving such a decomposition is also equivalent to giving

a k -derivation D on B of multiplicative type (i.e., Dp =D) under the correspondence Bi =

BD=i = {b ∈B |D(b) = ib} (this correspondence depends on the choice of a generator 1 of

G∨). Moreover, D extends to a k -linear endomorphism on Ω∗
B/k satisfying D(df) = d(D(f)),

Dp =D, and the Leibniz rule D(ω∧η) = ω∧D(η)+D(ω)∧η.

Now, we generalize the notion of symplecticness of automorphisms to actions of group

schemes like μn.

Definition 2.5. Let G be a finite group scheme of multiplicative type. Let X be either

an abelian surface or an RDP K3 surface, equipped with an action of G. We say that the

action is symplectic if the one-dimensional space H0(Xsm,Ω2
X/k) with respect to the action

of G is of weight 0.

Remark 2.6. Under the assumptions of Definition 2.5, suppose G is reduced. Equiv-

alently, this means that G is a constant group scheme corresponding to a finite abelian

group of order prime to p. Then, by Proposition 2.3, our symplecticness is equivalent to

the symplecticness of the induced G-action on the minimal resolution X̃ in the usual sense

(i.e., preserving the global 2-form). This suggests that our definition of the symplecticness

of μn-actions is a natural generalization of that of Z/mZ-actions (order m automorphisms)

for m not divisible by chark.

On the other hand, if G = Z/pZ (which does not belong to the class considered in

Definition 2.5), then any action ofG preserves the global 2-form, since there are no nontrivial

pth roots of unity. Thus, the usual definition of symplecticness is useless in this case. We

do not know whether there is a useful notion of symplecticness in a larger class of group

schemes containing Z/pZ or αp.

2.3 Derivations of multiplicative type

In this section, assume that chark = p > 0.

Recall that, given an action of a group scheme G on a scheme X, the fixed point

scheme XG ⊂X is characterized by the property XG(T ) = HomG(T,X) for any k -scheme

T equipped with the trivial G-action. If G= μp and D is the corresponding derivation, we

write Fix(D) =XG and also call it the fixed locus of D.

Definition 2.7. We say that a closed point w ∈X is fixed by the μn-action, or by the

corresponding derivation if n= p, if w ∈Xμn .

Proposition 2.8. Let k be an algebraically closed field. Let X =SpecB be a Noetherian

affine k-scheme equipped with a μpe-action. For each closed point w ∈X, the assertions (1)–

(4) are equivalent. If e=1 and D is the corresponding derivation, then the assertions (1)–(6)

are equivalent, and if moreover X is a smooth variety, then (7) is also equivalent.

1. w is a μpe-fixed point.

2. The maximal ideal mw of OX,w is generated by homogeneous elements.
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3. The canonical morphism B → B/mw is μpe-equivariant, where B/mw is equipped with

the trivial action (i.e., the decomposition concentrated on (−)0).

4. Bi ⊂mw for each i �= 0.

5. D(mw)⊂mw.

6. D(OX,w)⊂mw.

7. D has singularity at w in the sense of [RS, §1].

Finally, if (1) holds, then the μpe-action extends to the blowup BlwX.

Proof. Let B =
⊕

i∈Z/peZ
Bi be the corresponding decomposition.

(1 ⇐⇒ 3) By the definition of Xμp , a closed point w ∈X is a (k -valued) point of Xμp

if and only if B → B/mw is compatible with the projections pri to the ith summand (−)i
for all i, where B/mw is equipped with the trivial decomposition.

(2 ⇐⇒ 3) If (3) holds, then we have pri(mw) ⊂ mw for all i, and then each element x

of mw is the sum of homogeneous elements pri(x) ∈mw. Conversely, if mw is generated by

homogeneous elements, then pri(mw)⊂mw for all i, which implies (3).

(3 ⇐⇒ 4) Easy.

Assume e= 1.

(2 ⇐⇒ 5) Assume D(mw) ⊂ mw. Take a system of generators (xj) of mw. For each j,

let xj =
∑

i∈Fp
xj,i be the decomposition of xj in B =

⊕
iBi. Then Dl(xj) =

∑
i i

lxj,i is

also in mw. Since the matrix (il)p−1
i,l=0 is invertible, this implies that xj,i ∈ mw. Thus mw is

generated by eigenvectors. The converse is clear.

(5 ⇐⇒ 6) This is clear since OX,w =mw+k and D|k = 0.

(5 ⇐⇒ 7) Take coordinates x1, . . . ,xn at a point w and write D =
∑

j fj · (∂/∂xj). Then

both of the conditions are equivalent to (fj)⊂mw.

We show the final assertion assuming (2). If the maximal ideal m is generated by

homogeneous elements xj ∈ Bij , then, for each j, we can extend the action on the affine

piece SpecB[xh/xj ]h of BlwX by declaring xh/xj to be homogeneous of weight ih− ij .

The next lemma enables us to take useful coordinates at a point not fixed by D.

Lemma 2.9. If B is a Noetherian local ring, D is a derivation of multiplicative type, and

the closed point is not fixed by D, then the maximal ideal m of B is generated by elements

x1, . . . ,xm−1,y with wt(xj) = 0 and wt(1+y) = 1. If m is generated by n elements, then we

can take m= n. If dimB ≥ 2, then D does not extend to a derivation of the blowup BlmB.

Proof. Recall that a subset of m generates m if and only if it generates m/m2.

Take elements x′
1, . . . ,x

′
m generating m, and let x′

j =
∑

i∈Fp
x′
j,i be the decompositions to

eigenvectors. By assumption, there exists a pair (j, i) with x′
j,i �∈m. We take such j0, i0, and

we may assume i0 �= 0. We may assume x′
j0,i0

−1∈m. Then y = x′
j0,i0

−1 satisfies y ∈m and

D(y) = i0(y+1). We have y �∈m2, since D(m2)⊂m. By replacing y with (y+1)q−1 for an

integer q with qi0 ≡ 1(mod p), we may assume i0 = 1. For each j, let xj =
∑

i(y+1)−ix′
j,i.

Then we have D(xj) = 0 and, since xj ≡ x′
j(mod (y)), the elements xj ,y generate m/m2 and

hence generate m. We can omit one of the xj ’s and then the remaining elements satisfies

the required conditions (after renumbering).

To show the latter assertion, it suffices to show that D does not extend to B′ :=B[xj/y]j .

If it extends, then we have D(xj/y) = −xj(y+1)/y2 ∈ B′, hence xj/y
2 ∈ B′, and then on

SpecB′ we have that y = 0 implies xj/y = 0, which is impossible since dimB′ ≥ 2.
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Before stating the next proposition, we recall the following notion from [RS]. Assume X

is a smooth irreducible variety and D is a nontrivial derivation. Then Fix(D) consists of its

divisorial part (D) and non-divisorial part 〈D〉. If we write D = f
∑

i gi
∂

∂xi
for some local

coordinates x1, . . . ,xm with gi having no common factor, then (D) and 〈D〉 correspond to

the ideals (f) and (gi), respectively. If D is of multiplicative type with 〈D〉 = ∅, then it

follows from Proposition 2.8 that for suitable coordinates near any fixed point, we have

D = axm · (∂/∂xm) and that Fix(D) is a smooth divisor (possibly empty).

Assuming that Fix(D) is divisorial, in which case the quotient is a smooth variety by

[S, Prop. 6], the highest differential forms on smooth loci of X and XD are related in the

following way.

Proposition 2.10. Let X be a smooth variety of dimension m (not necessarily proper)

equipped with a nontrivial derivation D of multiplicative type such that Fix(D) is divisorial.

Let Δ be the divisor Fix(D). Then there is a unique collection of isomorphisms

(π∗(Ω
m
X/k(Δ))⊗n)0 ∼= (Ωm

XD/k(π∗(Δ)))⊗n

for all integers n, compatible with multiplication, preserving the zero loci, and sending (for

n= 1)

f0 ·df1∧· · ·∧dfm−1∧d log(fm) �→ f0 ·df1∧· · ·∧dfm−1∧d log(fp
m)

if f0, . . . ,fm−1 are homogeneous of weight 0 and fm is homogeneous of some weight (not

necessarily 0).

In particular, if the action is fixed-point-free, then we have isomorphisms

(π∗(Ω
m
X/k)

⊗n)0 ∼= (Ωm
XD/k)

⊗n and

H0(X,(Ωm
X/k)

⊗n)0 ∼=H0(XD,(Ωm
XD/k)

⊗n)

with the same properties.

Proof. The isomorphism for n= 0 is clear. It suffices to construct the isomorphism for

n= 1 that is compatible with multiplication with n= 0 forms and with restriction to open

subschemes.

Take a closed point w ∈ X. Let ε = 1 (resp. ε = 0) if w �∈Δ (resp. w ∈Δ). By Lemma

2.9 (resp. by [RS, Th. 1]), there are coordinates x1, . . . ,xm on a neighborhood of w with

D(xj) = 0 for j < m and D(xm) = a(ε+xm) for some a ∈ F∗
p. We define

φ : (π∗(Ω
m
X/k(Δ)))0 → Ωm

XD/k(π∗(Δ))

f ·dx1∧· · ·∧dxm−1∧d log(ε+xm) �→ f ·dx1∧· · ·∧dxm−1∧d log(ε+xp
m)

for f of weight 0 (note that dx1 ∧ · · · ∧ dxm−1 ∧ d log(ε+ xm) is a local generator of the

left-hand side). We show that then φ sends

f0 ·df1∧· · ·∧dfm−1∧d log(fm) �→ f0 ·df1∧· · ·∧dfm−1∧d log(fp
m)

for any f0, . . . ,fm−1 and fm as in the statement. This implies that φ does not depend on

the choice of the coordinates and hence that φ induces a well-defined morphism of sheaves.

Then since dx1∧· · ·∧dxm−1∧d log(ε+xm) (resp. dx1∧· · ·∧dxm−1∧d log(ε+xp
m)) is a local

generator of (Ωm
X/k(Δ))0 (resp. Ω

m
XD/k(π∗(Δ))), it follows that φ is an isomorphism and φ⊗n

are well-defined isomorphisms.
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18 Y. MATSUMOTO

We may pass to the completion, so consider fh ∈ k[[x1, . . . ,xm]]. By the assumption on the

weight, we have fh ∈ k[[x1, . . . ,xm−1,x
p
m]] for h <m and fm ∈ (ε+xm)bk[[x1, . . . ,xm−1,x

p
m]]

for some 0 ≤ b < p. Then we have ∂fh/∂xm = 0 for h < m and ∂fm/∂xm = bfm/(ε+xm).

Hence, we have

f0 ·df1∧· · ·∧dfm−1∧d log(fm)

= f0((ε+xm)/fm)det(∂fh/∂xj)1≤h,j≤m ·dx1∧· · ·∧dxm−1∧d log(ε+xm)

= bf0det(∂fh/∂xj)1≤h,j≤m−1 ·dx1∧· · ·∧dxm−1∧d log(ε+xm)

φ�→ bf0det(∂fh/∂xj)1≤h,j≤m−1 ·dx1∧· · ·∧dxm−1∧d log(ε+xp
m).

On the other hand, in the invariant subalgebra k[[x1, . . . ,xm−1,x
p
m]], we have ∂fp

m/∂xj = 0

for j < m and ∂fp
m/∂xp

m = bfp
m/(ε+xp

m). Hence, we have

f0 ·df1∧· · ·∧dfm−1∧d log(fp
m)

= · · ·= bf0det(∂fh/∂xj)1≤h,j≤m−1 ·dx1∧· · ·∧dxm−1∧d log(ε+xp
m).

The assertion follows.

We will give another abstract proof of Proposition 2.10 in [Mat3, Prop. 2.12].

2.4 Global properties of derivations

Lemma 2.11. Let C ⊂ P2 be a quadratic curve (not necessarily irreducible nor reduced)

in characteristic p, and let D be a p-closed derivation. Then Fix(D) �= ∅.
Proof. Suppose C is integral. Then C ∼= P1 and the result is well known (indeed, TP1

∼=
OP1(2)).

Suppose C is reducible. We may assume C = (xy = 0). Let U = Speck[x,y]/(xy). Then

TU = (x d
dx −y d

dy ) ·OU and hence the origin belongs to Fix(D).

Suppose C is non-reduced. We may assume C = (X2
3 = 0). If p �= 2, then D induces a

derivation Dred on Cred
∼= P1, and we have Fix(D) ≈ Fix(Dred) �= ∅. Suppose p = 2. It is

easy to see that H0(C,TC)
∼→ H0(C,TP2 |C) ∼← H0(P2,TP2). Hence, there exist f1,f2,f3 ∈

H0(P2,O(1)) =
⊕3

i=1 kXi such that D
(
Xi

Xj

)
= fi

Xj
− Xifj

X2
j
. If f3 ∈ kX3, then D induces

a derivation Dred on Cred
∼= P1, and we conclude as above. Suppose f3 �∈ kX3. By a

coordinate change, we may assume f3 −X2 ∈ kX3. Letting xi = Xi/X1 (i = 2,3) and

restricting to Speck[x2,x3]/(x
2
3) = (X1 �= 0) ⊂ C, we have D(x3)−x2 ∈ (x3), in particular

D(x3) ∈ m := (x2,x3). If D(x2) ∈ m, then the origin is a fixed point. Suppose D(x2) �∈ m

and D2 = hD. Then h = D2(x2)/D(x2) ∈ Om, and hence D(x2) ≡ D2(x3) = hD(x3) ≡ 0

(mod m), contradiction.

Corollary 2.12. Suppose μp acts on an RDP surface X and fixes an RDP w. Then

the action extends to the blowup BlwX and there exists a fixed point above w.

Proof. The action extends to the blowup by Proposition 2.8. Let D′ be the induced

derivation on BlwX. Let C ⊂ BlwX be the (possibly non-reduced) exceptional divisor,

which is a quadratic curve in P2 since w is an RDP. Since D′(IC) ⊂ IC , D′ induces a

derivation D′
C (of multiplicative type) on C. By Lemma 2.11, D′

C has at least one fixed

point, and that point is also a fixed point of D′.

Later we will also need the following Katsura–Takeda formula on rational vector fields

(i.e., derivations on the fraction field k(X)). For a rational derivation D locally of the form
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f−1D′ for some regular function f and (regular) derivation D′, we define the divisorial and

nondivisorial parts by (D) = (D′)−div(f) and 〈D〉= 〈D′〉.
Proposition 2.13 [KT, Prop. 2.1]. Let X be a smooth proper surface, and let D be a

nonzero rational vector field. Then we have

degc2(X) = deg〈D〉−KX · (D)− (D)2.

§3. Tame symplectic actions on RDPs

Hereafter, all action of groups and group schemes on schemes are assumed faithful.

Throughout this section, we work under the following setting. B=OX,w is the localization

of an RDP surface X over an algebraically closed field k at a closed point w (either a smooth

point or an RDP), m ⊂ B is the maximal ideal, G is a finite group acting on X, and the

action restricts to SpecB. Assume that the order of G is not divisible by p= chark.

Definition 3.1. We say that the G-action on B is symplectic if it acts on the one-

dimensional k -vector space H0(SpecB \{m},Ω2
B/k)⊗B (B/m) trivially.

If G = Z/pZ, then any action is symplectic (cf. Remark 2.6), and hence the notion is

useless in this case.

Remark 3.2. If B is as above and the G-action is symplectic, then the rank-1 free

B -module H0(SpecB \ {m},Ω2
B/k) admits a generator ω that is G-invariant. Indeed, take

a generator ω′, then ω := (1/|G|)
∑

g∈G g∗ω′ is clearly G-invariant and it is nonvanishing,

since it is nonvanishing after ⊗(B/m).

