
APPENDIX.

The following paper on Proportion in its original form
was remitted to a Committee of the Edinburgh Mathematical
•Society for consideration and report. After discussion in
Committee it was reported to the (Society, and at the
meeting held on 12th January 1900 the following motion
was unanimously adopted :—

" The Edinburgh Mathematical Society resolves that
Professor GIBSON'S Paper on Proportion be printed in
its Proceedings, and recommends it to Mathematical
Teachers as a suitable and sufficient substitute for
Euclid's Fifth Book.'
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Proportion: A Substitute for the Fifth Book of Euclid's
" Elements."

By Prof. GEORGE A. GIBSON.

INTRODUCTION.

The following proposed substitute for the fifth book of Euclid's
Elements has been drawn up with the object of filling a gap that
undoubtedly exists in the current methods of teaching elementary
geometry. I t is a matter of common knowledge that Euclid's fifth
book is rarely read in schools, and, in spite of its intrinsic excellence,
it is not at all likely to be reintroduced into elementary teaching.

The chief reason—and it is a strong reason—for retaining
Euclid's treatment of proportion is that it puts commensurable and
incommensurable magnitudes on the same level; but this reason
loses all its force if, as is usually the case, only the definitions and
not the propositions of the fifth book are read. Besides, even when
the fifth book has been studied, it is necessary to go further and to
show that ratio as defined by Euclid is a quantity that can be used
in calculations like ordinary numbers before the properties of ratios
established in the fifth and sixth books of the Elements can logically
be applied as is universally done in such a subject as trigonometry.
In other words, since Euclid does not define a ratio as a number,
proof ought to be given that it can be compared with numbers and
that it has the same laws of combination as numbers before it can
be legitimately subjected to the operations of algebra as its use in
trigonometry, and applied geometry in general, requires. Such
proof is rarely, if ever, attempted, not to say effected.

In whatever way a ratio may be defined to begin with, any
treatment that is to be of the slightest use in practice must at some
stage or other show that a ratio is a quantity subject to the laws of
algebra. The common observation that the fifth book of Euclid is
not geometrical, tells in favour of an arithmetical theory of proportion
rather than against it, for it shows that Euclid could not develop
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his system on geometrical grounds alone. I t would, indeed, be
strange if a system of geometry which, like Euclid's, is essentially
metrical, were independent of considerations of number. The
difficulties attaching to the ratios of incommensurable magnitudes
are identical with those of irrational numbers, and are not at all
geometrical in their nature. The objection sometimes urged against
an arithmetical treatment of proportion, that geometrical theorems
should be established by geometrical methods alone, is without force
as an argument in favour of Euclid's treatment, since his theorems
on proportion are quite independent of geometry. The fifth book
of Euclid is in reality a magnificent treatise on abstract number,
not at all a treatise on geometTy; but for that very reason it is
quite unsuitable, as experience has proved, for elementary teaching.

The most natural method seems to be to begin with commensur-
able magnitudes, just as arithmetic begins with integers. When
the pupil has in this way acquired some familiarity with the
properties of ratios and their use in geometry, he can then have the
difficulties of incommensurable magnitudes brought before him. In
whatever way the subject be treated, the difficulties of the ratios of
incommensurable magnitudes, like those of irrational numbers, are
considerable, and a full discussion would probably be beyond the
capacity of the average school-boy. In the following articles an
effort has been made to render the conception of the ratio of two
incommensurable magnitudes as clear as possible, and to emphasise
the connection with the fundamental conception of a limit, but
there is no attempt to prove the combining laws of such ratios.
There is the less need for such proof, as in the forthcoming second
edition of the second volume of Professor Chrystal's Algebra there
is a thorough discussion of the irrational number. I t is hoped that
sufficient has been done to give the pupil clear and accurate ideas
of the nature of an irrational number or of the ratio of two
incommensurable magnitudes, and thus to prepare him for the fuller
treatment that will be found in such an exposition as that referred
to, as well as for the applications of the method of exhaustions or of
limits in his more advanced studies.

It is therefore strongly recommended that the pupil should for a
first reading confine himself to §§ 1-10, omitting §§ 11-16, and going
on to the proof of the theorems in proportion that are required in
geometry.

8 Vol. 18
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Some propositions from Euclid's sixth book are appended, to
show how they may be proved when Euclid's definition of proportion
is replaced by that given in this paper.

RATIO AND PROPORTION OF MAGNITUDES.

1. If A and B denote two like magnitudes,* that is, two
magnitudes of the same kind, e.g., two straight lines or two rect-
angles, the sum of A and B will be denoted by A + B and the
difference by A - B, when A is greater than B, but by B - A when
A is less than B.

The sum of n magnitudes, each of which is equal to A, will be
denoted by nA, and the magnitude MA will be said to contain A
n times, or n times exactly.

