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Abstract

For certain problems in the weak convergence theory of probability measures on non-separable
metric spaces it is convenient to consider measures defined on a <r-field ^o smaller than the
Borel cr-field. A suitable theory has been developed by Dudley and Wichura. In this paper it is
shown that some of the key results in that theory can be deduced directly from the better known
weak convergence theory for Borel measures. This is achieved by a remetrization of the under-
lying space to make it separable. The tr-field 3S0 contains the new Borel cr-field and weak con-
vergence in Dudley's sense becomes equivalent to convergence of restrictions of the measures to
the latter cr-field.
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1. Introduction

A theory of weak convergence of (non-Borel) measures on (non-separable) metric

spaces was introduced by Dudley (1966) in order to cope with measurability problems

arising in the study of empirical processes. The difficulties occur if a (suitably

normed) empirical distribution function Fn is to be regarded as a random element

of a space such as D[0,1]. Under the sup norm topology on D[0,1] the map Fn

need not be Borel measurable, essentially because of the non-separability of this

topology (see Billingsley (1968), Section 18). Dudley's solution was to equip

D[0,1] with a weaker a-field: the <7-field ^ 0 generated by the class of all balls.
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Since the Fn's are <%0 measurable, they induce a sequence of probability measures
on that ff-field for which the usual limit theorems can be proved once the weak
convergence concept has been suitably defined. Dudley also showed that the same
approach can be used to prove the corresponding weak convergence results for
multidimensional empirical processes.

A better known solution to the problem lies in equipping Z>[0,1] with the
weaker (separable) Skorokhod .^-topology, under which the maps Fn become
Borel measurable. The weak convergence result for the sequence of induced Borel
measures in this setting can be proved equivalent to the one proved by Dudley.

What is more, it can also be shown that the Borel cr-field of the Skorokhod
topology coincides with &0, since both are generated by the finite dimensional
projection maps (see Theorem 14.5 of Billingsley (1968) and Proposition 1.1 of
Dudley (1978)).

The advantage of using Dudley's approach derives from the simpler structure
of the uniform topology; the disadvantage is that it is apparently necessary to
develop a separate theory of weak convergence for measures denned only on the
ff-field @)0. In this paper it will be shown that, by means of a simple device, the
main results for the non-separable theory can in fact be deduced from the corres-
ponding theory for weak convergence of Borel measures. Perhaps this will
encourage a greater interest in the non-separable theory; in view of recent appli-
cations by Dudley (1978), to cases where there is no obvious analogue of the Jx-
metric available, that theory clearly has something to offer.

2. Weak convergence of non-Borel probability measures

Let (S1, d) be a (possibly non-separable) metric space. The cr-field on S generated
by the family of all balls will be denoted by 3S0. This is the smallest c-field with
respect to which all of the functions d(-,x), for each fixed xeS, are measurable.
Thus @0 forms a sub <r-field of the Borel cr-field, with equality at least in the case
where the topology is separable. (Talagrand (1978) has constructed an example
of a non-separable space for which 280 coincides with the Borel tr-field.) Write
C(S) for the class of all bounded continuous real functions on S.

A sequence {Pn} of probability measures on 380 will be said to converge weakly
(in Dudley's sense) to a probability P on 3&Q if

(i) P has separable support,
(ii) limn l*fdPn = limn $*fdPn = \fdP for every fe C (S).

Here J* and L denote upper and lower integrals. (For example,

fdPn = inf| \gdPn: measurable g S* / J-. j
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[3] Weak convergence on non-separable metric spaces 199

The stars are not needed for the last integral since (i) implies that/is P integrable,
that is l*fdP = l*fdP. This form of weak convergence will be denoted by
Pn-^P. Some equivalent forms for (ii), due to Dudley (1967) and Wichura (1968),
will arise naturally out of the results to be proved in the next section.

Three of the more important results for such a notation of weak convergence
run as follows. The set of all points within a distance 8 of a set Kis denoted by K3.

THEOREM A (compare with Proposition 1 of Dudley (1966)). Suppose Pn^~P
and that F is a bounded real function on S which is P almost surely continuous. Then

lim *F dPn = lim FdPn = FdP.
n J n J * J

THEOREM B (compare with Theorem 1 of Dudley (1966)). Let {/>„} be a sequence
of probability measures on 38 0 having the property that for each e > 0 there exists
a compact set K(e) £ S such that for every 5 > 0

Then there exists a weakly convergent subsequence (in Dudley's sense).

THEOREM C (compare with Theorem 2 of Wichura (1970)). Suppose Pn^P.
Then there exists a probability space (£l,^,n) and !F-@lo-measurable random
maps Xn, X from SI into S such that

lix;i=pn, liX~l=p
and

Xn -> X, fi almost surely.

(Recall that a map X from Cl into S is said to be !F- J'o-measurable if X~J B
belongs to 3F for every B in ^0.)