Remark 3.3. If X is an RDP K3 surface and w ∈X is a fixed closed point, then this

is consistent with the usual notion of symplecticness, since a generator of H0(Xsm,Ω2) ∼=
H0(X̃,Ω2) (Proposition 2.3) restricts to a generator of this one-dimensional space. Thus,

the symplecticness of an automorphism of an RDP K3 surface can be checked locally at

any fixed point (if there exists any). The same for abelian surfaces.

Proposition 3.4. Let B and G be as above (in particular, the order of G is not divisible

by p= chark). Then the invariant ring BG is again the localization at a closed point of an

RDP surface.

Let X̃ →X be the minimal resolution at w. Then X̃/G→X/G is crepant.

Proof. Let ω be a generator of the rank-1 free B -module H0(SpecB \ {m},Ω2
B/k). By

Remark 3.2, we may assume ω is G-invariant. The action of G on X induces an action on

X̃, and ω extends to a regular nonvanishing 2-form on X̃. At each closed point w′ ∈ X̃, the

stabilizer Gw′ ⊂G acts on Tw′X̃ via SL2(k) since G preserves ω. Hence, the quotient X̃/G

has only RDPs as singularities. Since ω is preserved by G, it induces a regular nonvanishing

2-form on (X̃/G)sm, and since RDPs are canonical singularities, it extends to a regular

nonvanishing 2-form on ˜̃X/G, the minimal resolution of X̃/G above w. Thus, BG is a

canonical singularity, that is, either a smooth point or an RDP.

Remark 3.5. We [Mat1, Prop. 3.8] described possible symplectic actions of finite tame

groups on RDPs. For actions of cyclic groups G = Z/nZ (n > 1), we have a complete

classification: possible n and the types of X and X/G are listed in Table 2.

Remark 3.6. Singularities of quotients by order p automorphisms in characteristic

p > 0 tends to be worse than those in characteristic �= p. For example, the quotient of a
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Table 2. Tame symplectic cyclic actions on RDPs.

n= |G| X X/G

Any Am−1 Amn−1

2 Am−1 (m≥ 4 even) Dm/2+2

4 Am−1 (m≥ 3 odd) Dm+2

3 D4 (p �= 2) E6

3 Dr
4 (p= 2, r = 0,1) Er

6

2 Dm+2 D2m+2

2 E6 (p �= 3) E7

2 Er
6 (p= 3, r = 0,1) Er

7

supersingular abelian surface in characteristic 2 by the automorphism x �→ −x is a rational

surface with an elliptic singularity [Ka, Th. C].

§4. μn-actions on RDPs and quotients

Throughout this section, we work under the following setting. B=OX,w is the localization

of an RDP surface X over an algebraically closed field k of characteristic p≥ 0 at a closed

point w (either a smooth point or an RDP), m ⊂ B is the maximal ideal, n is a positive

integer possibly divisible by p, μn acts on X, and the action restricts to SpecB. (Note that

w is not necessarily fixed by μn.)

If n= p > 0, then the corresponding derivation of multiplicative type is denoted by D.

4.1 Symplecticness of μn-actions

Assume w is fixed by the μn-action. Then the action on B induces an action on V :=

H0(SpecB \ {m},Ω2
B/k)⊗B (B/m), that is, a decomposition V =

⊕
i∈Z/nZVi of k -vector

spaces. Since dimkV = 1, V is equal to one of the summands. In other words, V is of some

weight i0 ∈ Z/nZ.

Definition 4.1. We say that the μn-action, or the corresponding derivation if n = p,

on B is symplectic if V is of weight 0.

We say that a μn-action, or a derivation D of multiplicative type, on an RDP surface

X is symplectic at a fixed closed point w if the induced action or derivation on OX,w is

symplectic in the above sense.

Remark 4.2. If p �n, then μn is (noncanonically) isomorphic to Z/nZ and this definition

is consistent with Definition 3.1.

Remark 4.3 (cf. Remark 3.2). If B is as above and V is of weight i0, then the rank-1

free B -module H0(SpecB \ {m},Ω2
B/k) admits a generator ω of weight i0. Indeed, take a

generator ω′, let ω′ =
∑

iω
′
i be its decomposition, and write ω′

i = fiω
′ with fi ∈ B. Since∑

fi = 1, there exists i1 ∈ Z/nZ with fi1 ∈B∗. Then i0 = i1 and hence we can take ω = ω′
i1
.

If n= p, then this means D(ω) = i0ω.

From this, it follows that if μn acts on an RDP surface, then the weight i0 is a locally

constant function on the fixed locus.

Remark 4.4 (cf. Remark 3.3). If X is an RDP K3 surface and w ∈X is a fixed closed

point, then the action is symplectic in the sense of Definition 2.5 if and only if action

is symplectic at w, since a generator of H0(Xsm,Ω2) restricts to a generator of this one-
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dimensional space. Thus, the symplecticness of a μn-action on an RDP K3 surface can be

checked locally at any fixed point (if there exists any). The same for abelian surfaces.

Lemma 4.5. Suppose the closed point w of B is fixed under the μn-action. Then B

is generated by 2 or 3 homogeneous elements, respectively, if B is smooth or an RDP.

Moreover:

1. If B is smooth and generated by elements x,y of respective weights a,b, then the action

is symplectic if and only if a+ b= 0 (in Z/nZ).
2. If B is an RDP and generated by x,y,z of respective weights a,b,c, then there is d∈Z/nZ

and a homogeneous power series F ∈ k[[x,y,z]] of weight d such that B̂ ∼= k[[x,y,z]]/(F ).

The action is symplectic if and only if a+ b+ c= d.

Proof. The first assertion follows from Proposition 2.8.

(1) H0(SpecB \{m},Ω2
B/k) is generated by dx∧dy, which is of weight a+ b.

(2) Take an element H ∈ k[[x,y,z]] such that B̂ = k[[x,y,z]]/(H), and let H =
∑

i∈Z/nZHi

be the decomposition with respect to the μn-action. Since H = 0 in B̂, we have Hi = 0 in

B̂, and hence there are fi ∈ k[[x,y,z]] such that Hi = fiH. Since
∑

fi = 1, there exists

d ∈ Z/nZ with fd ∈ k[[x,y,z]]∗. We can take F =Hd, which is of weight d.

Then H0(SpecB̂ \ {m},Ω2
B̂/k

) is generated by ω = F−1
x dy∧dz = F−1

y dz∧dx = F−1
z dx∧

dy (this means that the restriction of ω to the open subscheme SpecB̂[F−1
x ] is equal to

F−1
x dy∧ dz, and so on), and we have wt(ω) = a+ b+ c− d since wt(F−1

x ) = −(d−a) and

wt(dy∧dz) = b+ c, and so on.

4.2 μp-actions on RDPs

As noted in §2.3, we know by [S, Prop. 6] (see also [RS, Th. 1 and Corollary]) that the

quotient of a smooth variety by a μp-action with no isolated fixed point is smooth. We

need to consider, more generally, the quotients of surfaces with RDP singularities and with

isolated fixed points.

Let OX,w and μn be as in the beginning of §4, and suppose n= p. Let π : X → Y =X/μp

be the quotient morphism.

Theorem 4.6.

1. Assume w is non-fixed. If w is a smooth point, then π(w)∈ Y is also a smooth point. If w

is an RDP, then π(w) is either a smooth point or an RDP. In either case, X×Y Ỹ →X

is crepant, where Ỹ → Y is the minimal resolution at π(w).

2. If w is fixed and the action is symplectic at w, then w is an isolated fixed point and π(w)

is an RDP.

3. If w is an isolated fixed point and the action is non-symplectic at w, then π(w) is a

non-RDP singularity.

First, we consider non-symplectic actions on isolated fixed points.

Proof of Theorem 4.6(3). By Proposition 2.10, we have an isomorphism

(H0(SpecOX,w \{w},Ω2))0 ∼=H0(SpecOY,π(w) \{π(w)},Ω2)
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Table 3. Non-fixed μp-actions on RDPs.

p equation X Y =XD X×Y Ỹ

Any xy+zmp (m≥ 2) Amp−1 Am−1 mAp−1

Any xy+zp Ap−1 Smooth —
5 x2+y3+z5 E0

8 Smooth —
3 x2+z3+y4 E0

6 Smooth —
3 x2+y3+yz3 E0

7 A1 E0
6

3 x2+z3+y5 E0
8 Smooth —

2 z2+x2y+xym (m≥ 2) D0
2m Smooth —

2 x2+yz2+xym (m≥ 2) D0
2m+1 A1 D0

2m

2 x2+xz2+y3 E0
6 A2 D0

4

2 z2+x3+xy3 E0
7 Smooth —

2 z2+x3+y5 E0
8 Smooth —

preserving the zero loci of 2-forms. If π(w) is either a smooth point or an RDP, then

the right-hand side has a nonvanishing 2-form and hence there is a nonvanishing form ω

on SpecOX,w \ {w} of weight 0. Being nonvanishing, ω is a generator of H0(SpecOX,w \
{w},Ω2). However, this contradicts the non-symplecticness assumption.

Next, we consider non-fixed points. In fact, we can classify all possible actions and give

explicit equations.

Proposition 4.7. Assume w is not fixed.

• If w is a smooth point, then there are coordinates x,y of OX,w satisfying D(x) = 0 and

D(y) �= 0, and hence OY,π(w) has x,yp as coordinates and in particular π(w) is a smooth

point.

• If w is an RDP, then there is an element F ∈ k[[x,y,zp]] and an isomorphism ÔX,w
∼=

k[[x,y,z]]/(F ) with D(x) =D(y) = 0 and D(z) �= 0, and hence ÔY,π(w)
∼= k[[x,y,zp]]/(F ).

Moreover, we can take F to be one in Table 3.

Proof of Theorem 4.6(1) and Proposition 4.7. If w is a smooth point, then taking

coordinates x,y as in Lemma 2.9 (i.e., D(x) = 0 and D(y) = 1+ y), we have ÔY,π(w)
∼=

k[[x,yp]], and hence OY,π(w) is smooth.

Assume w is an RDP. By Lemma 2.9, we have coordinates x,y,z satisfying D(x) =

D(y) = 0 and D(z) �= 0. We have ÔX,w
∼= k[[x,y,z]]/(F ) for some F ∈ k[[x,y,z]] such that

D(F ) ∈ (F ), and we may assume F ∈ k[[x,y,zp]]. We show that, after replacing F with a

multiple by a unit, and after a coordinate change of k[[x,y,z]] that preserves the subring

k[[x,y,zp]], F coincides with one in Table 3. (Such coordinate changes are given by x′,y′, z′ ∈
m that are linearly independent in m/m2 and satisfy x′,y′ ∈ m∩ k[[x,y,zp]].) A similar

classification is given in [EH+, Prop. 3.8], but they missed the case of E0
7 in characteristic 3.

Assume the classification for the moment. Then, in each case, we observe that π(w) is

either a smooth point or an RDP, and it is straightforward to check that X×Y Ỹ is an RDP

surface crepant over X. (In Table 3, the entries of the singularities of X×Y Ỹ are omitted

if Y is already smooth.) For example, consider X = Speck[x,y,z]/(F ), F = xy+ zmp with

m≥ 2. Then X ′ :=X×Y Blπ(w)Y is covered by three affine pieces

https://doi.org/10.1017/nmj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.20


ON μN -ACTIONS ON K3 SURFACES IN POSITIVE CHARACTERISTIC 23

X ′
1 = Speck[x,y1,v1, z]/(y1+xm−2vm1 ,xv1−zp), y1 = y/x, v1 = zp/x,

X ′
2 = Speck[x2,y,v2, z]/(x2+ym−2vm2 ,yv2−zp), x2 = x/y, v2 = zp/y,

X ′
3 = Speck[x3,y3, z]/(x3y3+z(m−2)p), x3 = x/zp, y3 = y/zp.

One observes that Sing(X ′) consists of two RDPs of type Ap−1 at the origins of X ′
1 and X ′

2

and, if m≥ 3, one RDP of type A(m−2)p−1 at the origin of X ′
3. Repeating this, we observe

that X×Y Ỹ has mAp−1.

Now, we show the classification. We say that F has a monomial if the coefficient of that

monomial is nonzero. We also write F =
∑

h,i,j ahijx
hyizj .

First, assume p > 2. We may assume that the degree 2 part F2 is either xy or x2.

Assume F2 = xy. We may assume that F has no xzj and yzj . F must have zj , j = mp,

and then it is Amp−1. Then, by replacing x with x+a0ijy
i−1zj and y with y+ah0jx

h−1zj ,

and so on, we may assume that F has no yizj with i > 0 and no xhzj with h > 0. Thus,

F = u1xy+u2z
mp for some units u1,u2, and then by replacing x,y,F by suitable multiples,

we obtain F = xy+zmp.

Assume p > 3 and F2 = x2. We may assume that the degree 3 part F3 is y3. If p ≥ 7,

it cannot be an RDP. If p = 5, then F must have z5, and then it is E0
8 . We have

F = u1x
2 + u2y

3 + u3z
5, and then by replacing x,y,F by suitable multiples, we obtain

F = x2+y3+z5. (For example, we let F = u3F
′, x= (u3u

−1
1 )1/2x′, y = (u3u

−1
2 )1/3y′. Note

that we can take nth roots of units provided p � n.)
Assume p = 3 and F2 = x2. We may assume F3 = y3 or F3 = z3. If F3 = z3, then

F must have y4 or y5, and then it is E0
6 or E0

8 . We may assume a130 = a140 = 0 by

replacing x with x+(1/2)(a130y
3+a140y

4), and then we transform F as above. If F3 = y3,

then F must have yz3 and then it is E0
7 . We eliminate a1ij as above, then we have

F = u1x
2+u2y

3+u3yz
3+z6g(z3) for some power series g ∈ k[[z3]]. We may assume ui ≡ 1

(mod m). We eliminate g by replacing y with y+z3g, and then we transform F as above.

Now, consider p= 2. We may assume F2 is one of xy+z2 (if irreducible), xy (if reducible

but not a square), z2, or x2 (square, of a linear factor containing z or not). If F2 = xy+z2

or F2 = xy, then as above, it is Amp−1 and F becomes xy+zmp.

Assume p=2 and F2 = x2. If F3 has yz
2, then F must have xym and then it is D0

2m+1. We

obtain F = u1x
2+u2yz

2+u3xy
m+z4g(z)+f(y)+y2mg′(y), where f(y) = f0(y)

2+yf1(y)
2

is a polynomial of degree < 2m, g(z) ∈ k[[z]], and g′(y) ∈ k[[y]]. We may assume ui ≡ 1

(mod m). We eliminate f by replacing x with x+f0(y) and z with z+f1(y) and so on. Then

we eliminate g and g′ by replacing y and x suitably, and take multiples by units as above.

If F3 has no yz2, then F must have y3 and xz2 and then it is E0
6 . We obtain F = u1x

2+

u2y
3+u3xz

2+ay2z2+z4g, g= g0(z
2)+yg1(z

2)+y2g2(z
2). We may assume ui ≡ 1(mod m).

We eliminate a and g by replacing y and x suitably, and then we transform F as above.