2. Definition. If one magnitude contain another magnitude ft
certain number of times exactly, the greater is called a multiple of
the less and the less is called a sub-multiple or a measure or .in
aliquot part of the greater.

If A contains B n times, A is called the nth multiple of B, and
B the nth submultiple or the nth part of A.
These relations may be expressed by the equations

A
A = nB, B = —.

n

3. If A, B be like magnitudes and m, n be integers, it follows
from the first principles of arithmetic that

(TO ± n) A = mA + nA

n . mA = nmA = mnA = m. nA

* In the fifth book of Euclid, magnitudes are usually represented by
straight lines, and this procedure is very convenient, as it helps to make the
somewhat abstract reasoning more definite. In class teaching, of course, the
conclusions stated for integers m, n, etc., should be illustrated by the use of
definite numbers, 2, 3, etc. On the comparison of magnitudes in general,
see § 15.
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Again, m times the nth part of A, that is TO—, is the same
n

magnitude as the nth part of m times A, that is . Each of

these expressions m— and may therefore be represented by

—A, so that the expression pA has a perfectly definite meaning
even when p is a fraction. The arithmetic of fractions then shows
that the above equations hold true even when m, n are fractional
numbers.

4, Definition. When each of two like magnitudes is a multiple
of a third magnitude, the third magnitude is called a common
measure of the two magnitudes, and the two magnitudes are said
to be commensurable; if the two magnitudes have no common
measure, they are said to be incommensurable.

It will be proved in §11 that there are incommensurable
magnitudes; §§5-10 deal with commensurable magnitudes only.

5. Theorem. If M be a common measure of A and B, every
measure of M will also be a common measure of A and B. For a
magnitude that contains M a certain number of times will contain
},M, 1M, etc., twice, thrice, etc., that number of times.

This theorem has the following converse: if G be the greatest
common measure of A and B, every common measure of A and B
will also be a measure of G.

For, let A = aG, B = 6G and let M be any other common measure
of A and B.

Since G is the greatest common measure of A and B, the
numbers a and 6 will be prime to each other; for if a and b had
a common measure c, then cG would be a measure both of A and
of B, and therefore G would not be the greatest common measure.
Now suppose A = wM, B = nM.

Therefore, TOM = aG, nM = 6G

or M = —G, M = —G.
m n

_ a b m a
Hence — = — or —= —.

m n n b
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But -r is a fraction in its lowest terms, and therefore m = ra,
b

n = rb where r is the greatest common measure of m and n.

Hence M = —G = —G, and therefore M is a measure of G.
m r

6. From what has just been said about common measures it
appears that any two commensurable magnitudes have an unlimited
number of common measures ; the smaller the measure is, the greater
is the number that expresses the multiple which the magnitude is
of its measure. But it has been proved that if M be any common

measure of A and B, and if A = mM, B = «M, the fraction — has
n

the same value whatever common measure M be taken, being equal
to the fraction — where a, b are the number of times A, B

b
respectively contain their greatest common measure.

Definition. If A and B be two like magnitudes having a common
measure M, so that

A = mM, B = nM, and therefore A = —B
n

the ratio of A to B is defined to be the fraction — . *
J n

If A be greater than —B, the ratio of A to B is defined to

be greater than the fraction — ; and if less, less.
n

From what has just been stated the ratio of A to B is a number
which is independent of the size of the common measure M.

It is stated in the definition that A and B are magnitudes of
the same kind, and when the ratio of two magnitudes is spoken of,
it is always to be understood that they are of the same kind.

771

* Instead of saying that " the ratio is equal to —," we sometimes say

that " the ratio is measured by the fraction "; but as a mathematical

quantity it is the numerical value of the ratio which we always have in view.
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Again, in arithmetic the ratio of two integers m and n is denned

to be the fraction —, so that the definition of ratio given above
n

is equivalent to the following:—"When A =—B, the ratio of

A to B is equal to the ratio of m to n.
The ratio of A to B is often expressed by the notation A : B.

A and B are called the terms of the ratio; the term which comes
first is called the antecedent and the other the consequent.

NOTE.—If A be equal to B, the ratio A : B is unity, and the ratio is in
this case sometimes spoken of as a ratio of equality. If A be greater than B,
the ratio A: B is an improper fraction and the ratio is then spoken of as a
ratio of greater inequality or a ratio of majority, while if A be less than B, the
ratio A : B is a proper fraction and is then spoken of as a ratio of less inequality
or a ratio of minority.

7. Definition. If A and B be two like magnitudes, and if C
and D be two other like magnitudes, though not necessarily of the
same kind as A and B, the four magnitudes A, B, C, D are defined
to be proportionals or to be in proportion when the ratio of A to B
is equal to the ratio of C to D

The proportion is often expressed by the notation
A : B = C : D •

or, in words, " A is to B as C is to D."
The magnitudes A, B, C, D are called the terms of the propor-

tion ; the first and fourth terms are called the extremes, the second
and third the means. Thus A and D are the extremes, B and C
the means.