Once again the absence of stars on the integral \FdP in Theorem A indicates
that the function is P integrable in the sense that the upper and lower integrals
agree. Similarly in Theorem B, the set K"(E) of all points within distance 8 of K(e)
is actually $?0-measurable, since it can be represented as a countable union of
open balls whose centres form a dense subset of the compact set K(e).

The corresponding result for sequences of Borel measures might be more
familiar to some readers if K\s) were to be replaced by K(E). However, this
slightly weaker condition is to be preferred since it can easily be shown to be
necessary for the weak convergence of {/"„} to a tight measure (use the fact that
K"(E) is open). The form of Theorem C given here differs from that proved by
Wichura in that he considered nets of probabilities whose domains of definition
may be larger than 3S0; Wichura also proved convergence in the almost uniform
sense, which is stronger than the almost sure convergence in Theorem C. The less
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general form suffices for most applications though (Pyke (1969, 1970)). The
analogous result in the separable case was proved by Dudley (1968), generalizing
the original theorem of Skorokhod (1956) for complete, separable metric spaces.

In the next two sections a method for deducing these theorems from the corres-
ponding results for separable metric spaces will be described.

3. The weaker separable topology on S

As before (S,d) is a possibly non-separable metric space. Let So be a closed
separable subset of S, chosen to support the limit measure. As in the classical
method for generating a separable metric topology, a countable collection of
continuous real functions on S will be used to define a pseudometric. In our case
the functions should be J^-measurable, in order that the Borel tr-field be weaker
than 3$0, and be such that the neighbourhood base for the topology at points of
So agrees with that of the original rf-topology; the analogy with the behaviour of
the Skorokhod topology at points of C[0,1] will become clear (compare with
Billingsley (1968), page 112).

Let T={xt,x2,...} be a countable dense subset of So. Since the distance
function d( •, So) can be represented as inf {d( •, *„): xn e T} which is ^-measurable,
it follows that So itself belongs to 3&0. Now consider the uniformity on S generated
by the countable family of real continuous functions {d(-,S0),d(-,xn): xneT}.
One possible pseudometric for this uniformity is

p(x,y):=\d(x,S0)-d(y,S0)\ + f) 2-" min{l,\d(x,xn)-d(y,Xn)\}.

(The connection between uniformities and pseudometrics is described by Ash
(1972), page 404.) In general the uniformity need not be Hausdorff, but that creates
no great problems. Since the generating family of functions is countable, the p-
topology is separable: separability of (S,p) is equivalent to separability of the
associated metric space of equivalence classes [pc] :=QyeS: p(x,y) = 0 } ; the map
[x] -> (d(x,xn): xneT) is a homeomorphism between this metric space and a sub-
set of the countable product of real lines R r . Because each of the functions in the
definition of p is ^-uniformity continuous, the /^-topology and uniformity are
weaker than the rf-topology and uniformity. Denote the generated Borel tr-field
by @(p). The key properties of the ^-topology can be summarized in six points.

THEOREM 1.

(i) The p-topology is separable.
(ii) The p-topology (uniformity) is weaker than the d-topology (uniformity).

(iii) So is closed in the p-topology.
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(iv) Ifp(ya,y) -> 0 andyeS0 then d(ya,y) -* 0.
(v) The p- and d-topologies agree on So.

(vi) a0

PROOF, (i) and (ii) have already been noted. Assertion (iii) follows from the

continuity of d(-, So) under the/>-topology. For part (iv) first choose an x m e r f o r

which d(y, x^ < e, then notice that d(ya, .*„,) -* d(y, xm). It follows that

lim sup d(yt, y) < 2s.

Part (v) is a direct consequence of (ii) and (iv). Finally, from (i) it suffices to show

that each of the functions p(-,x), for xeS, is ^ - m e a s u r a b l e ; ^0-measurabi l i ty

of the functions d(-,xn) takes care of this.

Notice that if 38 0 is not countably generated then we cannot hope to strengthen

(vi) to equality. However, it can be arranged that 38{p) contains any fixed countably

generated sub a-field of 38 0. First observe that such a sub <7-field must be generated

by some countable collection of balls; if the countable set {xux2,...} is expanded

to include the centres of these balls then the balls themselves become closed sets in

the (new) p-topology. This will apply to both of the spaces D0(<$,P) and D(<tf,P),

defined by Dudley (1978), in the case when # possesses a countable s u b s e t s with

the property (Dudley (1978), page 902) that for each C e # there exists a sequence

{/)(«)} £ ^ such that lD(n)(x)-y lc(x) for all xeX. This is analogous with the

classical D[0,1] situation.

The most important aspect of the new topology is that the notion of weak con-

vergence is preserved. For a measure P defined on 380, write P' for its restriction to

$(p). If P happens to concentrate on S^ this entails no loss of information. Use

the usual symbol =* to denote weak convergence of measures on the Borel <x-field

THEOREM 2. Let {Pn}, P be probabilities on 3S0, with P concentrated on the closed
separable set So. Then Pn^P if and only ifP'n => P'.