Assume p = 2 and F2 = z2. Let F3 = (F3 mod (z)) ∈ k[[x,y]]. If F3 has three distinct

roots, then we may assume F3 = x3 + y3 and then it is D0
4. We can transform F to

z2 + x3 + y3 as above, and then to z2 + x2y + xy2. If F3 has two distinct roots, then

we may assume F3 = x2y and F must have xym and then it is D0
2m. We obtain

F = u1z
2 + u2x

2y + u3xy
m + g(x) + f(y) + y2m−1g′(y), where f(y) = f0(y)

2 + yf1(y)
2 is

a polynomial of degree < 2m− 1 and g ∈ k[[x]] and g′ ∈ k[[y]]. We argue as in the case of

D0
2m+1. If F3 has one (triple) root, then we may assume F3 = x3 and F must have xy3 or

y5 and then it is E0
7 or E0

8 . We transform F as above.
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Next, we consider symplectic actions on fixed points.

Lemma 4.8. Assume w is fixed, and the action is symplectic at w.

1. Assume w is a smooth point. Then w is an isolated fixed point and π(w) is an RDP of

type Ap−1. The eigenvalues of D on the cotangent space mw/m
2
w are of the form a,−a

for some a ∈ F∗
p.

2. Assume w is an RDP. Let f :X ′ = BlwX →X. Then X ′ is an RDP surface, D uniquely

extends to a derivation D′ on X ′ which is symplectic at every fixed point above w, and

g : Y ′ = (X ′)D
′ → Y is crepant.

Proof. (1) By Lemma 4.5(1), we have D= ax · (∂/∂x)−ay · (∂/∂y) with a ∈ Fp for some

coordinates x,y, and a �= 0 since D is nontrivial. Hence, w is an isolated fixed point of D.

We observe that a,−a are the eigenvalues of the action on the cotangent space. We have

ÔD
X,w = k[[xp,xy,yp]], and it is an RDP of type Ap−1.

(2) By Remark 4.3 and assertion (1), w is an isolated fixed point. By Proposition 2.8,

D uniquely extends to D′ on X ′. Let ω be a generator of H0(SpecOX,w \ {w},Ω2) with

D(ω) = 0. Since w is an RDP, X ′ is again an RDP surface, and it follows from Proposition

2.3 that ω extends to ω′ on (X ′)sm, which generates H0(SpecOX′,w′ \ {w′},Ω2) at any

closed point w′ ∈X ′ above w, and that D′(ω′) = 0. Hence, D′ is symplectic at every fixed

point above w. Since as above such fixed points are isolated, Y ′ is smooth outside finitely

many isolated points. Applying Proposition 2.10 to ω on X \{w} and ω′ on X ′ \(Sing(X ′)∪
Fix(D′)), we obtain 2-forms ψ on Y \{π(w)} and ψ′ on Y ′ \π((Sing(X ′)∪Fix(D′))), which

are nonvanishing. Comparing ψ and ψ′, we observe that g is crepant.

Proof of Theorem 4.6(2). By Remark 4.3 and Lemma 4.8(1), w is an isolated fixed

point. By shrinking X, we may assume that D has no fixed point except w.

We construct a finite sequence (Xj ,Dj)0≤j≤n (n≥ 0) of RDP surfaces Xj and derivations

Dj onXj of multiplicative type that is symplectic at each fixed point. Let (X0,D0)= (X,D).

If Xj has no fixed RDP, then we terminate the sequence at n = j. If Xj has at least one

fixed RDP, let Xj+1 be the blowup of Xj at the fixed RDPs and Dj+1 the extension of

Dj to Xj+1. Since any RDP becomes smooth after a finite number of blowups at RDPs,

this sequence terminates at some n ≥ 0. By Lemma 4.8(2), Dj+1 on Xj+1 is symplectic

at each fixed point, and (Xj+1)
Dj+1 → (Xj)

Dj is crepant. By Theorem 4.6(1) and Lemma

4.8(1), Yn = (Xn)
Dn has canonical singularity (i.e., has no singularity other than RDPs),

and since Yn → Y =XD is crepant, also Y has canonical singularity. If n > 0, then π(w) is

not a smooth point since Yn → Y is a crepant morphism non-isomorphic at that point, and

if n= 0, then π(w) is not a smooth point by Lemma 4.8(1). Hence, in either case, π(w) is

an RDP.

Moreover, we can classify all possible symplectic μp-actions on RDPs.

Proposition 4.9. Assume w is a fixed RDP, and the action is symplectic at w. Then

there is a μp-equivariant isomorphism ÔX,w
∼= k[[x,y,z]]/(F ) with F equal to one in Table

4 and μp acts on x,y,z by respective weights a,−a,0 for some a ∈ F∗
p. The singularities of

X, X ′ = BlwX, X/μp, and X ′/μp are displayed in the table.

Remark 4.10. A polynomial f ∈ k[x1, . . . ,xm] is called quasi-homogeneous if, for some

a1, . . . ,am ∈Z≥1, the monomials appearing in f have the same degree with respect to a (i.e.,

degree of the monomial xi1
1 . . .xim

m is i1a1+ · · ·+ imam). RDPs whose completions are not
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Table 4. Symplectic μp-actions on RDPs.

p Equation X X/μp

Any — (Smooth point) A0 Ap−1

Any xy+zm (m≥ 2) Am−1 Amp−1

3 z2+x3+y3+x2y2 E1
6 E1

6

3 z2+x3+y3+x4y E1
8 E0

6

2 x2+y2z+xyzk+zl (k ≥ 1, l ≥ 2) D

l/2�
2k+l D

(l−k)+

2l

2 x2+z2+xyz+y2n−2 (n≥ 3) Dn−1
2n [∗] D


n/2�
n+2

2 x2+z2+z3+xy3 E2
7 D0

5

2 x2+z3+y4+xyz E3
7 E3

7

2 x2+z3+y4+xy3 E3
8 E2

7

p X X ′ X/μp X ′/μp

Any A0 — Ap−1 —
Any Am−1 (m≥ 3) Am−3+2A0 Amp−1 A(m−2)p−1+2Ap−1

Any A1 2A0 A2p−1 2Ap−1

3 E1
6 A5[n]+2A0 E1

6 A1+2A2

3 E1
8 E0

7 [n]+2A0 E0
6 A1+2A2

2 D

l/2�
2k+l (l ≥ 4) D


l/2�−1
2k+l−2 +A1 D

(l−k)+

2l D
(l−2−k)+

2(l−2) +A3

(l = 3, k ≥ 2) D0
2k+1[n]+A0+A1 D

(3−k)+

6 A1+A1+A3

(l = 3, k = 1) A3[n]+A0+A1 D2
6 A1+A1+A3

(l = 2, k ≥ 2) D0
2k[n]+A1 D0

4 A3

(l = 2, k = 1) 2A1[n]+A1 D1
4 A3

2 Dn−1
2n [∗] (n≥ 3) Dn−2

2n−2[∗]+A1[n] D

n/2�
n+2 D


(n−1)/2�
n+1

2 E2
7 D1

6 D0
5 D0

4

2 E3
7 D2

6[∗]+A0 E3
7 D1

5 +A1

2 E3
8 E2

7 +A0 E2
7 D0

5 +A1

• A0 is a smooth point that is an isolated fixed point of D.
• [n] means that the RDP is not fixed by D.
• �q� := max{n ∈ Z | n≤ q} denotes the integer part of a real q.
• q+ := max{q,0} denotes the positive part of a real q.
• [∗]: It follows from the classification that for each (formal) isomorphism class of RDP, there
exists only one fixed symplectic μp-action up to isomorphism, except for the case of Dn−1

2n (n≥ 3)
in p= 2, in which case there are two and they are distinguished by the degree 2 part F2 being a
square of a homogeneous element or not. We distinguish them by notation Dn−1

2n and Dn−1
2n [∗]. We

use the convention that D1
4[∗] =D1

4.

defined by quasi-homogeneous polynomials, which exist only if p= 2,3,5, are precisely Dr
n

and Er
n with r �= 0. It follows from the classification given in Proposition 4.9 (resp. given

in Proposition 4.7, resp. which is omitted) that if an RDP of type Dn or En admits a fixed

symplectic (resp. non-fixed, resp. fixed non-symplectic) μp-action, then the singularity is

not defined (resp. is defined, resp. is defined) by a quasi-homogeneous polynomial. We do

not know any explanation of this phenomenon.

Proof of Proposition 4.9. We consider tuples (a,b,c,F ) with a,b,c ∈ Fp, not all 0, and

F ∈ k[[x,y,z]] such that F =0 defines an RDP and only monomials of weight a+b+c (∈ Fp)

appear in F, where x,y,z have respective weights a,b,c. By Lemma 4.5(2), it suffices to

consider k[[x,y,z]]/(F ) of this form. We show that there exist a μp-equivariant isomorphism

k[[x,y,z]]/(F ) ∼= k[[x′,y′, z′]]/(F ′) with F ′ in Table 4 and wt(x′,y′, z′) = (1,−1,0) up to

Aut(μp) = F∗
p (which amounts to replacing (a,b,c) with (ta, tb, tc) for some t ∈ F∗

p).
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We write F =
∑

h,i,j ahijx
hyizj , and we say that a polynomial or a formal power series

has a monomial if its coefficient is nonzero.

First, assume the degree 2 part F2 is a non-square. Then we may assume that F2 contains

a non-square monomial, say xy. (Indeed, if this is not the case, then p �= 2 and F2 contains

at least two square monomials, say x2 and y2, then x and y has the same weight, and

then after a linear coordinate change, we may assume F2 contains xy.) Then we have

c = 0. If a+ b �∈ {0,a,b}, then F ∈ (x,y)2, which implies that F = 0 is not an RDP. If

a+ b = a �= 0, then F ∈ (x), again not an RDP. The same if a+ b = b �= 0. So we have

a+ b = 0 and hence F ∈ k[[xp,xy,yp, z]]. Since F cannot belong to (x,y), there exists an

integer m such that F has the monomial zm. Let m be the smallest such integer. We have

F = u1z
m+u2xy+g1(x

p)+g2(y
p) for some units u1,u2 ∈ k[[xp,xy,yp, z]]∗ and power series

g1,g2. We may assume u1,u2 ≡ 1(mod m). We eliminate g1,g2 by replacing x with x+g2/y

and y with y+ g1/x (and repeating this), and we obtain F = u1z
m+u2xy. By replacing

x,y,z,F with suitable multiples, we obtain F = zm+xy.

Next, assume p ≥ 3 and F2 is square. We may assume F2 = z2. We may assume F3 �≡ 0

(mod z). If F3 has x2y, then by 2c= 2a+ b= a+ b+ c, we have b= 0 and a= c, and hence

F ∈ (x,z)2, which is absurd. Hence, we may assume F3 has y3. By 2c = 3b = a+ b+ c, we

have (a,b,c) = (a,2a,3a). If F does not have x3, then F ∈ (z2,x3z,xyz,x6,x4y,x2y2,y3), and

F =0 cannot define an RDP. Hence, F has x3, hence p=3, and then F ∈ k[[x3,xy,y3, z]]. We

may assume that F does not have xyz. To define an RDP, F must have one of x2y2,x4y,xy4.

If it has x2y2, then it is E1
6 . We can eliminate xhyiz, and we have

F = z2u1+x3+y3+x2y2u2+
∑

(h,i,j)∈S1

ahijx
hyizj +

∑
(h,i)∈S2

bhix
hyi+

∑
(h,i)∈S3

chix
hyi,

S1 = {(4,1,0),(1,4,0)}, S2 = {(6,0),(7,1)}, S3 = {(0,6),(1,7)},

where ahij ∈ k, bhi ∈ k[[x3]], chi ∈ k[[y3]], and u1,u2 ∈ k[[x3,xy,y3, z]]∗. By replacing x with

x+ ty2 and y with y+ t′x2, we eliminate a410 and a140. Then, by replacing F with (1+

x3b60+x4yb71+y3c06+xy4c17)F , we eliminate all bhi and chi. Finally, we replace x,y,z,F

with suitable multiples and achieve u1 = u2 =1. (For example, we let F = u−3
2 F ′, x= u−1

2 x′,

y = u−1
2 y′, and z = (u1u

3
2)

−1/2z′.)

If it does not have x2y2 but has x4y or xy4, then it is E1
8 . By replacing F with a unit

multiple, we may assume that it has x4y and does not have xy4. We can eliminate xhyiz,

and we have

F = z2u1+x3+y3+x4yu2+
∑

(h,i,j)∈S1

ahijx
hyizj +

∑
(h,i)∈S2

bhix
hyi+

∑
(h,i)∈S3

chix
hyi,

S1 = {(6,0,0),(3,3,0),(0,6,0)}, S2 = {(9,0)}, S3 = {(0,9),(1,7),(2,5),(3,6)},

with ahij , bhi, chi, and u1,u2 as in the previous case. By replacing y with y+ tx2, we

eliminate a600. By replacing x with x+ t′y2 and F with (1+ t′′y3)F , we eliminate a330 and

a060. By replacing F with (1+x2y2c25+xy4c17+y6c09)F , then with (1+x6b90+x3y3c36)F ,

we eliminate all bhi and chi. We replace x,y,z,F with suitable multiples and achieve u1 =

u2 = 1.

Hereafter, assume p = 2 and that F2 is a square. If
√
F2 is homogeneous, then we may

assume F2 = x2, we may assume F3 has y2z or z3, and then we have (a,b,c) = (1,1,0), and

hence F ∈ k[[x2,xy,y2, z]]. If
√
F2 is not homogeneous, then we may assume F2 = x2+z2 and
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a = 1 and c = 0, and then again we have (a,b,c) = (1,1,0), and hence F ∈ k[[x2,xy,y2, z]],

and F3 has xyz, y2z, z3, or x2z.

Assume (F2 is x2 or x2+z2 and) F3 contains y2z. Furthermore, since F /∈ (x,y)2, we see

that F has zl (l ≥ 2). We have F ≡ x2+ y2z+ zl(mod (x4,x3y,x2y2,xy3,y4,x2z,xyz,y2z2,

zl+1)). Write F = F0(x
2,y2, z)+xyF1(x

2,y2, z). Then there exist unique f,g ∈ k[[z]] such

that F0 ∈ (x2− f(z)2,y2− g(z)2), and they satisfy l = min{2ordz(f),2ordz(g)+1}. If l is
even, then, by replacing y with y−xg/f , we may assume g=0. If l is odd, then, by replacing

x with x− yf/g, we may assume f = 0. We eliminate ahij with h ≥ 2, (h,i, j) �= (2,0,0),

by replacing F with (1+ ahijx
h−2yizj)F , and ahij with i ≥ 2, (h,i, j) �= (0,2,0),(0,2,1),

by replacing z with z+ ahijx
hyi−2zj . We obtain F = x2 + y2z+ zlu(z) + xye(z), where

e(z) ∈ k[[z]] and u(z) ∈ k[[z]]∗. We have e(z) �= 0, since if e(z) = 0, then F = F0 ∈ ((x−
f(z))2,(y− g(z))2), which is absurd. Write e(z) = zkv(z), k ≥ 1, and v(z) ∈ k[[z]]∗. It is

D

l/2�
2k+l . If l is even, then, since F0 ∈ (x2−f(z)2,y2−g(z)2) and g=0, we have zlu(z) = f(z)2

and hence u(z) is a square, and then by replacing x with u(z)1/2x and by replacing F with

a unit multiple, we obtain F = x2+y2zu′(z)+zl+xye(z) for some u′(z)∈ k[[z]]∗. Similarly,

if l is odd, then, since f = 0, we have zlu(z) = zg(z)2 and hence u(z) is a square, and then

(by replacing y) we obtain F = x2u′(z)+y2z+zl+xye(z). By replacing x,y,z,F with unit

multiples, we can achieve u′ = v = 1.