When four magnitudes are proportionals, the first and third
terms are said to be homologous to each other, and the second and
fourth are also said to be homologous to each other. Instead of
homologous terms the expression corresponding terms may be used,
and the first and third may then be said to correspond.

When four magnitudes are proportionals, the fourth magnitude
is sometimes called thejourth proportional to the other three.

It is obvious that C is greater than, equal to, or less than D
according as A is greater than, equal to, or less than B.

* The notation A : B : : C : D is sometimes used instead of A : B = C : D.
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8. Definition. If there be any number of like magnitudes greater
than two, of which the first has to the second the same ratio that
the second has to the third, and the second to the third the same
ratio that the third has to the fourth, and so on, the magnitudes are
said to be continual proportionals or in continued proportion.

When three magnitudes are in continued proportion, the second
is said to be the mean proportional between the other two, and the
third is said to be the third proportional to the other two.

Magnitudes in continued proportion are sometimes said to be in
geometrical progression, and when there are three magnitudes in
continued proportion the second is then called the geometric mean
between the other two.

9. Definition. The ratio of B to A is defined to be the reciprocal
or the inverse of the ratio of A to B.

From the definition of proportion it follows that

if A : B = C : D

then B : A = D : 0

for the ratios A: B and C : D are each equal to the fraction — ,

and their reciprocals are each equal to the fraction — .

Again, the first of these two proportions may evidently be written
in the form

C:D = A : B
and the second in the form

D : C = B : A

so that the truth of any one of these proportions implies the truth
of the other three.

10. When the ratio of A to B is greater than the ratio of C to D,
the relation between the magnitudes may be expressed by the
notation A : B > C : D ,
while if the ratio of A to B is less than that of C to D, the relation
may be expressed by the notation

A : B < C : D .
It is clear that

if A : B > C : D

then B : A < D : C .
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Again, the first of these inequalities may be written in the form
C : D < A : B

and the second in the form
D : C > B : A

so that from any one of them the other three follow.

11. The magnitudes which have been considered up to this
point have been supposed to be commensurable; it will now be
proved that there are pairs of incommensurable magnitudes.

In proving that incommensurable magnitudes exist, and more
generally in seeking to define the ratio of such magnitudes, the
following axiom or postulate, called the axiom of Archimedes, is
assumed :—

Given two unequal magnitudes of the same kind, there always
exists a multiple of the less that is greater than the greater magni-
tude, or—which amounts to the same thing—there always exists a
submultiple of the greater that is less than the less of the two given
magnitudes.

To prove that the diagonal and the side of a square are
incommensurable.

From the diagonal AC, cut off AE
equal to AB or BC, and draw EF per-
pendicular to AC to meet BC at F.

Then BF = EF = EC.
Hence EF, EC are two sides of a square
EF6C, of which FC is a diagonal, and
the side EC consequently less than
half BC.

Now AC-BC = EC (1)
BC - EC = FC (2)

Equation (1) shows that every common measure of AC and BC
is a measure of EC, while equation (2) shows that every common
measure of BC and EC is a measure of FC.

Hence every common measure of AC and BC is also a common
measure of FC and EC, and EC has been shown to be less than
half BC; that is, every common measure of the diagonal and the
side of a given square is also a common measure of the diagonal and
the side of another square, the side of which is less than half the
side of the given square.
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The theorem can now be applied to the square EFGC, and so on
indefinitely. 1 f the theorem be applied n times in all, the conclusion
is that every common measure of the diagonal and the side of a
given square is also a common measure of the diagonal and the side
of another square, the side of which is less than 1/2" of the side of
the given square.

If there be a common measure of AC and 1!C, let it be the
line X. Now by the axiom of Archimedes we can take n so large
that BC/2" shall be less than X. But the common measure sought
for must be a measure of a line that is less than BC/2", no matter
how large n may be. X therefore can not be a common measure of
AB and BC since X is greater than BC/2". Hence the diagonal
and the side of a square can have no common measure.

I t has therefore been proved that there is one pair of incom-
mensurable magnitudes ; * as a matter of fact, incommensurable
magnitudes are not exceptions of rare occurrence.

12. The general method of treating incommensurable magnitudes
may be illustrated by considering the diagonal and the side of a
square.

Denote AC by D and BC by S; then clearly
D > 1 S but D < 2 S .

Divide BC into 10 equal parts; then BC2 contains 100 squares,
the side of each being S/10, while AC2 contains more than 196 but
less than 225 such squares. Hence

D > 1 4 S but D<1-5S.

Proceeding in this way, it may be shown that
D>1-41 S but D<l-42 S
D > 1 4 1 4 S but D<1-415S
D>1-4142S but D<1-4143S

and so on.
In this way two sets of approximations to D are obtained, the

one set being in defect, the other in excess; these may be called the
lower and the upper sets respectively.