PROOF. Suppose that Pn^~P and t h a t / i s bounded and />-continuous. Then

from parts (ii) and (vi) of Theorem 1 it follows that / is both J-continuous and

^ - m e a s u r a b l e . Hence

JV:-J fdPn ( =

fdP

= \fdP';
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that is, P'n=>F.
On the other hand, suppose that P'n =*• P'. Somewhat more than Pn-*-P will be

proved. For Abounded and P almost surely ^-continuous, let F denote the smallest
function greater than F which is upper semicontinuous with respect to the p-
topology, and F the largest /?-lower semicontinuous function less than F. Then
(Tops0e (1970), page XI) the set {F = F=F} consists of all those points at which
F is ^-continuous. By assumption F is ^-continuous P almost surely; since
P(So) = 1> P a r t (iv) of Theorem 1 implies that F = F = F on a set of P' measure
one. Hence the equalities JFdP' ^ j'FdP'S? $.FdP^ $F dP' become equalities
throughout. The convergence Pn-^P now follows by the standard argument
(Topsce (1970), page 41):

lim sup FdPn^ lim sup FdP'n

FdP'4
-JFdP

= FdP'

;liminf \FdP'n

:liminf FdPn.

COROLLARY 1. The second part of the proof was given in greater generality than
needed there {only d-continuous function F need have been considered) because we
have thereby obtained the proof of Theorem A.

COROLLARY 2 (Dudley (1967) and Theorem 1.2 of Wichura (1968)). With {Pn}
and P as above, the convergence Pn-*-P is equivalent to \fdPn -> \fdPfor all bounded
uniformly d-continuous $8^-measurable functions f

This follows immediately from Theorem 1 part (ii) and Theorem 2, since the
class of all such / ' s contains all bounded /^-uniformly continuous real functions.
The latter determine the weak convergence P'n => P'.
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4. Theorems B and C

For the first of these theorems the aim is to transform the problem to the corres-
ponding one for Borel measures, where known results may be applied. Specifically,
we can use a variant of the well-known Prohorov theorem for separable metric
spaces.

LEMMA (see Lemma 4 of Stgpan (1970), or Theorem 6.1 of Billingsley (1968)).
Let {/•„} be a sequence of Borel probability measures on a separable pseudometric
space. If, for every s > 0, there exists a compact set K(e) such that

lim inf Pn(G)> 1-e

for every open G 2 K(e), then there exists a subsequence converging weakly to a
tight measure.

PROOF. Using Stepan's technique we obtain a tight measure P as a cluster point
of {Pn}. Apply the Cantor diagonalization procedure to find a subsequence {Pn.}
for which liminfPB-(G^ ^P(Gj) for each Gu where {G1,G2...} forms a count-
able base for the topology which is closed under the formation of finite unions.
It follows that Pn=>P. (See, for example, Theorem II.5 of Varadarajan (1965.)

The appropriate separable set to choose will be the closure of \J^=1K(m~1).
Using this as So, construct the pseudometric p as in Section 3. By virtue of the
</-compactness of Kim'1) and parts (iii) and (v) of Theorem 1, these sets will also
be closed (since the relative topology on So is Hausdorff) and compact in the p-
topology. Also for each/>-open set G containing KQn'1) there exists, by Theorem
1 (iv), a 5 > 0 depending on the set G for which G 2 K\m~x). Hence

Uminf jP B (G)>l-e

for every such />-open G. The above Lemma can be applied to the Borel measures
P'n, obtained by restricting the PB's to 88{p), to obtain a subsequence P'n,^>P'.
Since P' concentrates on the p-closed set So, and since by Theorem 1 part (v) the
<r-fields 38Q and @(p) agree on So, the probability P' can be regarded as a measure
on 3S0 having support in So. Application of Theorem 2 then shows that Pn. ->•/".
This completes the proof of Theorem B.

Theorem C can be deduced directly from Theorem 3 of Dudley (1968), provided
two trivial modifications are made to his proof. First notice that Dudley's arguments
carry over without change to the pseudometric case. Also, observe that if Pn is
defined on a a-field 38n bigger than the Borel <r-field, the random map Xn can be
chosen as ^-measurable; only changes in interpretation of the wording are needed
for this. Using this modified form of Dudley's result with 88n = Mo for all n, and
with the separable topology induced by the /?-pseudometric, we obtain
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^-measurable random maps Xn and X, inducing the desired measures on 3S0, for
which p(Xm X) converges to zero almost surely. Since X concentrates on So,
part (iv) of Theorem 1 implies that the almost sure convergence can be strengthened
to almost sure convergence with respect to the d metric. This is the desired form of
the result.

For the special case of £>[0,1] under its uniform metric, the above type of
argument has already been used by Pyke and Shorack (1968) and Pyke (1969).
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