Assume F2 = x2 and F3 has z3 but no y2z. To define an RDP, F must have y4 and must

have xyz or xy3. If F has xyz, then it is E3
7 . We have

F = x2+y4+z3u1+xyzu2+
∑

(h,i,j)∈S1

ahijx
hyizj

+
∑

(h,i)∈S2

bhix
hyi+

∑
(h,i)∈S3

chix
hyi+

∑
(h,i)∈S4

dhix
hyi,

S1 = {(3,1,0),(1,3,0),(1,5,0),(0,2,2),(2,0,1),(2,0,2),(0,4,1),(0,4,2)},
S2 = {(4,0),(5,1)}, S3 = {(0,6),(1,7)}, S4 = {(2,2)},

where ahij ∈ k, bhi =
∑2

j=0 bhijz
j with bhij ∈ k[[x2]], chi =

∑2
j=0 chijz

j with chij ∈ k[[y2]],

dhi ∈ k[[x2,xy,y2]], and u1,u2 ∈ k[[x2,xy,y2, z]]∗. We may assume u1,u2 ≡ 1(mod m). We

replace z with z+a310x
2+a130y

2+a150y
4, x with x+ tyz (which eliminates a022), y with

y+a201x+a202xz, and x with x+a041y
3+a042y

3z, and thus eliminate all ahij ((h,i, j)∈S1).

We replace F with (1+x2b40+y2c06)F , F with (1+x3yb51+xy3c17)F , and z with z+d22xy,

and thus eliminate all bhi, chi, and dhi. We replace x,y,z,F with suitable multiples and

achieve u1 = u2 = 1.

Next, if F does not have xyz but has xy3, then it is E3
8 . We have

F = x2+y4+z3u1+xy3u2+
∑

(h,i,j)∈S1

ahijx
hyizj +

∑
(h,i)∈S2

bhix
hyi+

∑
(h,i)∈S3

chix
hyi,

S1 = {(2,0,1),(2,0,2),(0,4,1),(0,2,2),(1,1,2),(0,6,0),(0,4,2),(0,6,1),(0,6,2),
(2,2,0),(2,2,1),(2,2,2)}, S2 = {(4,0),(3,1),(4,2))}, S3 = {(0,8)},

with ahij , bhi, chi, and u1,u2 as in the previous case. We may assume u1,u2 ≡ 1(mod m). We

replace F with (1+a201z+a202z
2)F , x with x+ tyz and z with z+ t′y2 (which eliminates

a041 and a022), z with z+ a112xy, x with x+ t′′y3 (which eliminates a060), x with x+

a042yz
2+ a061y

3z, x with x+ a062y
3z2, and y with y+(a220+ a221z+ a222z

2)x, and thus
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eliminate all ahij ((h,i, j) ∈ S1). We replace F with (1+x2b40+xyb31+x2y2b42+y4c08)F ,

and thus eliminate all bhi and chi. We replace x,y,z,F with suitable multiples and achieve

u1 = u2 = 1.

Assume F2 = x2+z2 and F3 does not have y2z and has xyz. F moreover needs xyi, yiz,

or yl. Replacing z with z+xyi−1 (resp. x with x+ yi−1z), we may assume that there are

no xyi (resp. yiz) of low degree. Thus, we have

F ≡ x2+z2+xyz+y2n−2

(mod (x4,x3y,x2y2,xym(m> n),y2n,x2z,xyz2,y2z2,ymz(m> n), z3)),

n ≥ 3, and this is Dn−1
2n [∗]. We eliminate xhyi (h,i ≥ 1, (h,i) �= (1,1)) by replacing z with

z+ahi0x
h−1yi−1, and xhzj and yizj similarly. We eliminate xh, yi, zj (h ≥ 3, i ≥ 2n− 1,

j ≥ 3) by replacing F with a unit multiple. We obtain F = x2+z2+xyzu+y2n−2 for some

u ∈ k[[x2,xy,y2, z]]∗, and we can achieve u= 1.

Assume F2 = x2 + z2 and F3 does not have y2z nor xyz. By replacing F with (1 +

a201x
2z)−1F , we may assume that F does not have x2z. Then F has z3 and F moreover

needs xy3, and then it is E2
7 . We have

F = x2+z2+z3u1+xy3u2+
∑

(h,i,j)∈S1

ahijx
hyizj +

∑
(h,i)∈S2

bhix
hyi+

∑
(h,i)∈S3

chix
hyi,

S1 = {(0,4,0),(0,4,1),(0,6,0),(0,2,2),(3,1,0),(2,2,0),(1,1,2),(4,0,0),(2,0,2)},
S2 = {(4,0),(3,1),(2,2)}, S3 = {(0,4)},

with ahij , bhi, chi, and u1,u2 as in the case of E3
7 , and moreover bhi ∈ (x2, z) and

chi ∈ (y4,y2z,z2). We may assume u1,u2 ≡ 1(mod m). We replace z with z + a
1/2
040y

2, x

with x+a041yz, x with x+ ty3 (which eliminates a060), F with (1+a022y
2)F , y with y+ t′x

and z with z+ t′′xy and F with (1+ t′′′xy)F (which eliminates a310, a220, and a112), z with

z+ t′′′′x2 and F with (1+ t′′′′′x2)F (which eliminates a400 and a202), and thus eliminate all

ahij ((h,i, j) ∈ S1). We replace x with x+ yc04 and F with (1+ b40x
2 + b31xy+ b22y

2)F

to eliminate all bhi and chi. We replace x,y,z,F with suitable multiples and achieve

u1 = u2 = 1.

4.3 μn-actions on RDPs

In this section, we classify μn-actions on RDPs under each of the following assumptions.

• w is not fixed by μn (Proposition 4.12).

• n= pe, and the subgroup scheme μp fixes w and is symplectic (Proposition 4.13).

• w is fixed by μn and the action is symplectic (Proposition 4.14).

In Propositions 4.13 and 4.14, we use the convention that a smooth point is of type A0.

Lemma 4.11. Let X be a k-scheme equipped with a μp2-action. Let π1 : X →X1 =X/μp

be the quotient morphism by the action of the subgroup scheme μp ⊂ μp2. If w ∈X is non-

fixed by the action of μp, then π1(w) ∈X1 is non-fixed by the action of μp2/μp.

Proof. Let OX,w = B =
⊕

i∈Z/p2Z
Bi be the corresponding decomposition. Since w is

non-fixed by μp, there exists y ∈ mw ⊂ B with 1+y ∈
⊕

i≡1(mod p)Bi (Lemma 2.9). Then,

since yp ∈ mπ1(w) ⊂ OX1,π1(w) satisfies 1+ yp = (1+ y)p ∈ Bp, we conclude by Proposition

2.8 that π1(w) is non-fixed by μp2/μp.

https://doi.org/10.1017/nmj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.20


ON μN -ACTIONS ON K3 SURFACES IN POSITIVE CHARACTERISTIC 29

Table 5. Non-fixed μn-actions on RDPs (listed in order of appearance in the proof).

p n pe pf wt(x,y,1+z) Equation RDP

Any per pe pf 1,−1,pfr xy+zp
e−fm Ape−fm−1

�= 2 2pe pe 1 0,pe,2 x2+y2+zp
em Apem−1

5 30 5 1 15,10,6 x2+y3+z5 E0
8

3 12 3 1 3,6,4 x2+y3+yz3 E0
7

3 12 3 1 6k,3,4 x2+z3+y4 E0
6

3 6 3 1 3,3k,2 x2+z3+y4 E0
6

3 30 3 1 15,6,10 x2+z3+y5 E0
8

3 18 9 3 3,2,6 x2+y3+z3(1+z) E0
6

2 4m−2 2 1 2m,2,2m−1 x2+yz2+xym D0
2m+1

2 4(m−1) (*) 2e−1 1,2,2(m−1) x2+yz2+ym(1+z) D0
2m

2 6 2 1 0,2,3 x2+xz2+y3 E0
6

2 24 8 2 3,2,6 x2+y3+z4(1+z) E0
8

2 12 4 2 3,2,6 x2+y3+z4(1+z) E0
8

2 4m−2 2 1 2m−2,2,2m−1 z2+x2y+xym D0
2m

2 4m (*) 2e−1 1,−2,2m z2+x2y+ym(1+z) D0
2m+1

2 6 2 1 2,2k,3 z2+x3+y3 D0
4

2 18 2 1 6,4,9 z2+x3+xy3 E0
7

2 30 2 1 10,6,15 z2+x3+y5 E0
8

2 12 4 2 3,2,6 x2+y3+z2(1+z) D0
4

2 4 4 2 1,0,2 x2(1+y)(1+z)+z2+y2m+1 D0
4m

2 8 8 4 2,1,4 x2+z2(1+z)+xy2 D0
5

2 12 4 2 3,1,6 x2+z2(1+z)+xy3 E2
7

2 20 4 2 5,2,10 x2+z2(1+z)+y5 E0
8

2 2e (e≥ 2) 2e 2 0,−1,2 x2+y2(1+z)+xz2
e−1m D0

2em

(*): In the cases where n= 4(m−1) or n= 4m, pe is the highest power of p= 2 dividing n.

Suppose X is a scheme equipped with a μn-action, n = per with p � r, and w ∈ X is a

closed point fixed by μr ⊂ μn. Let f be the maximal integer with 0 ≤ f ≤ e such that the

subgroup scheme μpf ⊂ μpe ⊂ μn fixes w. We say that μpfr is the stabilizer of w and denote

it by Stab(w).

Proposition 4.12. Let OX,w, together with a μn-action, be as in the beginning of

§4, and assume w is an RDP. Write n = per with p � r, and Stab(w) = μpfr. Suppose

Stab(w) � μn (hence f < e, in particular e ≥ 1). Then there exist x,y,z ∈ m generating

m, with x,y,1+ z homogeneous such that, up to replacing r with a multiple and up to

Aut(μn) = (Z/nZ)∗, the weights and the type of singularity are as in Table 5.

In this case, we do not pursue the exact equation, and the equations in Table 5 are merely

examples.

Proof. We first show that there exist elements x,y,z ∈ m generating m and satisfying

wt(x,y,1+z) = (a,b,c) with c= n/pe−f = pfr. Since the stabilizer of the μn-action is μpfr �
μn, there exist i ∈ Z/nZ and a homogeneous element t of weight i such that t /∈ m and

gcd{i,n} = pfr. We may assume t ≡ 1(mod m), and then z′ := −1+ t ∈ m satisfies wt(1+

z′) = i. Take an integer q such that qi= pfr (in Z/nZ), and then 1+z := (1+z′)q satisfies

z ∈ m and wt(1+ z) = pfr. Now, take x′(1),x′(2),x′(3) generating m. We may assume each

x′(h) is homogeneous with respect to μpfr, that is, there exists i
(1), i(2), i(3) ∈Z/nZ such that
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x′(h) =
∑pe−f−1

j=0 x′(h,j) with wt(x′(h,j)) = i(h) + jpfr. Let x(h) :=
∑pe−f−1

j=0 (1+ z)−jx′(h,j).

Then wt(x(h)) = i(h) and, since x(h) ≡ x′(h)(mod (z)), the elements x(1),x(2),x(3), z generate

m. We can omit one of these four elements, which cannot be z since m is not generated by

homogeneous elements.

In this proof, by a monomial, we mean a polynomial of the form xiyjzp
e−f l(1+z)m with

0≤m< pe−f . Any polynomial (resp. formal power series) is uniquely expressed as a finite

(resp. possibly infinite) sum of monomials with k -coefficients, and we say that a polynomial

or a formal power series has a monomial if its coefficient is nonzero. Expressions such as

F = x2+y3(1+z)+ · · · will indicate that F has these monomials. However, when we say of

degree m part Fm of F, this is understood with respect to the usual monomials xiyjzl.

Assume the degree 2 part F2 of F is either irreducible or the product of two distinct

homogeneous linear factors. Then we may assume F = xy(1+ z)i+ · · · , and F must have

zm
′
(1+z)j , we may assume i= j =0 by replacing y and F, and it is Am′−1 withm′ = pe−fm.

Assume F2 is the product of two distinct nonhomogeneous linear factors. Then we have

p �= 2 and we may assume F = x2(1+ z)i + y2(1+ z)j + zm
′
(1+ z)k + · · · and b ≡ a+ r/2

(mod r). We may assume k = 0 by replacing F with (1+z)−kF and i= j = 0 by replacing

x and y with x(1+z)i(p
e+1)/2 and y(1+z)j(p

e+1)/2. We have 2a= 2b= 0 and then we have

f = 0 and r = 2. (Otherwise, a,b,c cannot generate Z/perZ.) It is Am′−1 with m′ = pem,

and we may assume (a,b) = (0,n/2).

Assume p ≥ 5 and F2 is a square. We may assume F2 = x2, F3 = y3, F = x2+ y3+ · · · ,
and then F must have z5(1+z)i and we have p= 5, it is E0

8 , and we may assume i= 0. By

2a= 3b= 0, we have n | 30 and we may assume a= 15 and b= 10.

Assume p= 3 and F2 is a square. We may assume F = x2+ · · · . We may assume F3 mod

(x) is either y3, z3, or y3+z3. If F = x2+y3+ · · · , then F must have yz3 and it is E0
7 . If F =

x2+z3+ · · · , then F must have y4 or y5 and it is E0
6 or E0

8 . If F = x2+y3+z3(1+z)i+ · · · ,
then we may assume i = 1 (if i = 0, then by replacing z with y(1+ z)l+ z, we reduce this

case to the previous case) and then it is E0
6 .

Assume p = 2 and F2 is a square. We may assume F2 is x2, z2, x2 + z2, x2 + y2, or

x2+y2+ z2.

Assume F2 = x2. We may assume F = x2+ · · · . Then F must have yz2(1+z)i or y3(1+z)j .

If F has yz2(1+ z)i, then we may assume i = 0 and F must have xym(1+ z)i (m ≥ 2) or

ym(1+z) (m≥ 3). In the former case, we may assume i= 0 (by replacing x with x(1+z)i)

and we have D0
2m+1 with (a,b,c) = (2m,2,2m− 1), n | 2(2m− 1). In the latter case, we

have D0
2m with (a,b,c) = (1,2,2(m− 1)), n | 4(m− 1). Now, assume that F does not have

yz2(1+z)i and has y3(1+z)j . We may assume j = 0. Then F must have either xz2(1+z)i

or z4(1+z)i. If F has xz2(1+z)i, then we may assume i=0 and then F = x2+y3+xz2+ · · ·
is E0

6 , and we have e= 1, f = 0, a= 0, and c= n/2. If F does not have xz2(1+z)i and has

z4(1+ z)i, then we may assume i = 1 and then F = x2+y3+ z4(1+ z)+ · · · is E0
8 , and we

have e−f ≤ 2, f = 1, (a,b,c)≡ (1,2/3,2)(mod 2e).

Assume F2 = z2. We have e− f = 1. Suppose F has x2y(1+ z)i. We may assume i = 0.