* As another instance of a pair of incommensurable lines, the segments of
a straight line divided in medial section may be taken. See Mackay's Euclid,
Book II., Prop. 11, Cor. 1.
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It is important to notice that the difference between correspond-
ing members of the two sets gets less and less as the work proceeds,
and further if we assume the axiom of Archimedes we can go so far
as to make the difference between D and any approximation less
than any given line. For if the given line be X, we can choose n so
large that S/10" shall be less than X ; if the work be carried out to
n decimals, then the difference between the lower and the upper
approximations is S/10", and therefore the difference between D and
either of them less than S/10" and a fortiori less than X.

Hence although we can find no rational number a such that
D = aS, we can find two rational numbers a, b such that

D>nS but D<6S
and at the same time (b - a)S less than any given line,

In arithmetic the irrational number J2 is denned as the number
which is greater than any of the numbers belonging to the lower set
of »pproximations to D, namely, 1, 1 . 4, 1. 41, etc., and less than
any of the numbers belonging to the upper set, 2, 1. 5, 1 . 42, etc.

Hence we may write D= ^ S .

This symbol J2 is subject to the laws of algebra, and is, for that
reason if for no other, called a number ; it is, however, an irrational
number, and the numbers 1, 1.4, 1. 41, etc., are called rational
approximations to it.

13. We may now take the general case of two incommensurable
straight lines; let these be OP, OQ and suppose OP greater than OQ

O-
Q P

We form the two sets of approximations to OP by considering
(1) how often OP contains OQ, with a remainder less than OQ,
(2) OQ/10 with remainder less than OQ/10, (3) OQ/102 with
remainder less than OQ/102, and so on.

The lower set of approximations will consist of the multiples of
OQ, OQ/10, OQ/102, etc., thus obtained, while the upper set will be
these multiples increased by unity. Denote the lower set of
approximations by ajOQ, a8OQ, a3OQ, etc., and the corresponding
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members of the upper set by 6,0Q, b«OQ, 63OQ, etc.; then we get
the following scheme. The first approximation gives

OP>a,OQ but OP<61OQ, (61-a1)OQ = OQ
the second gives

OP>a2OQ but OP<6,OQ, (62 - a2)OQ = OQ/10
the third gives

OP>a3OQ but OP<63OQ, (b3- a3)OQ = OQ/102

and generally, the nth gives
OP>anOQ but OP<6nOQ, (6, -an)OQ = OQ/10—1.

Now, by the axiom of Archimedes, we can choose n so large
that OQ/10""1 shall be less than any given line. Hence we can
find a rational number «„ or bn such that OP shall differ from an0Q
or 6nOQ by less than any given line.

But further, suppose the two sets of numbers ax, a.,, etc.,
6,, b.,, etc., are all known; then there cannot be two different lines
which are both greater than every one of the approximations in
defect and both less than every one of those in excess. For, if
possible, let OP, OP' be two such lines, and let OP' be greater
than OP, say OF - OP= D.

We can choose n so large that OQ/10"""1 shall be less than D ;
but OP'<6nOQ, OP>anOQ.
Therefore, OP' - OP < (&„ - an)OQ.

But (bn-a,,)OQ = OQ/10"-1 <D.
Hence OP' — OP is less than D, which contradicts the supposition
that OP - OP = D. In the same way it may be shown that OP is
not greater than OP'. Hence OP' = OP.

Thus the two sets of approximations determine the line OP
uniquely when OQ is given. We therefore introduce a symbol a
and write OP = aOQ, where a is defined by this property that it is
greater than every one of the numbers an a2) etc., of the lower set
and less than every one 6lf 62, etc., of the upper set. a is an
irrational number, and the a's and b's are rational approximations
to it.

These rational approximations are expressed as decimals; but
this has been done for convenience merely. The reasoning would
hold equally well if, for example, instead of OQ, OQ/10, OQ/102, etc.,
we had chosen OQ, OQ/2, OQ/3, etc. The essential point is that
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(1) the a's should give approximations in defect and the 6's approxi-
mations in excess, and (2) that by taking n sufficiently large we
should be able to make (&„ - a,,)OQ less than any given line, or
(bn — an) less than any given fraction.

The symbol a has been called an irrational number, and it is
shown in treatises on algebra * that it may be used according to the
same rules that apply to rational numbers. In practice, approxima-
tions are always sufficient, and in place of the irrational number a
rational approximation may be substituted according to the degree
of accuracy required, so that even though the full theory of irrational
numbers be not presupposed, there is, by the use of the approxima-
tions, an amount of control that is sufficient for all practical
purposes.

14. There is another way of looking at the matter that is
instructive. Consider the series of lines

o^OQ, «oOQ, a,,OQ,

If we measure oft" these lines from O in the direction OP, we get for
their second extremities, say, the points R1( R,, etc. As we pass
from R; to R2, then to R3, and so on, we get nearer and nearer to P,

O 1 1 1—I 1
Q R, R.2 R3

and though we never in this way quite reach P, we can come nearer
to P than by any given distance; P is a boundary or a limit to our
advance. Hence it is usual to speak of OP as the limit of the
variable line «,,OQ, the variation being made by supposing n to
increase indefinitely ; and in the same way a is called the limit of
the numbers an. In this case the limit is greater than each of the
approximations : but clearly we might equally well regard OP as
the limit of the lines 6nOQ where OP is less than each of the
approximations.

It is also clear from this way of considering the matter that the
knowledge of one only of the two sets of approximations would be
sufficient to determine OP. In the general theory of limits it is not
necessary that the approximations should be either always in defect'

* See Chrystal's Algebra, Vol. II. (second edition).
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or always in excess ; the essential thing is that we should be able
to find n so that for that value and all greater values the difference
between OP and an0Q shall be less than any given line.

We may express the above result in the notation
OP = limit («BOQ), a = limit an ;

n = oo n = co

in words, OP is the limit for n increasing indefinitely of an0Q.

15. The considerations that have been applied to the com-
parison of straight lines hold for many of the other magnitudes of
elementary geometry. Rectilineal areas can be supposed converted
into rectangles of equal altitude, and one of these can be divided
into equal areas by first dividing the base into equal parts. The
comparison is then of exactly the same nature as in the case of
straight lines. Angles, and arcs, and sectors of equal circles can be
compared by superposition, but we must assume the possibility of
subdivision into equal parts. Certain solids—for example, prisms—
can be treated in a similar way; but, as a rule, outside this range,
definitions are necessary to bring the magnitudes within the scope
of mathematical treatment. Thus, before an arc of a circle can be
compared with a straight line, some definition is required of the
phrase " arc of a circle." In such cases recourse is usually had to
the consideration of limits; for example, the circumference of a
circle is considered as the limit of the perimeter of an inscribed (or
circumscribed) polygon when the number of its sides is increased
indefinitely, the length of each side at the same time diminishing
indefinitely.

16. We may now define the ratio of two incommensurable
magnitudes as follows :—

If A, B are two like incommensurable magnitudes, and if B be
divided into any number n of equal parts of which A contains more
than m but less than m+ 1, so that

^B but ^ ± i

then the ratio of A to B is defined to be the irrational number
which is greater than every number of the set m/n and less than
every number of the set (m + l)/n.
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It is clear that the ratio of two incommensurable magnitudes
can not be equal to the ratio of two commensurable magnitudes, for
that would mean that an irrational number can be equal to a
rational number.

The definition of proportion is the same as before, but it can
also be put into a form that is sometimes convenient in practice,
namely,

If A, B be two like magnitudes, and if C, D be two other like
magnitudes, though not necessarily of the same kind as A, B, then
A, B, C, D will form a proportion if when

A>™B but
n

at the same time

O ^ D but
n n

and that for every value of n.

That this definition is equivalent to the first follows from the
fact that the ratios of A to B and C to D are both equal to the
irrational number determined by the sets m/n and (m+ \)jn.

The proofs given of theorems in proportion for commensurable
magnitudes hold equally for incommensurable?, for the proofs
depend on the hypothesis that the ratio of two magnitudes may be
written in the form A : B = k : 1
where A is a symbol that is subject to the rules of algebra.

17. The theorems in proportion that are required in elementary
geometry will now be stated. The proofs are only given in a few
cases, as they all run on the same lines and are very similar to those
found in textbooks of algebra. Capital letters are used throughout
to denote magnitudes, and small letters to denote numbers.

where p is any number.

THEOREM 1

pA : pB = A : B

THEOREM 2

If A : B = C:D, then pA:qB = pC:ql>

where p, q are any numbers,
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For, let each of the equal ratios A : B, C : D be equal to the
ratio k : 1 ; then

A = kB, C = kT>.

.". pA.: <?B =pkB : qB =pk : q

pC : ql> =pkT> : qD =pk :

•pA:qB=pC:qI>

since each of these ratios is equal to pk : q.

THEOREM 3

If A = B, then A : C = B:C .

Conversely, if A : C = B : C, then A = B.

THEOREM 4

If A > B , then A : C > B : C

Conversely, if A : C > B : C , then A > B .

If A<B, then A : C < B : C
Conversely, if A : C < B : C, then A < B .

THEOREM 5

If A : B = C: D, then B : A = D : C

Proved in § 9.

This inference is referred to as inversely, or, by inversion.

THEOREM 6

If the magnitudes A, B, C, D be all of the same kind, and if

A : B = C : D, then A : C = B : D.

For let each of the equal ratios A : B, C : D be equal to the
ratio k : 1 ; then A = AB, C = £D

.-. A : C = /fcB:/fcD = B : D by Th. 1.

This inference is referred to as alternately, or, by alternation.
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THEOREM 7

If A : B = C : D, then A + B : B = C + D : D.