We may assume F does not have monomials z2M (M �= 1) nor x2M (M �= 1,y) of low

degree (by replacing F or y with (1+M)−1F or y+M , respectively). F must have xym

or ym(1+ z) and then it is D0
2m or D0

2m+1. Now, suppose F does not have x2y(1+ z)i nor

xy2(1+ z)i and has x3(1+ z)i. We may assume i = 0. Then F must have y3(1+ z)j (D0
4),

xy3(1+ z)j (E0
7), or y

5(1+z)j (E0
8).

https://doi.org/10.1017/nmj.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.20


ON μN -ACTIONS ON K3 SURFACES IN POSITIVE CHARACTERISTIC 31

Assume F2 = x2+z2. We may assume F = x2+z2(1+z)i+ · · · . If i= 0, then by replacing

z with z+x or z+x(1+z), we reduce this case to the previous case. Assume i=1. F cannot

have x3(1+z)i nor xz2(1+z)i. (If F has x3(1+z)i, then we have 2a= c= 3a+ ic and this

implies (2i+1)c = 0, contradicting c = n/pe−f . Other cases are similar.) We may assume

that F does not have yz2(1+z)i. If F has y3(1+z)i, then F does not have xy2(1+z)j and it

is D0
4. If F does not have y3(1+z)i and has x2y(1+z)i, then F cannot have xy2(1+z)j , and

F must have y2m+1(1+z)j , and it is D0
4m. If F does not have y3(1+z)i nor x2y(1+z)i and

has xy2(1+z)i, then it is D0
5. If F does not have y3(1+z)i nor xy2(1+z)i nor x2y(1+z)i,

then F must have xy3(1+z)i or y5(1+z)i, and (we may assume i= 0 and) it is E2
7 or E0

8 .

(This E2
7 is the only example of Dr

n or Er
n with r > 0 in this proposition.)

Assume F2 = x2+y2. Write F = x2+y2(1+ z)j + · · · . If j = 0, then by replacing x with

x+ y(1+ z)k, we reduce to the F2 = x2 case. Suppose j = 1. We may assume F does not

have monomials x2M (M �= (1+z)i) nor y2M (M �= (1+z)i) of low degree (by replacing F

or z with (1+M)−1F or z+M , respectively). F must have xz2m(1+ z)k or yz2m(1+ z)k,

by symmetry, we may assume F has xz2m(1+ z)k, we may assume k = 0, and then it is

D0
4m.

Assume F2 =x2+y2+z2. Write F =x2(1+z)i+y2(1+z)j+z2(1+z)k+ · · · , i, j,k ∈{0,1}.
If i = j, then we reduce this case to F = x2+ z2 case by replacing x with x+ y(1+ z)l. If

i �= j, then either i= k or j = k and then we reduce this case to F = x2+z2 case by replacing

z with z+x(1+z)l or z+y(1+z)l.

Proposition 4.13. Let OX,w, together with a μn-action, be as in the beginning of §4.
Suppose n = pe with p > 0 and e ≥ 2. Let Stab(w) = μpf (0 ≤ f ≤ e). Suppose f > 0 and

that the subgroup scheme μp ⊂ Stab(w) acts symplectically. Then one of the following is

true.

• w is Ape−fm−1 for some integer m≥ 1.

• w is E2
7 and (pf ,pe) = (2,4).

• w is Dn−1
2n+1 (n≥ 2) or E3

8 , and (pf ,pe) = (4,4).

Proof. Let Ox,w =B =
⊕

i∈Z/p2Z
Bi be the corresponding decomposition.

Assume w is a smooth point. Since μp acts symplectically, the maximal ideal m is

generated by two elements x∈
⊕

i≡a(mod p)Bi and y ∈
⊕

i≡b(mod p)Bi for some a,b∈Z/peZ
with a,b �≡ 0 and a+ b≡ 0(mod p). Since a,b �≡ 0(mod p), we may assume moreover x ∈Ba

and y ∈ Bb. Then w is fixed by the whole group scheme μpe and hence e= f . This case is

done (with m= 1: recall the convention that a smooth point is of type A0).

Hereafter, we assume w is an RDP. Let ε= 0 if e= f and ε= 1 if e > f . By arguing as in

the beginning of the proof of Proposition 4.12 and by using Proposition 4.9, m is generated

by three elements x,y,z with x∈Ba, y ∈Bb, and ε+z ∈Bc, and we may assume a≡−b �≡ 0

(mod p), and if e > f then we may moreover assume c= pf .

If e > f , then, since μp acts symplectically, it follows (from the classification given in

Proposition 4.12) that either the RDP is Am′−1 and then we may assume F = xy+zm
′
+ · · ·

and hence pe−f |m′, or the RDP is E2
7 and (pf ,pe) = (2,4).

Hereafter, assume e = f . If the RDP is Am−1, then there is nothing to prove. The

remaining possibilities are given in Table 4 (Proposition 4.9) and in particular we have

p≤ 3.
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Table 6. Symplectic μn-actions on RDPs.

p n X X/μn Multiplicity

Any Any Am−1 (m≥ 1) Amn−1 m
�= 2 2 Am−1 (m≥ 4 even) Dm/2+2 2
�= 2 4 Am−1 (m≥ 3 odd) Dm+2 1
�= 2 2 Dm+2 D2m+2 m+1
�= 2,3 3 D4 E6 2
2 3 Dr

4 (r = 0,1) Er
6 2

�= 2,3 2 E6 E7 3
3 2 Er

6 (r = 0,1) Er
7 3

3 3 E1
6 E1

6 2
3 3 E1

8 E0
6 2

2 2 Dr
2m (1≤ r ≤m−1) D

(3r−m)+

4r 2r

2 2 Dm−1
2m [∗] D


m/2�
m+2 2

2 2 Dr
2m+1 (1≤ r ≤m−1) D

(3r−m+1)+

4r+2 2r+1
2 2 E2

7 D0
5 2

2 2 E3
7 E3

7 3
2 2 E3

8 E2
7 3

2 4 Dm−1
2m+1 Dm−1

2m+1 1
2 4 E3

8 D0
5 1

Assume p = 3 and the RDP is E1
6 or E1

8 (as in Proposition 4.9). We may assume that

F = z2+x3+y3+ · · · with wt(x,y,z)≡ (1,−1,0)(mod 3). Then F cannot be homogeneous

since wt(x3) �≡ wt(y3)(mod 32).

Assume p= 2 and the RDP is Dn or En. By the classification in Proposition 4.9, we have

(a,b,c)≡ (1,1,0)(mod 2), and F2 �∈ kz2. If (a,b,c)≡ (1,±1,0)(mod 4), then F ∈ (x,y)2 and

F cannot define an RDP. If (a,b,c)≡ (1,1,2)(mod 4) (then we may assume F2 = x2), or if

(a,b,c)≡ (1,−1,2)(mod 4) and F2 = x2, then F ∈ (x2,xyz,xy3, z3, z2y2, zy4,y6) and hence F

cannot define an RDP. Hence, we may assume (a,b,c)≡ (1,−1,2)(mod 4) and F2 = x2+y2,

and hence pe = 4. If F has xyz, then F must have z2n−1 for some n ≥ 2, and then it is

Dn−1
2n+1. If F does not have xyz, then F must have z3 and F must also have x3y or xy3, and

then it is E3
8 .

Proposition 4.14. Let p ≥ 0. Let OX,w, together with a μn-action (n > 1), be as in

the beginning of §4. Suppose the action fixes w and is symplectic. Then p, n, the type of

singularity at w, and the quotient singularity are as in Table 6.

Proof. If p � n, then this is Remark 3.5 (Table 2). If n= p, then this is Proposition 4.9

(Table 4). If n = pe with e ≥ 2, then by Proposition 4.13, the possibilities are Dn−1
2n+1, E

3
8 ,

and Am−1 (with quotient Amn−1). In the other cases, we conclude by comparing the tables

of the tame case and the n= p case. For example, Er
6 with (p,n) = (3,6) is impossible since

the μ2-quotient E
r
7 of Er

6 does not admit a symplectic μ3-action.

To a point w fixed by a μn-action, we define its multiplicity m(w) inductively by:

• if w is a smooth point, then m(w) = 1, and

• if w is an RDP, then m(w) =
∑

w′∈Fix(μn�Blw X)m(w′).
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The multiplicity for each case is displayed in Table 6. We observe that m(πr(w)) = rm(w)

for any divisor r < n of n, where πr :X →X/μr is the quotient map and m(πr(w)) is the

multiplicity with respect to the μn/r-action on X/μr.

4.4 μn-actions on smooth points

Let B =OX,w, together with a μn-action, be as in the beginning of §4, and assume it is

smooth. Assume the μn-action fixes w and is symplectic at w. As shown in Lemma 4.8(1),

there exists j ∈ (Z/nZ)∗, unique up to sign, such that the maximal ideal of B is generated

by two homogeneous elements of respective weights j and −j. (We say that the weights of

the μn-action on the tangent space are j and −j.)

Now, let Ỹ be the minimal resolution of Y =X/μn at π(w), and let π′ : X ′ =X×Y Ỹ → Ỹ .

Let ek (k = 1, . . . ,n−1) be the exceptional curves of Ỹ , ordered in a way that ek∩ek′ �= ∅ if

and only if |k−k′| ≤ 1. The μn-action induces a decomposition π′
∗OX′ =

⊕
i∈Z/nZ(π

′
∗OX′)i.

Let Ii := Im(((π′
∗OX′)i)

⊗n → OỸ ) for i = 0, . . . ,n− 1. Then Ii are described as follows.

(Clearly, I0 =OX′ .)

Lemma 4.15. (π′
∗OX′)i and Ii are invertible sheaves. After possibly reversing the

ordering of the exceptional curves, we have an equality

Ii =OỸ

(
−
∑
k

fn
(
(j−1i mod n),k

)
ek

)
,

for each i= 1, . . . ,n−1.

Here, j−1i mod n denotes the unique integer h∈ {0,1, . . . ,n−1} satisfying hj ≡ i(mod n),

and the function fn : {1,2, . . . ,n−1}2 → Z is defined as

fn(h,k) =

{
hk, (k ≤ n−h),

(n−h)(n−k), (k ≥ n−h).

Proof. Straightforward.

§5. Tame quotients of K3 surfaces and abelian surfaces

The following fact should be known to experts. (For example, if X is a K3 surface in

characteristic 0 and G is symplectic and commutative, then this is a result of Nikulin.) We

give a proof since we could not find a complete reference (covering all characteristics).

Theorem 5.1. Let X be either an abelian surface or an RDP K3 surface in character-

istic p≥ 0, and G a finite group of order not divisible by p acting on X.

If X is an RDP K3 surface and G is symplectic, then the quotient X/G is an RDP K3

surface.

If X is an abelian surface and G is symplectic, then X/G is either an abelian surface or

an RDP K3 surface.

If X is an RDP K3 surface and G is non-symplectic, then X/G is either an RDP Enriques

surface or a rational surface.

If X is an abelian surface and G is non-symplectic, then X/G is either an RDP Enriques

surface, a (quasi-)hyperelliptic surface, a surface birational to a ruled surface, or a rational

surface.
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Proof. By Proposition 3.4, we may assume X is smooth. Let π :X →X/G= Y be the

quotient morphism, and let Ỹ → Y be the minimal resolution.

We have b1(Ỹ ) = b1(Y ) ≤ b1(X), where bi(X) = dimHi
ét(X,Ql) is the ith l -adic Betti

number for an auxiliary prime l �= chark. Hence, if X is a K3 surface (hence b1(X) = 0),

then Ỹ cannot be abelian, (quasi-)hyperelliptic, nor nonrational ruled.

First, suppose G acts non-symplectically. If some nontrivial g ∈G satisfy dimFix(g) = 1,

then by the usual ramification formula, KY has negative coefficients at the corresponding

divisors of Y, and hence κ(Ỹ ) =−∞. If Y has a non-RDP singularity, then KỸ has negative

coefficients at the corresponding exceptional curves, and hence κ(Ỹ ) =−∞. In either case,

Ỹ is either ruled or rational. Suppose neither is the case. Then KY is an RDP surface with

numerically trivial KY . Since we have

H0(Y sm,Ω2
Y ) =H0(π−1(Y sm),Ω2

X)G =H0(X,Ω2
X)G = 0,

KY is not trivial. Then, by the classification of such surfaces (see Table 1), Ỹ is either an

Enriques surface or a (quasi-)hyperelliptic surface. This settles the non-symplectic case.

Now, suppose G acts symplectically. By Proposition 3.4, Y is an RDP surface with

KY trivial. By the classification of surfaces with trivial canonical divisor, Y is an RDP

K3 surface, an abelian surface, a non-classical RDP Enriques surface (p = 2), or a

(quasi-)hyperelliptic surface (p= 2,3). (Note that abelian and (quasi-)hyperelliptic surface

admit no smooth rational curves.)

Since Y has only RDP singularities, we have h1(Ỹ ,OỸ ) = h1(Y,OY ). Since p � |G|,
(OX)G ⊂ OX is a direct summand and hence we have h1(Y,OY ) = h1(Y,(π∗OX)G) ≤
h1(Y,π∗OX) = h1(X,OX). Therefore, if X is a K3 surface, then Y cannot be a nonclassical

RDP Enriques surface.

It remains to show that if X is an abelian surface, then Y cannot be a (quasi-)hyperelliptic

surface. (If p �= 2,3, then this is clear since (quasi-)hyperelliptic surfaces always have

nontrivial canonical divisor.) If X is an abelian surface and Y is a (quasi-)hyperelliptic

surface, then since a (quasi-)hyperelliptic surface admits no smooth rational curves, no

element of G\{1} has fixed points. It suffices to show that any fixed-point-free symplectic

automorphism g of an abelian surface X of finite order not divisible by p is a translation,

since the quotient of an abelian variety by a finite group of translations is an abelian variety.

Suppose g is such an automorphism. Endow X with a group variety structure (i.e.,

choose an origin) and write g(x) = h(x)+a with h an automorphism of the group variety

(i.e., h fixes the origin) and a a point. Then h is symplectic (since g and the translation

by a are symplectic) and of finite order dividing ord(g), since x= gord(g)(x) = hord(g)(x)+

(hord(g)−1(a)+ · · ·+a). If h = id, then g is a translation. Suppose h �= id. Then h acts on

the tangent space of each fixed point via SL2(k) (since h is symplectic and of finite order

not divisible by p), and hence Fix(h) is isolated. Hence, h− id has finite kernel and hence

is surjective. Let x be a point with h(x)−x=−a. Then g(x) = x, contradiction.

§6. μp-quotients of RDP K3 surfaces and abelian surfaces

The following theorems are the μp-analogue of Theorem 5.1.

Theorem 6.1. The quotient of an RDP K3 surface by a symplectic μp-action is again

an RDP K3 surface.
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Theorem 6.2. The quotient X/μp of an RDP K3 surface by a non-symplectic action of

μp is either a rational surface (possibly with non-RDP singularities) or an RDP Enriques

surface. The quotient is an RDP Enriques surface if and only if the action is fixed-point-free,

and this can happen only if p= 2.

Theorem 6.3. A μpe-action on an abelian variety is always symplectic, in the sense

that the one-dimensional space of top differential forms is of weight 0, and the quotient is

again an abelian surface.

Proof of Theorem 6.3. It suffices to consider μp-actions. A μp-action on A corresponds

[GP, Th. VII.7.2(ii)] to an element v ∈ H0(A,T ) ∼= T0A satisfying vp = v, and hence

the action can be identified with the translation action by a subgroup scheme of A.

Then the quotient is again an abelian variety, and hence this action is symplectic by

Proposition 2.10.

Proof of Theorem 6.1. By Theorem 4.6(1,2), Y = X/μp is an RDP surface. Then, by

Proposition 2.10, KY is trivial, and by the classification of surfaces, Y is either an RDP K3

surface, an abelian surface, a nonclassical RDP Enriques surface, or a (quasi-)hyperelliptic

surface.

Since π : X → Y is purely inseparable, we have dimHi
ét(X,Ql) = dimHi

ét(Y,Ql), in

particular b1(Y ) = b1(X) = 0 (where bi = dimHi
ét is the ith Betti number). Since

Y is an RDP surface and since OY = (π∗OX)0 is a direct summand of π∗OX , we

have h1(Ỹ ,OỸ ) = h1(Y,OY ) ≤ h1(Y,π∗OX) = h1(X,OX) = 0. Hence, Y is an RDP K3

surface.