This inference is referred to as by addition, or, by composition.

THEOREM 8

If A : B = C:D, then A - B : B = C - D : D , when A>B, and
therefore C>D, but B - A : B = D - C : D , when A<B, and
therefore C<D.

This inference is referred to as by subtraction, or by division.

THEOREM 9

If A : B = C : D, then A + B : A - B = C + D : C - D ,

or A + B : B - A = C + D : D - C ,

according as A is greater or less than B, and therefore C greater or
less than D.

This inference is referred to as by addition and subtraction, or
by composition and division.

For the proof, take the case of Theorem 9 when A is greater
than B. As before, let each of the equal ratios A : B, C : D be
equal to the ratio k : 1 ; then

B, A - B = (/fc-l)B

Similarly, C + D : C - D = k + 1 : k - 1

.-. A + B : A - B = C + D : C - D .

THEOREM 10

If the magnitudes A, B, C, D be all of the same kind, and if
A : B = C : D, then each ratio is equal to the ratio A + C : B + D
or to the ratio A - C : B - D, when A > C and therefore B>D, but
to the ratio C - A : D - B when A < C and therefore B < D.

Or, in words, as one antecedent is to its consequent, so is the
sum of the antecedents to the sum of the consequents, or the
differeace of the antecedents to the difference of the consequents.
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The proof is obvious, since in the same notation as before.

and therefore

This theorem is a particular case of a more general theorem,
which may be stated as follows and may be proved in the same
way :—

If the magnitudes A, B, C, D...R, S be all of the same kind,
and if A : B = C : D = . . . = R : S , then each ratio is equal to the

ratio mA ±nG± ... ±pB, : TOB + «D + ... ±/>S

where m, n,.. .p are any integers. It is, of course, to be remembered
that in taking the difference of magnitudes, negative magnitudes
are not considered.

THEOREM 11

If the magnitudes A, B, C, D, E, F,...ll, S be all of the same
kind, and if the ratios A : B, C : D, E : F....R : S be not all equal,
then the ratio

is less than the greatest but greater than the least of the ratios

A : B , 0 : D , E : F , . . . R : S .

For suppose A : B to be the greatest and R : S the least of these
ratios, and let R : S be equal to the ratio of k : 1 ; then

Similarly, C>kB, E>/tF,...R = kS

In the same way it may be proved that

There is an obvious extension of this theorem corresponding to
the general case of Theorem 10, but in this case only sums and not
differences are to be taken.
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18. Since a ratio is a number, ratios may be multiplied or
divided. I t is to be observed, however, that it is the ratios that
are multiplied or divided ; we may multiply the ratio of A to B
by the ratio of C to D, but we do not multiply the magnitude A
by the magnitude C, or the magnitude B by the magnitude D.

The product of the ratios A : B and C : D will be represented
by the notation

(A : B) x (C : D) or (A : B) (C : D).

The quotient of the ratio A : B by the ratio C : D may be
represented by the notation

(A : B)/(C : D) or (A : B) -=-(C : D) or (A : B): (C : D)
or, in short, in any of the ways for expressing a quotient in
arithmetic.

Euclid employs the phrase " to compound ratios" in the same
sense as " to multiply ratios." Hence the

Definition. To compound two or more ratios means to take the
product of the ratios.

It follows at once from the definition that if there be any
number of like magnitudes A, B, C, D, the ratio A : D is the ratio
compounded of the ratios A : B, B : C, C : D.

For, let A : B = /fc:l, B : C = Z:1, C : D = w : l ;
then A = AB, B = IG, Q = mD

.: A : D = klm : 1.

But (A : B)(B : C)(C : T)) = (k : l)(l : l)(m :l) = klm:\

.: A : D = (A:B)(B:C)(C:D).

Again, since a ratio is merely a number, if
P : Q = A : B , R : S = B:C, T : V = C:D,

then (P : Q)(R : S)(T : V) = (A : B)(B : C)(C : D)
and .-. (P : Q)(R : S)(T : V)= A : D.

The ratio compounded of two or more ratios can therefore be
expressed as the ratio of two magnitudes.

Euclid employs special names to denote the ratio compounded
of two or more equal ratios.

9 Vol.18
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Definitions. The ratio compounded of two equal ratios is called
the duplicate of either; the ratio compounded of three equal ratios
is called the triplicate of any one of them ; and so on.

The duplicate of A : B may be written (A : B)(A : B) or (A : B)2;
the triplicate may be written (A : B)3; and so on.

In other words, the duplicate of a ratio is the square of i t ; the
triplicate of a ratio is the cube of i t ; and so on. I t would be much
better to discard the phrases duplicate ratio, triplicate ratio, and
the terminology of compound ratios altogether; the use of duplicate
ratio is specially objectionable.

In geometrical work it is often convenient to express the square
(or the duplicate) of the ratio of two magnitudes as the simple ratio
of the two magnitudes. This may be done as follows :—

Let A, B be the two given magnitudes; find 0 the third
proportional to A, B so that

A : B = B:C.
Then A : C is the square (or duplicate) of A : B ; for

A : C = (A:B)(B:C) = (A:B)(A:B) = (A:B)2.
In the same way, to find the cube (or the triplicate) of A : B,

find C, D so that
A : B = B : C and B :C = C:D

then A : D = (A : B)3.
Higher powers of a ratio may be dealt with in the same way.

19. The following theorems involving the products of ratios are
often required.

THEOREM 12.

If two ratios are equal, their squares (duplicates), their cubes
(triplicates), etc., are equal.

Conversely, if the squares (duplicates), the cubes (triplicates),
etc., of two ratios are equal, the ratios themselves are equal.

The proof is mere arithmetic since negative and imaginary
numbers are not in question; for let x : 1, y : 1 be the two ratios,
then if x : 1 = y : 1, it follows that (x : l)n = (y : 1)"
when n is any positive integer.

Conversely, if (as: 1)" = (y : l)n, it follows that x : 1 = y : 1.

https://doi.org/10.1017/S0013091500029448 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500029448


21

THEOREM 13.

If A, B, 0 be three like magnitudes, and if P, Q, R be three
other like magnitudes, though not necessarily of the same kind as
A, B, C, such that

A : B = P : Q
and B : C = Q : R

then A : C = P : R.
For A : C = (A : B)(B : C)

= (P:Q)(Q:R)

= P :R.

More generally, if there be two sets of magnitudes
A, B, C....H, K, L and P, Q, R....X, Y, Z

such that
A : B ••= P : Q

B : C = Q : R

H : K = X : Y
K : L = Y : Z

then A : L = P : Z
The proof is as before,
This inference is referred to as "by equality."

20. When Euclid's treatment of proportion is not adopted, the
proofs of certain propositions in the sixth book require to be altered.
The alteration is absolutely necessary only in the cases of the first
and thirty third propositions, but alternative proofs are given for
one or two others. It seems more natural to prove such funda-
mental propositions as the sixteenth and nineteenth without the use
of reciprocal proportionals. In fact, the only use to which Euclid
puts the conception of reciprocal proportionals in plane geometry
is to establish Propositions 14 and 15 as stepping stones to
Propositions 16, 17, and 19. Although much use was made in the
ancient geometry of reciprocal proportionals, there would be little
if any loss in discarding reciprocal proportionals from elementary
geometry. The demands of examinations rather than the necessities
of geometry seem, however, to compel the retention of Propositions
14 and 15, and the definition of reciprocal proportionals.
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EUCLID, VI. 1.

Triangles and parallelograms of the same altitude are to one
another as their bases.

Let the triangles £ A F
ABC, ACD and the
parallelograms EC, CF
have the same altitude,
namely, the perpen-
dicular from A to BD
or BD produced: 3 G fi K ' ' ' C P R O

it is required to prove that

triangle ABC : triangle ACD = BC : CD

and parallelogram EC : parallelogram CF = BC : CD.

First, let the bases BC, CD be commensurable, and let BG be
a common measure of BC, CD.

Mark off on BC, CD the lines GH, HK CP RD each
equal to BG and suppose A joined to the points G, H, R.

Because BG, GH, HK, ... CP, ... RD are all equal,
therefore,

the triangles ABG, AGH, AHK, ... ACP, ... ARD are all equal.

Hence,
if BC contain BG m times, AABC will contain AABG m times,

and if CD contain BG n times, AACD will contain AABG n tinifs.
Therefore, the two ratios BC : CD and the AABC: AACD are each

equal to the fraction — , and are therefore equal to one another,
w

Hence, AABC : AACD = BC : CD.

Second, let the bases BC, CD be incommensurable.
Suppose that CD contains BG n times; then BC will not

contain BG any number of times exactly. Let BC be greater
than mBG but less than (m + 1)BG.

As before, AACD will contain AABG n times and AABC will
be greater than m times but less than (m+ 1) times AABG.

.-. the two ratios BC : CD and AABC : AACD are each greater

than the fraction — but less than the fraction , and that
n n
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no matter how great n may be. Hence the two ratios are equal to
the same irrational number, and are therefore equal to one another.
Therefore, AABC : AACD = BC : CD.

Again, the parallelograms EC, CF are double of the triangles
ABC, ACD respectively

. •. parallelogram EC : parallelogram CF = BC : CD.

Cor. 1. Triangles and parallelograms that have equal altitudes
are to one another as their bases.

Cor. 2. Triangles and parallelograms that have equal bases
are to one another as their altitudes.

Cor. 3. If BC, CD be any two lines and XY any other line,
BC :CD = B C . X Y : C D . X Y

for BC . XY, CD . XY are rectangles of the same altitude XY.

[In the same way Euclid VI., 33, may be proved.]