Proof of Theorem 6.2. Let X be an RDP K3 surface equipped with a nontrivial non-

symplectic μp-action. Let Y = X/μp. We have b1(Y ) = b1(X) = 0, and hence as in the

tame case (§5), the minimal resolution Ỹ of Y cannot be abelian, (quasi-)hyperelliptic, nor

non-rational ruled.

If D has non-isolated fixed points, then by the Rudakov–Shafarevich formula KX ∼
(p− 1)(D)+π∗KY [RS, Cor. 1 to Prop. 3], or by Proposition 2.10, κ(Ỹ ) = −∞. If D has

an isolated fixed point w ∈X, then by Theorem 4.6(3), π(w) ∈ Y is a non-RDP singularity,

and then hence κ(Ỹ ) =−∞. In either case, Y is a rational surface.

Now, assume D is fixed-point-free. Then, by Theorem 4.6(1), Y is an RDP surface and,

by the Rudakov–Shafarevich formula, KY is torsion. Moreover, it follows from Proposition

2.10 that the space H0(Y sm,(Ω2)⊗n) is 0 if 0 < n < p and is generated by a nonvanishing

multicanonical form if n = p. Thus, KỸ is nonzero and p-torsion. By the classification

of surfaces, it follows that Y is an RDP Enriques surface. Then, since 2KY ∼ 0 and

H0(Y sm,O(nKY )) = 0 for 0< n < p, we have p= 2.

There is also the following relation with the height of K3 surfaces. The height is an

invariant of a K3 surface in positive characteristic which is either ∞ or an integer in

{1, . . . ,10}. See §8 for more details.

Corollary 6.4. Let X be an RDP K3 surface in characteristic p equipped with a

nontrivial μp-action. If X is of finite height, then the action is symplectic and the quotient

is an RDP K3 surface.

Proof. We assume that the action is non-symplectic and show that then X is not of

finite height. By Theorem 6.2, the quotient Y = X/μp is a rational surface or an RDP
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Enriques surface. Hence, X admits a purely inseparable finite morphism Y (1/p) →X from

a rational surface or an RDP Enriques surface. Hence, H2
ét(X,Ql), which is isomorphic to

H2(Y (1/p),Ql), is generated by algebraic cycles, which is impossible if X is of finite height

by Lemma 8.3(2).

Remark 6.5. In a subsequent paper [Mat4, Th. 1.3], we prove that also the converse

holds, and we moreover determine the height in terms of the singularities of X and Y.

We call a proper birational morphism X ′ → X between RDP surfaces to be a partial

resolution if it is dominated by the minimal resolution X̃ of X. The following proposition

often enables us to reduce assertions on μp-actions to simpler cases.

Proposition 6.6. Let X be an RDP surface equipped with a μp-action.

1. Among partial resolutions of X to which the μp-action extends, there exists a unique

maximal one, which we call the maximal partial resolution of X.

2. A partial resolution X ′ →X is maximal if and only if it satisfies the property Sing(X ′)∩
π−1(Sing(X ′/μp)) = ∅.

3. The action on X is fixed-point-free if and only if the action on the maximal partial

resolution is fixed-point-free.

4. Suppose X is an RDP K3 surface. The action on X is symplectic if and only if the action

on the maximal partial resolution is symplectic.

We say that an RDP surface X equipped with a μp-action is maximal if it is the maximal

partial resolution of itself.

Proof. Note that isomorphism classes of partial resolutions are in one-to-one correspon-

dence to subsets of the set of exceptional curves of X̃ →X.

(1) Let X ′ be a partial resolution. Let D̃ and D′ be the rational derivations induced by

D on X̃ and X ′. Clearly, D′ is regular and thus corresponds to a μp-action if and only if

the coefficient of (D′) for each exceptional curve of X ′ →X is nonnegative. Therefore, the

contraction of all exceptional curves on X̃ with negative coefficients in (D̃) is the maximal

partial resolution.

(2) First, suppose X ′ does not satisfy the property. There is an RDP w ∈X ′ such that

π(w) is not smooth. If w is a fixed RDP, then let X ′
1 = BlwX ′. If w is a non-fixed RDP,

then let X ′
1 = X ′×Y ′ Y ′

1 , where Y ′ is the μp-quotient of X ′ and Y ′
1 → Y ′ is the minimal

resolution at π(w). Then the μp-action extends to X ′
1 (by Proposition 2.8 in the former

case, clear in the latter case) and X ′
1 is a partial resolution of X ′ (clear in the former case,

by Theorem 4.6(1) in the latter case). Thus, X ′ is not maximal.

Conversely, suppose X ′ satisfies the property. Let w ∈ Sing(X ′). To show that X ′ is

maximal, it suffices to show that every exceptional curve of X̃ above w appears in (D̃) with

negative coefficient, since then it must be contracted in the maximal partial resolution.

This follows from the Rudakov–Shafarevich formula KX̃ ∼ (p−1)(D̃)+π∗KỸ [RS, Cor. 1

to Prop. 3], where Ỹ = X̃/μp: for each exceptional curve, its coefficient in KX̃ (resp. π∗KỸ )

is 0 (resp. positive) since X̃ is the minimal resolution of the RDP w (resp. since π(w) is a

smooth point). Alternatively, one can use the explicit computation of (D̃) given in Lemma

6.7. (w is non-fixed since π(w) is a smooth point [Theorem 4.6(2,3)].)

We also observe that the maximal partial resolution of X can be constructed by

repeatedly applying the procedure of constructing X ′
1 from X ′. Indeed, the total index

of RDPs strictly decreases through the procedure.
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(3) It suffices to show that the procedure above preserves the (non-)fixed-point-freeness.

If w is a non-fixed RDP, then there is no fixed point above w by the functoriality of the

fixed-point scheme. If w is a fixed RDP, then there is a fixed point above w by Corollary

2.12.

(4) The spaces of 2-forms in question are naturally isomorphic.

Lemma 6.7. Let X be an RDP surface, and let D be a derivation of multiplicative type.

Let w ∈X be a non-fixed RDP of index n, and suppose the image of w is a smooth point. Let

X̃ be the minimal resolution at w, and let D̃ be the induced rational derivation on X̃. Let

(D̃) and 〈D̃〉 be the divisorial and isolated fixed locus of D̃ above w. Then every exceptional

curve of X̃ above w appears in (D̃) with negative coefficient, and we have deg〈D̃〉 = p−2
p−1n

and (D̃)2 =− 2
p−1n.

Proof. We compute (D̃) and 〈D̃〉 by a straightforward calculation using the classification

of non-fixed RDPs given in Proposition 4.7. See [Mat3, Lem. 3.11] for the result. Then the

assertions follow.

Proposition 6.8. Suppose each of X and Y is either an RDP K3 surface or an RDP

Enriques surface. Let π : X → Y be a μp-quotient morphism. Suppose X is maximal with

respect to the μp-action. Then the total index N1 of non-fixed RDPs and the number N2 of

fixed points on X are as follows:

(N1,N2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(24p−1
p+1 ,24

1
p+1), if (X̃, Ỹ ) is (K3,K3),

(122p−1
p+1 ,12 p−2

p2−1) = (12,0), if (X̃, Ỹ ) is (K3,Enr),

(12p−2
p+1 ,12

2p−1
p2−1 ) = (0,12), if (X̃, Ỹ ) is (Enr,K3),

(12p−1
p+1 ,12

1
p+1), if (X̃, Ỹ ) is (Enr,Enr).

In the cases where (X̃, Ỹ ) is (K3,Enr) or (Enr,K3), only p= 2 is possible.

Proof. Let D be the corresponding derivation of multiplicative type. Since Ỹ is of

Kodaira dimension 0, Fix(D) consists only of isolated points (possibly none).

Define the rational derivation D̃ on X̃ as in Lemma 6.7. Since the fixed locus of D̃ consists

of those above non-fixed RDPs on X and the 0-cycle of fixed points on X, by Lemma 6.7,

we have

(D̃)2 =− 2

p−1
N1, deg〈D̃〉=N2+

p−2

p−1
N1,

and by the Katsura–Takeda formula (Proposition 2.13), we have

degc2(X̃) = (N2+
p−2

p−1
N1)+0+

2

p−1
N1 =N2+

p

p−1
N1.

On the other hand, we have dimH2
ét(X,Ql) = dimH2

ét(X̃,Ql)−N1 = b2(X̃)−N1. Since Y

is an RDP surface whose RDPs are precisely the images (which areAp−1) of the fixed smooth

points of X, we have dimH2
ét(Y,Ql) = dimH2

ét(Ỹ ,Ql)− (p−1)N2 = b2(Ỹ )− (p−1)N2. Since

X → Y is purely inseparable, we have dimH2
ét(X,Ql) = dimH2

ét(Y,Ql). Therefore, we have

(p−1)N2−N1 = b2(Ỹ )− b2(X̃).

Combining the two equalities, we determine (N1,N2) in terms of p. In two cases, only

p= 2 is possible since 12 p−2
p2−1 or 122p−1

p2−1 must be an integer.
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§7. Possible orders of symplectic μn-actions on RDP K3 surfaces

The following theorem is again parallel to the case of automorphisms of finite tame order,

but the proof (for μp-actions) is quite different.

Theorem 7.1. Let X be an RDP K3 surface in characteristic p equipped with a

symplectic μn-action (n > 1, divisible by p or not). Then:

1. n≤ 8.

2. The number of fixed points, counted with the multiplicities defined after Proposition 4.14,

depends only on n and is as in Table 7.

3. Assume all fixed points are smooth points. Then the decomposition of
⊕

w∈Fix(μn)
T ∗
wX

with respect to the μn-action is concentrated on the subset (Z/nZ)∗ ⊂ Z/nZ, and for

every i ∈ (Z/nZ)∗, the ith summand has dimension as in Table 7.

If p � n (resp. if n= p), then assertion (3) means that every primitive nth root of 1 (resp.

every element of F∗
p) appears as an eigenvalue of a fixed generator of μn

∼= Z/nZ (resp. of

the corresponding derivation) on the space
⊕

w∈Fix(μn)
T ∗
wX with equal multiplicity.

For each p and each n ≤ 8, there indeed exists an RDP K3 surface equipped with a

symplectic μn-action in characteristic p. See §9.1 for explicit examples.

Proof of Theorem 7.1 for the case p � n. We may assume X is smooth.

Assertions (1) and (2) are proved by Nikulin [Ni, §5] (p = 0) and Dolgachev–Keum

[DK2, Th. 3.3] (p > 0). (Both proofs overlooked the case n = 14, but their arguments for

the nonexistence of the case n= 15 apply to case n= 14.)

(3) (If p = 0, then this follows from the argument in [Mu, Prop. 1.2]. We give another

proof, applicable to all p≥ 0.)

Let w ∈X, and let μr =Stab(w)⊂ μn be its stabilizer group. Suppose the decomposition

of T ∗
wX (= mw/m

2
w) with respect to the μr-action is concentrated on two (not necessarily

distinct) weights j1, j2 ∈ Z/rZ. Then since the action on Ω2
X,w

∼=
∧2

T ∗
wX is trivial, we have

j1+ j2 = 0. We have j1, j2 ∈ (Z/rZ)∗, since if gcd(j1, r) = gcd(j2, r) = r′ > 1, then μr′ acts

trivially, contradicting the assumption that the action is faithful. This already proves the

assertion if n= 2,3,4,6, since up to sign there is only one element in (Z/nZ)∗.
For each divisor r �= 1 of n and for each 0 ≤ j ≤ �r/2�, let Sr,j be the set of the points

w ∈X with Stab(w) = μr and with μr acting on T ∗
wX by weights j and −j. Then Sr,j is a

finite set and it is empty if j �∈ (Z/rZ)∗. Let S̃r,j = Sr,j/μn be the set of μn-orbits of points

of Sr,j . Let Nr,j = |Sr,j | and Ñr,j = |S̃r,j |=Nr,j/(n/r).

Let ρ : Ỹ → Y =X/μn be the minimal resolution (then Ỹ is a smooth K3 surface), and let

π′ : X ′ =X×Y Ỹ → Ỹ . Let π′
∗OX′ =

⊕
i∈Z/nZ(π

′
∗OX′)i be the decomposition induced by the

μn-action. Then, by Lemma 4.15, (π′
∗OX′)i are invertible sheaves, and they are described

as follows. For each i∈Z/nZ, let Ci be the corresponding class of Cartier divisors. For each

orbit w ∈ S̃r,j , its image π(w) is an RDP of type Ar−1, and let ew,k (k = 1, . . . , r−1) be the

Table 7. Symplectic μn-actions on K3 surfaces.

n 2 3 4 5 6 7 8

Number of fixed points 8 6 4 4 2 3 2
Dimension of each summand 16 6 4 2 2 1 1
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exceptional curves in Ỹ above π(w), ordered in a way that ew,k ∩ ew,k′ �= ∅ if and only if

|k−k′| ≤ 1. Then, after possibly reversing the ordering, we have a linear equivalence

−rCi ∼
∑

r|n,r =1


r/2�∑
j=0

∑
w∈S̃r,j

r−1∑
k=1

fr((j
−1i mod r),k)ew,k

(see Lemma 4.15 for the definition of the function fr : {1, . . . , r−1}2 → Z) for each i �= 0.

Let m be any integer with 1≤m≤ r−1. Using the equality(
r−1∑
k=1

fr(m,k)

r
ew,k

)
· ew,k′ =

{
−1, if k′ = r−m,

0, otherwise,

we compute that (
r−1∑
k=1

fr(m,k)

r
ew,k

)2

=−m(r−m)

r
.

Hence, we have

−C2
i =

∑
r|n,r =1


r/2�∑
j=0

Ñr,j ·
(j−1i mod r)(r− j−1i mod r)

r

and this must belong to 2Z.
Assume n= 5. Then we have N5,j = Ñ5,j , N5,1+N5,2 = 4, and

−C2
1 =

4

5
N5,1+

6

5
N5,2 ∈ 2Z.

Hence, (N5,1,N5,2) = (2,2).

Assume n= 7. Then we have N7,j = Ñ7,j , N7,1+N7,2+N7,3 = 3, and

−C2
1 =

6

7
N7,1+

12

7
N7,2+

10

7
N7,3 ∈ 2Z.

Hence, (N7,1,N7,2,N7,3) = (1,1,1).

Assume n = 8. By assertion (2) for the cases n = 2,4,8, we have Ñ2,1 = 1, Ñ4,1 = 1,

Ñ8,1+ Ñ8,3 = 2, and

−C2
1 =

1

2
Ñ2,1+

3

4
Ñ4,1+

7

8
Ñ8,1+

15

8
Ñ8,3 ∈ 2Z.

Hence, (N8,1,N8,3) = (Ñ8,1, Ñ8,3) = (1,1).

Remark 7.2. By above, we have C2
i =−4 for any 2≤ n≤ 8 and any 1≤ i≤ n−1. As we

see below, this holds also if p divides n. This implies χ(Ỹ ,(π′
∗OX′)i) = 0 for i �= 0. Then we

obtain χ(Y,(π∗OX)i) = 0 for i �= 0, since ρ∗((π
′
∗OX′)i) = (π∗OX′)i and Rqρ∗((π

′
∗OX′)i) = 0

for q > 0. This is finer than the equality∑
i =0

χ(Y,(π∗OX)i) = χ(X,OX)−χ(Y,OY ) = 2−2 = 0.

Proof of Theorem 7.1 for the case n = p. We may assume that X is maximal. (For

assertion (2), the multiplicity is by definition compatible with blowups at fixed points.) This

means that all fixed points are smooth points, and that the singularities of the quotient
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surface Y are all Ap−1 and are precisely the images of the fixed points. Let D be the

corresponding derivation.

As in the previous case, let Ỹ be the minimal resolution of Y (hence a smooth K3 surface)

and let π′ : X ′ =X×Y Ỹ → Ỹ . The sheaf π′
∗OX′ admits a decomposition to invertible sheaves

(π′
∗OX′)i. For each i ∈ Z/pZ, let Ci be the corresponding class of Cartier divisor. As in the

previous case, we have

−C2
i =


p/2�∑
j=0

Np,j ·
(j−1i mod p)(p− j−1i mod p)

p
.

By Proposition 6.8, we have N :=
∑

jNp,j = 24/(p+1). Hence, p ∈ {2,3,5,7,11,23}. If
p = 23, then N = 1 and the exceptional curves generate a negative definite sublattice of

rank p−1 = 22 of the indefinite lattice Pic(Ỹ ) of rank ≤ 22, contradiction. If p= 11, then

N = 2 and then C2
i (for any i∈ (Z/pZ)∗) cannot be an integer since the sum of two nonzero

squares in F11 cannot be zero. Hence, we have p ∈ {2,3,5,7}, and we can determine the

multiplicities of the weights as in the p � n case.

Corollary 7.3. Let X be an RDP K3 surface equipped with a symplectic μq-action

with q = 5,7. Here, both p= q and p �= q are allowed.

• If q = 7, then any fixed point is a smooth point.

• If q = 5, then any fixed point is a smooth point or an RDP of type A1.

Proof. Let w ∈ X be a fixed point. By Proposition 4.14, w is of type Am−1 for some

m≥ 1. Let ±i ∈ (Z/qZ)∗ be the nonzero weights of mw/m
2
w with respect to the μq-action.

Let X̃ be the minimal resolution of X at w (to which the μq-action extends). One can

calculate the local equation to show that all (smooth) fixed point of X̃ above w has weights

±i. Since there are m such points, it follows from Theorem 7.1(3) that m≤ 1 if q = 7 and

m≤ 2 if q = 5.

Proof of Theorem 7.1 for the case n = pe (e ≥ 2). For each 0 ≤ j ≤ e, let πj : X →
Xj = X/μpj be the quotient morphism by the subgroup scheme μpj ⊂ μpe , and for each

0≤ j ≤ e−1, let Dj be the derivation on Xj corresponding to the action of μpj+1/μpj .

Let w ∈ X be a μp-fixed point. Let μpf = Stab(w) (then 1 ≤ f ≤ e). Then, by Remark

4.4, μpf acts symplectically at w. By Proposition 4.13, either w is of type Am−1 for some

m≥ 1 with pe−f |m, or w is Dm−1
2m+1 or E2

7 or E3
8 and pe = 4. (Again, we use the convention

that a smooth point is of type A0.) Then since each Dj (j < f) is symplectic at πj(w), we

observe that πf (w) ∈Xf is of type Apem−1 or D0
5 or Dm−1

2m+1. (Since X has a μp-fixed point

and since Xf is an RDP K3 surface, this already implies pe−1< 22.)

By Lemma 4.11, any preimage of any fixed point of Dj is again fixed. In other words,

the fixed points of Dj on Xj are precisely the images of the μpj+1-fixed points on X.

For each 1≤ f ≤ e, let S̃f ⊂X be the points with stabilizer equal to μpf . For each w ∈ S̃f ,

let m(w) be its multiplicity of w defined after Proposition 4.14 with respect to the μpf -

action. Then, by Propositions 4.13 and 4.14, we have pe−f |m(w). Let Mf =
∑

w∈S̃f
m(w)

for each 1≤ f ≤ e, then by above pe−f |Mf . Using the equality mentioned after Proposition

4.14 and assertion (2) forDe−1 andDe−2 onXe−1 andXe−2, we obtain pe−1Me = pe−2(Me+

Me−1) = 24/(p+1), and hence Me = 24/(pe−1(p+1)) and Me−1/p= 24(p−1)/(pe(p+1)).

Since Me−1/p is an integer, pe divides 24. Therefore, pe = 22,23. Moreover, we obtain Mf =

pe−f ·24(p−1)/(pe(p+1)) (1≤ f ≤ e−1) by applying assertion (2) to Dj (0≤ j ≤ e−1).
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Assertion (3) is trivial if n = 4. Suppose n = 8. For each 1 ≤ f ≤ 3 and 0 ≤ j ≤ 2f/2,

let S̃2f ,j be the set of the points with stabilizer μ2f and with primitive weights ±j ∈
(Z/2fZ)∗, and let Ñ2f ,j = (2e−f )−1

∑
w∈S̃

2f ,j
m(w). We have

∑
j Ñ2f ,j = (2e−f )−1Mf for

each 1≤ f ≤ e. Then we again have Ñ2,1 = 1, Ñ4,1 = 1, Ñ8,1+ Ñ8,3 = 2, and

−C2
1 =

1

2
Ñ2,1+

3

4
Ñ4,1+

7

8
Ñ8,1+

15

8
Ñ8,3 ∈ 2Z.

Hence, (Ñ8,1, Ñ8,3) = (1,1).

Proof of Theorem 7.1 for the remaining cases. First, we show that if n= pq where q is

a prime �= p, then n = 6. We have μn = μp×μq
∼= μp×Z/qZ. We may assume that X is

maximal with respect to the μp-action. Let πq : X →Xq =X/μq and πp : X →Xp =X/μp.

Note that w ∈X is fixed by the μp-action if and only if πq(w)∈Xq is fixed by the μp-action.

Let a1 and aq be the number of μq-orbits of length 1 and q of μp-fixed points of X (which

are all smooth by assumption). Then the μp-fixed points of Xq consists of a1 points of

type Aq−1 and aq smooth points. Applying assertion (2) to the μp-actions on X and Xq

we have a1+ qaq = qa1+aq = 24/(p+1). Therefore, a1 = aq = 24/(p+1)(q+1) and hence

(a1,{p,q}) = (2,{2,3}),(1,{2,7}),(1,{3,5}).
The cases (a1,{p,q}) = (1,{2,7}),(1,{3,5}) are impossible since letting w ∈ X be the

unique μpq-fixed point (which is a smooth point), if pq = 14 then π2(w) ∈X2 is a μ7-fixed

RDP of type A1, and if pq = 15 then π3(w) ∈ X3 is a μ5-fixed RDP of type A2, both

contradicting Corollary 7.3.

Now, we consider general n. It remains to show that the cases (p,n) = (2,12),(3,12) are

impossible.

Assume (p,n) = (3,12). As above, we may assume X is maximal with respect to the

μ3-action. There are exactly six μ3-fixed points, all smooth. By the above argument for

(p,n) = (3,6), exactly two of them are μ2-fixed, and among the images of these two points

in X/μ2, exactly one is (μ4/μ2)-fixed. This is impossible since non-(μ4/μ2)-fixed points in

X/μ2 come by pairs.

Now, assume (p,n) = (2,12). As in the proof of the n= pe case (applied to the μ4-action),

let S̃1 be the set of μ2-fixed non-μ4-fixed points, and then we have M1 =
∑

w∈S̃1
m(w) = 4

and 2 |m(w). Hence, |S̃1| is 1 or 2. Since the μ3-action on X preserves this 1- or 2-point

set S̃1, it acts on S̃1 trivially, and hence fixes at least four μ2-fixed points (counted with

multiplicity m(w)), contradicting the observation a1 = 2 for μ6-actions.

Assertion (3) for n= 6 is trivial.

§8. Possible orders of μn-actions on RDP K3 surfaces

Let Scyc(p) (resp. Sμ(p)) be the set of positive integers n for which there exists an RDP

K3 surface equipped with an automorphism of order n (resp. a μn-action) in characteristic p.

We clearly have Scyc(0) = Sμ(0) and Scyc(p)
p′
= Sμ(p)

p′
, where (−)p

′
denotes the subset of

prime-to-p elements.

Remark 8.1. Keum [Ke, Main Theorem] proved the following results on Scyc(p). (This

set is denoted by Ordp in his paper.) The sets Scyc(p) for p �= 2,3 are given by

Scyc(0) = {n : φ(n)≤ 20}
= {1, . . . ,22,24,25,26,27,28,30,32,33,34,36,38,40,42,44,48,50,54,60,66},
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and

Scyc(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Scyc(0), if p= 7 or p≥ 23,

Scyc(0)\{p,2p}, if p= 13,17,19,

Scyc(0)\{44}, if p= 11,

Scyc(0)\{25,50,60}, if p= 5.

Moreover, Scyc(p)
p′

= Scyc(0)
p′

for all p ≥ 2. (The sets Scyc(2) and Scyc(3) are not

determined.)

In this section, we determine the set Sμ(p) for all p.

Theorem 8.2. We have

Sμ(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Scyc(0), if p �= 2,3,5,11,

Scyc(0)\{33,66}, if p= 11,

Scyc(0)\{25,40,50}, if p= 5,

Scyc(0)\{27,33,48,54,66}, if p= 3,

Scyc(0)\{34,40,44,48,50,54,66}, if p= 2.

In particular, there exists an RDP K3 surface equipped with a nontrivial μp-action in

characteristic p if and only if p≤ 19.

We need some preparations. The height h of a K3 surface X in characteristic p> 0, whose

definition we do not recall here, is either ∞ or an integer in {1, . . . ,10}, and X is called

supersingular or of finite height, respectively. If h<∞, then the inequality ρ≤ 22−2h holds

(Lemma 8.3(2)), where ρ= rankPic(X) is the Picard number. This implies that if ρ≥ 21,

then X is supersingular.

In fact, the Tate conjecture for K3 surfaces, now a theorem, states conversely that if X

is supersingular, then ρ= 22 (see Lemma 8.3(4) for references). In this case, the Zp-lattice

H2
crys(X/W (k))F=p is isomorphic to Pic(X)⊗Zp [O2, Cor. 1.6], and the discriminant group

of H2
crys(X/W (k))F=p (isomorphic to the discriminant group of Pic(X)) is of the form

(Z/pZ)2σ0 for an integer σ0 ∈ {1, . . . ,10}. This σ0 is called the Artin invariant of X. Here,

the discriminant group of a nondegenerate lattice (resp. nondegenerate Zp-lattice) L is

defined to be the finite group L∗/L, where L∗ = HomZ(L,Z) (resp. L∗ = HomZp(L,Zp)) is

the dual of L.

We define the crystalline transcendental lattice T (X) = Tcrys(X)⊂H2
crys(X/W (k)) to be

the orthogonal complement of the image of Pic(X)⊗W (k), where W (k) is the ring of Witt

vectors over k. We have ρ+rankT (X) = 22.

We collect some facts.

Lemma 8.3. Let X be a K3 surface in characteristic p > 0.

1. Aut(X) acts on H2
crys(X/W (k)) and H2

ét(X,Zl) (for any prime l �= p) faithfully, and the

characteristic polynomial of any element is independent of the cohomology (and l) and

has coefficients in Q.

2. If X is of finite height h, then ρ≤ 22−2h.

3. Let g ∈ Aut(X) and suppose it acts on H0(X,Ω2) by a primitive Nth root of 1. If X

is of finite height and p ≥ 3, then the characteristic polynomial of g∗ on Tcrys(X) is
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the product of cyclotomic polynomials ΦNpei with nonnegative integers ei. In particular,

φ(N) | rankTcrys(X), in particular rankTcrys(X)≥ φ(N).

4. If X is supersingular, then ρ= 22.

5. Let g ∈Aut(X) and define N as in (3). If X is supersingular of Artin invariant σ0, then

N | (pσ0 +1).

An immediate consequence of (5) is that, letting g ∈Aut(X) and N be as in (3), if there

exists no integer σ0 with N | (pσ0 +1), then X is not supersingular. This applies to, for

example, (p,N) = (3,8),(5,4).

Proof.

(1) [Ke, Th. 1.4].

(2) [I, Prop. II.5.12].

(3) See [Mat2, Lem. 2.4(3)], which deduces the assertion from [J, Th. 3.2].

(4) This assertion, the Tate conjecture for supersingular K3 surfaces, is proved by

Madapusi Pera [Mad, Th. 1] for characteristic ≥ 3 and by Kim and Madapusi Pera [KMP,

Th. A.1] for characteristic 2.

The assertion under the assumption that X admits an elliptic fibration, which is true,

for example, if ρ ≥ 5 (which is always the case when we use this assertion in this paper),

was proved much earlier by Artin [A1, Th. 1.7].

(5) This is proved by Nygaard [Ny2, Th. 2.1] under the assumption p �= 2. The argument

is in fact valid for p= 2 (see [Mat2, Rem. 2.2]).

Proof of Theorem 8.2. Let S′
μ(p) be the set on the right-hand side of the statement. If

n is a positive integer not divisible by p, then μn-action is equivalent to the action a cyclic

group of order n and, as noted in Remark 8.1, Keum [Ke, Main Theorem] proved that n is

the order of some automorphism of a K3 surface in characteristic p if and only if n ∈ S′
μ(p)

(equivalently n ∈ Sμ(0)).

If n ∈ S′
μ(p) and p | n, then the examples given in Example 9.6 show that n ∈ Sμ(p).

Now, take n ∈ Sμ(p) with p | n, and we will show n ∈ S′
μ(p). Write n = per with p � r.

Since a smooth K3 surface never admits a μp-action, an example X must have an RDP w.

Since μpe-fixed RDPs can be blown up, we may assume w is not μpe-fixed. Note that such

RDPs are classified in Proposition 4.12. We show in each case that n belongs to S′
μ(p).

Suppose w is Dm or Em. Let μpfs = Stab(w)⊂ μper (with p � s). Then the pair (w,pes)

appears in Table 5 and we have (r/s)m< 22. Then we observe that n ∈ S′
μ(p) except in the

following cases: (p,n,s,(r/s)w) = (2,54,9,3E0
7),(2,40,5,D

0
21),(2,34,17,D

0
18),(2,34,17,D

0
19).

These exceptional cases do not occur, since it follows that μs acts trivially on the classes

of every (21,21,18,19) exceptional curves, which gives a too large invariant subspace

of H2
ét(X̃,Ql) for an order s automorphism (which must act on H2

ét faithfully with a

characteristic polynomial with coefficients in Q by Lemma 8.3(1)).

Suppose w is Am′−1. Let μpfs =Stab(w)⊂ μper (with p � s). We have 0≤ f < e. It follows

from Proposition 4.12 that pe−f |m′, so write m′ = pe−fm with m≥ 1, and that μpf t acts

on w symplectically where either s= t or (s, t) = (2,1). Then X/μpf t has (r/s)Apf tm′−1. We

have 22 > (r/s)(pf tm′− 1) = (r/s)(petm− 1) ≥ r(t/s)m(pe− 1). If s = t, then this implies

(pe−1)r≤ (pe−1)rm< 22, and if (s, t) = (2,1), then this implies (p �= 2 and) 2 | r and (pe−
1)r ≤ (pe− 1)rm < 44. We observe that this condition implies either n ∈ S′

μ(p) or (p,n) =

(5,40),(3,48),(2,34). It remains to show that each of the latter three cases is impossible.
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If (p,n) = (3,48), then (m,s,t) = (1,2,1). Since μs does not act symplectically, the

generator of μ16 acts on H0(X̃,Ω2) by a primitive 16th root of unity. If X̃ is of finite

height, then by Lemma 8.3(3), we have rankT (X̃)≥ φ(16) = 8 and we have ρ(X̃)> 8 ·2= 16

(from 8A2), contradicting ρ+rankT (X̃) = 22. By the remark after Lemma 8.3, X̃ cannot

be supersingular.