EUCLID VI. 16, 17.

If four straight lines be proportional, the rectangle contained by
the extremes is equal to the rectangle contained by the means.

Conversely : If the rectangle contained by the extremes be
equal to the rectangle contained by the means, the four straight
lines are proportional.

(1) Let the four straight £
lines AB, AC, AD, AE be
proportional, so that

AB : AC = AD : AE :

it is required to prove

AB. AE = AC. AD.

Let AE be perpendicular
to AC and complete the
rectangles CD, BE.

AB : AC = rectangle BD: rectangle CD
and AD : AE = rectangle BD : rectangle BE.
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But AB:AC = A D : A E
therefore, rectangle BD : rectangle CD = rectangle BD : rectangle BE
therefore, rectangle BE = rectangle CD
that is AB. AE = AC . AD.

(2) Let AB. AE = AC . AD :
it is required to prove AB : AC = AD : AE.

Make the same construction as before.

AB : AC = rectangle BD : rectangle CD

and AD : AE = rectangle BD : rectangle BE.

But rectangle BE = rectangle CD
therefore, AB : AC = A D : AE.

Cor. If AC be equal to AD, the proposition may be stated : -

If three straight lines be proportional, the rectangle contained
by the extremes is equal to the square on the mean.

Conversely : if the rectangle contained by the extremes be equal
to the square on the mean, the three straight lines are proportional.

EUCLID VI. 19.

Similar triangles are to one another in the duplicate ratio of
their homologous sides.

Let ABC, DEF be two A
similar triangles, having
the angles at B, C equal
to the angles at E, F
respectively:
it is required to prove that

AABC:ADEF
= (BC: EF)-

From BA, BC or from
BA, BC produced, cut off
BG, BH equal to ED, EF
respectively, and join
GH, AH.
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Then the triangle GBH is congruent with the triangle DBF,
and therefore GH is parallel to AC.

A ABO : AABH = BC:BH

and AABH : AG BH = BA : BG

= B C : B H

therefore, (AABC: AABH)(AABH : AGBH) = (BC: BH)(BC:BH)

that is, A ABC: AGBH = (BO: BH)2

or, AABC:ADEF=(BC:EF) 2 .

Cor. If on BC, EF the squres BL, EN be drawn, the squares
are double of the triangles KBC, MEF respectively, and these
triangles are similar.

.-. BC:!:EFS = AKBC:AMEF

= (BC: EF)2.

Hence, the duplicate ratio of two lines is equal to the ratio of
the squares on the lines, and therefore similar triangles are to one
another as the squares on their homologous sides.

EUCLID VI., 22.

Sec figures in Mackay's Euclid, or, Todhunlers Euclid.

(1) KAB:LCD = (AB:CD)2

MF : NH = (EF : GH)2

But AB : CD = EF : GH

(AB : CD)J = (EF : GH)2

KAB:LCD= MF: NH

(2) K AB : LCD = (AB : C D )-

MF :NH =(EF : GH)2

But KAB : LCD = MF : NH

(AB :CD)2 = (EF : GH)2

AB :CD = EF :GH

https://doi.org/10.1017/S0013091500029448 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500029448


26

EUCLID VI. 23.

Mutually equiangular parallelograms have to one another the
ratio which is compounded of the ratios of their sides.

Let parallelogram BE be equiangular

to parallelogram CD, and let

L EAB = i. DAC; .
to prove / / /

||mBE:|rCD = (AB:AC)(AE:AD). )f ^ Q

Because ||mBE : ||'"BD = AE : AD

and U'nBD:||'"CD:=AB:AC

therefore (||'°BE : ||'"BD)(||»'BD : j|"'CD) = (AE : AD)(AB : AC)

But (HmBE : ||"1BD)(||'"BD : HmCD) = ||mBE : ||'"CD

therefore ||lnBE : ||mCD = (AB : AC)(AE : AD).

Cor. f B E : |pOD = AB.AE:AC.AD

Suppose the sides AB, AE and AC, AD to remain constant and
the angle A to vary; then the areas of the parallelograms BE and
CD will vary, but the ratio of their areas will not vary, since this
ratio is always equal to (AB : AC)(AE : AD).

If the angle A become a right angle, the parallelograms BE and
CD will become the rectangles AB . AE and AC. AD.

Hence AB . AE : AC. AD = (AB : AC)(AE : AD)

and therefore ||'"BE : ||'"CD = AB . AE : AC. AD.

This corollary establishes the theorem that " the ratio com-
pounded of the ratios of two pairs of lines is equal to the ratio
of the rectangle contained by the antecedents to the rectangle
contained by the consequents."

Cor. 2. If BE and CD be joined, the triangles EAB, DAC are
halves of the parallelograms BE, CD. Hence,

Two triangles which have one angle of the one equal to one
angle of the other have to each other the same ratio as the rectangles
contained by the sides about the equal angles.
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