If (p,n) = (2,34), then (m,s,t) = (1,1,1). Let ei (i ∈ Z/17Z) be the exceptional curves

above the μ17-orbit of w, numbered in a way that a generator g ∈ μ17 acts by g(ei) = ei+1.

Let L ⊂ Pic(X̃) be the sublattice generated by ei’s, and L′ = Pic(X̃)∩QL its primitive

closure.

First, suppose X̃ is of finite height. Then, by Corollary 6.4 the μ2-action is symplectic.

We may assume that X is maximal, in which case the number of RDPs on X (which are

all of type A1) is 8 by Proposition 6.8, which is not compatible with the μ17-action.

Next, suppose X̃ is supersingular. By Lemma 8.3(5), the only possible Artin invariant

is σ0 = 4. By Lemma 8.4 (applied to L1 = L′, L2 = L′⊥, M = Pic(X̃), M̄ = Pic(X̃)∗, and

L̄i = L∗
i ), we have

rank(disc(L′))≤ dimF2(disc(Pic(X̃)))+rank(disc(L′⊥))

≤ dimF2(disc(Pic(X̃)))+rank(L′⊥)

= 2σ0+(22− rankL′) = 13.

Since disc(L) ∼= (Z/2Z)⊕17 has rank 17, we obtain L � L′. Let V ⊂ 2Z/17Z be the set

of subsets S ⊂ Z/17Z such that (1/2)
∑

i∈S ei ∈ L′. Then V is naturally a g-stable F2-

vector space, and is nonzero, and we can identify it with a nonzero F2[x]-submodule V of

F2[x]/(x
17− 1). Clearly, V = Q(x) ·F2[x]/(x

17− 1) for some Q(x) ∈ F2[x] dividing x17− 1.

Using the factorization x17−1 = (x−1)F17,1(x)F17,2(x) in F2[x], where

F17,1(x) = x8+x7+x6+x4+x2+x+1 and

F17,2(x) = x8+x5+x4+x3+1

are irreducible, it follows that V contains at least one of

(x17−1)/(x−1) = x16+ · · ·+1,

(x17−1)/F17,1(x) = x9+x8+x6+x3+x+1, or

(x17−1)/F17,2(x) = x9+x6+x5+x4+x3+1.

Hence, there exists a set S ∈ V with #S = 17 or #S = 6. But then, ((1/2)
∑

i∈S ei)
2 =

(1/2)2 ·#S · (−2) �∈ 2Z, contradiction.
If (p,n) = (5,40), then (m,s,t) = (1,2,1) and there are four non-μ5-fixed A4 on which

g acts transitively, where g is a fixed generator of μ8 ⊂ μ40, and g4 is non-symplectic.

Moreover, Fix(g4) is one-dimensional, passing through the four points of type A4.

By the remark after Lemma 8.3, X̃ cannot be supersingular. This implies that the μ5-

action is symplectic (Corollary 6.4) and hence the quotient Y =X/μ5 is an RDP K3 surface.

We will show in a subsequent paper [Mat3, Prop. 2.15(4)] that the μp-action induces

a canonical nonzero element v ∈H0(Y sm,Ω2)⊗Der(Y ), which we can write v = ωY ⊗DY

(uniquely up to k∗), such that DY is p-closed and satisfies Y DY =X(p). It is characterized

by D(f)pDY (h)ωY = d(fp)∧dh for local sections f of OX and h of OY . Since the μ5-action

in our case is g-invariant, it follows that v = ωY ⊗DY is g-invariant.
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Fix a decomposition v = ωY ⊗DY . We have Dp
Y = φDY for some meromorphic function

φ. Since both Y and the quotient Y DY ∼= X(p) are RDP K3 surfaces, it follows from the

Rudakov–Shafarevich formula [RS, Cor. 1 to Prop. 3] thatDY has only isolated fixed points,

and this implies that φ is holomorphic, hence constant. We have φ �= 0, since if φ = 0,

then, as we will prove in a subsequent paper [Mat3, Lem. 3.6 or Th. 4.6], the αp-action

corresponding to DY must have quotient singularities different from Ap−1, but X has only

RDPs of type Ap−1. Since Fix(DY ) is isolated and Y DY = Y g∗(DY ), we have g∗(DY ) = λDY

with λ ∈H0(Y,O)∗ = k∗, and since Dp
Y = φDY with φ ∈ k∗, we have λp−1 = 1, and hence

(g4)∗(DY ) =DY .

On the other hand, since Fix(g4 � Y ) is homeomorphic to Fix(g4 � X) and hence

is one-dimensional, we have (g4)∗(ωY ) = −ωY . This contradicts the g-invariance of

v = ωY ⊗DY .

Lemma 8.4. Let L1 ⊂ L̄1, L2 ⊂ L̄2, and L1⊕L2 ⊂ M ⊂ M̄ ⊂ L̄1⊕ L̄2 be sequences of

abelian groups, where the bars have no specific meaning. Assume that the projection M̄ → L̄1

are surjective and that M ∩ (L̄1⊕0) = L1⊕0. Then we have rank(L̄1/L1)≤ rank(M̄/M)+

rank(L̄2/L2), where the rank of an abelian group is the minimum number of generators.

Proof. We may assume Li = 0. The assumption then implies that M → L̄2 is injective.

Since the rank behaves subadditively with respect to subgroups, quotients, and extensions,

we obtain rank(L̄1)≤ rank(M̄)≤ rank(M)+rank(M̄/M)≤ rank(L̄2)+rank(M̄/M).

§9. Examples

For a projective variety with projective coordinates (xi), we use the notation wt(xi) =

(ni) to mean that wt(xj/xi) = (nj −ni) on the affine piece (xi �= 0) for each i. Note that

wt(xi) = (ni) is equivalent to wt(xi) = (a+ni). We use a similar notation for subvarieties

of P(3,1,1,1).

9.1 Symplectic actions

Example 9.1 (Symplectic μ4×μ4-action). The quartic surface X = (w4+x4+y4+z4+

wxyz = 0) in characteristic p= 2 is an RDP K3 surface. It has six RDPs, all of type A3, at

the points where two of w,x,y,z are 0 and the others are 1. This surface admits a symplectic

action of G=H1×H2, where H1 = μ4 and H2 = μ4 act by wt(w,x,y,z) = (0,0,1,−1) and

wt(w,x,y,z) = (0,1,0,−1), respectively.

With respect to the action of the subgroup scheme μ2 ⊂H1, the two RDPs at (0,0,1,1)

and (1,1,0,0) are fixed and the other four RDPs are non-fixed and non-maximal. The

quotient surface by this μ2-action is (W 2+X2+Y 2+Z2+AB =WX−A2 = Y Z−B2 = 0)

in P5, where W = w2, . . . ,Z = z2 and A= wx,B = yz, with two RDPs of type A7 at (Y =

Z = B =W +X =W +A= 0),(W =X = A= Y +Z = Y +B = 0) and four of type A1 at

(WX =A= Y Z =B =W +X+Y +Z = 0).

The quotient morphism by the subgroup scheme μ2×μ2 (resp. the full group G) is the

relative Frobenius morphism X →X(2) (resp. X →X(4)).

Example 9.2 (Symplectic μ3×μ3-action). The surface X = (v3+w3+x3+ y3+ z3+

vwx = v2 − yz = 0) ⊂ P4 in characteristic p = 3 is an RDP K3 surface, and has 2A5 at

(1,0,0,1,1),(0,1,−1,0,0) and 4A2 at (0,1,0,−1,0),(0,1,0,0,−1),(0,0,1,−1,0),(0,0,1,0,−1).

This surface admits a symplectic action of G=H1×H2, where H1 = μ3 and H2 = μ3 act by

wt(v,w,x,y,z) = (0,1,−1,0,0) and wt(v,w,x,y,z) = (0,0,0,1,−1), respectively. Let D1,D2
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Table 8. Examples of symplectic μn-actions on RDP K3 surfaces.

n p Monomials wt(w,x,y,z)

5 5 w3x,x3z,z3y,y3w,w2z2,wxyz,x2y2 1,2,3,4
6 2,3 w4,wy3,wxyz,x3z,z4,w2z2,x2y2 0,1,2,3
7 7 w4,x3z,z3y,y3x,wxyz 0,1,2,4
8 2 w4,x4,y3z,yz3,wxyz 0,2,1,5

be the corresponding derivations. The fixed points of D1 (resp. D2) is the first (resp.

second) A5 point. The fixed points of D1+D2 (resp. D1−D2), which corresponds to the

diagonal (resp. anti-diagonal) subgroup of G, are the first and the fourth (resp. the second

and the third) A2 points. The quotient morphism by G is the relative Frobenius morphism

X →X(3).

Example 9.3 (Symplectic μn-action (n = 5,6,7,8)). For each n = 5,6,7,8, let F be

a linear combination of the monomials listed in Table 8, in characteristic p, and then

X = (F = 0) ⊂ P3 admits a μn-action with the indicated weights. If F is a generic such

polynomial, then X is an RDP K3 surface and the μn-action is symplectic. The fixed locus

is X ∩{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}.
For example, for n = 5,6,7,8, respectively, the polynomials with coefficients

(1,1,1,1,0,0,0), (1,1,1,1,1,0,0), (1,1,1,1,1), (1,1,1,1,1) satisfy the condition.

9.2 Non-symplectic actions

Example 9.4 (Non-symplectic μ2-action with Enriques quotient in characteristic 2).

Following [BM1, §3], let L1,L2,L3 be three linear polynomials in 12 variables, and letX ⊂P5

be the intersection of three quadrics F1,F2,F3 defined by Fh =Lh(x
2
k,xixj ,y

2
k,yixj+xiyj+

yiyj)1≤k≤3,1≤i<j≤3 ∈ k[x1,x2,x3,y1,y2,y3]. Then, for generic Lh, X is an RDP K3 surface

(with 12 RDPs of type A1), μ2 acts on (P5 and) X by wt(xi,yi+xi) = (0,1) without any

fixed point on X, and the quotient X/μ2 is an Enriques surface.

Example 9.5 (Non-symplectic μ2-action with rational quotient in characteristic 2). The

quartic surface w2(xy+ z2)+x4+y4+ z4+yz(y2+ z2) = 0 is an RDP K3 surface, and the

μ2-action with wt(w,x,y,z) = (0,1,1,1) is non-symplectic. The fixed locus consists of the

curve (w = 0) and the RDP (x = y = z = 0) of type A1. The image of this RDP in the

quotient surface is a non-RDP singularity.

In the following example, for two polynomials A(t),B(t) with degA≤ 8 and degB ≤ 12,

the elliptic (or quasi-elliptic) surface defined by the equation y2 = x3+A(t)x+B(t) is an

abbreviation for the projective surface that is the union of four affine surfaces

Speck[x,y, t]/(−y2+x3+A(t)x+B(t)),

Speck[x′,y′, t−1]/(−y′2+x′3+ t−8A(t)x′+ t−12B(t)),

Speck[z,w,t]/(−z+w3+A(t)wz2+B(t)z3),

Speck[z′,w′, t−1]/(−z′+w′3+ t−8A(t)w′z′2+ t−12B(t)z′3),

glued by the relations x′ = t−4x, y′ = t−6y, z = y−1, w = xy−1, z′ = y′−1 = t6y−1, and

w′ = x′y′−1 = t2xy−1. For generic A and B, this is an RDP K3 surface.
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Table 9. Examples of non-symplectic μn-actions on RDP K3 surfaces.

p n Equation wt(x,y, t) RDPs References

19 38 y2 = x3+ t7x+ t 2,3,6 A18 [Ko]
17 34 y2 = x3+ t7x+ t2 4,23,6 A16 [Ko]
13 26 y2 = x3+ t5x+ t 2,3,6 A12 [Ko]
11 44 y2 = x3+x+ t11 22,11,2 2A10 [Ko]
7 42 y2 = x3+ t7x+1 14,21,4 3A6 ?
7 28 y2 = x3+x+ t7 14,7,2 2A6 [Ko]
5 60 y2 = x3+ t(t10−1) 2,3,6 2E0

8 [Ke]
3 60 y2 = x3+ t(t10−1) 2,3,6 10A2 [Ke]
3 42 y2 = x3+ t(t7−1) 2,3,6 7A2 [B]*
3 36 y2 = x3− t(t6−1) 2,3,6 2E0

6 [Ko]*
3 24 y2 = x3+ t2(t8−1) 2,3,3 8A2 ?
2 60 y2 = x3+ t(t10−1) 2,3,6 5D0

4 [Ke]
2 38 y2 = x3+ t7x+ t 2,3,6 19A1 [Ko]
2 36 y2 = x3− t(t6−1) 2,3,6 3D0

4 [Ko]*
2 32 y2 = x3+ t2x+ t11 18,11,2 D0

20 [O1]
2 26 y2 = x3+ t5x+ t 2,3,6 13A1 [Ko]
2 24 y2 = x3+ t5(t4+1) 2,3,6 E0

8 [B]
p n Equation wt(w,x,y,z) RDPs References
7 42 w2 = x5y+y5z+z5x −1,0,−2,8 3A6 ?
3 42 w2 = x5y+y5z+z5x −1,0,−2,8 7A2 ?
2 42 w2 = x5y+y5z+z5x −1,0,−2,8 21A1 ?
2 22 w2 = x5y+y5z+xy2z3 −1,0,−2,8 11A1 ?
p n Equation wt(w,x,y,z) RDPs References
2 28 w4+x3y+y3z+z3x= 0 0,1,−3,9 7A3 ?

Example 9.6 (Non-symplectic μn-actions). Table 9 proves the existence part of

Theorem 8.2 for n divisible by p. The first group consists of elliptic (or quasi-elliptic)

RDP K3 surfaces, the second of double sextics, and the third of quartics. Only the non-μn-

fixed RDPs are listed, except in the example for (p,n) = (2,32), the D0
20 point is fixed and

after blowing-up this point, we find a non-fixed D0
18 point.

The examples are characteristic p reductions of the examples (of an automorphism of

order n) in characteristic 0 obtained, respectively, by Brandhorst [B, Th. 5.9], Keum [Ke,

Exam. 3.2], Kondo [Ko, §§3 and 7], and Oguiso [O1, Prop. 2], except that for the ones

marked “?” we could not find a reference. An asterisk means that we made a coordinate

change t �→ t−1.

9.3 μp-actions on abelian surfaces

As shown in Theorem 6.3, the nontrivial μp-actions of abelian surfaces A, up to

automorphisms of μp, are precisely the translations by subgroup schemes of A[p] isomorphic

to μp.

Remark 9.7. In the case of finite order automorphisms on abelian surfaces, there are

examples with non-abelian quotients. Kummer surfaces in characteristic �=2 are the minimal

resolution of the RDP K3 quotient (with 16A1) by the symplectic involution x �→ −x on

abelian surfaces (for characteristic 2, see Remark 3.6). Furthermore, certain non-symplectic

(or sometimes symplectic) actions give (quasi-)hyperelliptic quotients. It seems that there

are no μp-analogue of these actions.
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Remark 9.8. If we consider rational vector fields (i.e., possibly with poles) of

multiplicative type, there are other kinds of examples. See [KT, Exam. 6.2] for a rational

vector field of multiplicative type on an abelian surface (in characteristic 2) with a general

type quotient.
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