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ON SOME NUMBERS RELATED 
TO THE BELL NUMBERS 

BY 

STEPHEN M. TANNY 

ABSTRACT. The Bell numbers Bn can be defined by Bn= 
2fe=i S(n> ® w n e r e *̂ (w» k) is t n e Stirling number of the second 
kind. In this note we employ a technique developed by Rota (which 
formalizes the umbral calculus) to derive a veriety of facts con
cerning the related numbers ^n=2fe=i k\S(ri, k) a n d polynomials 

1. The Stirling numbers of the second kind, denoted here by S(n, k), occur 
frequently in the literature of combinatorial theory and the calculus of finite dif
ferences. In the latter S(n, k) is related to the difference operator A; in more pre
cise terms, and using the terminology introduced by Mullin and Rota in [9], 
S(n, k) are the connection constants relating the basic sequences xn and (x)n. 
That is to say, xn= 2£= 0 S(n9 k)(pc)k9 where (x)k is the falling factorial given by 
the formula (x)k=x(x— 1) • • • (x—k+1). In the combinatorial literature S(n, k) 
occurs in a variety of interesting contexts. In classical distribution and occupancy 
problems ("balls in boxes") S(n, k) counts the number of ways of placing n dis
tinct objects into k non-distinct boxes with no box left empty [5, 8, 10]. Obviously 
equivalent is the interpretation of S(n, k) as the number of partitions of an «-set 
Zinto k non-empty (disjoint) subsets, or blocks, where a partition of X is a family 
of disjoint (nonempty) subsets of X whose union is X. From the latter interpre
tation of S(n, k) it follows immediately that the numbers -#n=2£=o S(n9 k) c a n 

be interpreted combinatorially as the number of distinct partitions of a set of n 
elements. The numbers Bn are alternately called the Bell numbers (after E. T. 
Bell) or the exponential numbers (Bell's terminology) and have been the object 
of much study for more than forty years. The sequence Bn can be characterized 
by its exponential generating function, well-known to be exp (e*— 1); alter
natively Bn satisfy the recursion 

a) B„+I=i o (")**, B0=I. 

The exponential polynomials Bn{x) are related to the Bell numbers, and are given 
by the formula -#„(*)=2Lo S(n9 k)xk. These polynomials have been studied 
extensively by a great many authors (see the references cited in [13]). 
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Related to the Stirling numbers S(n, k) are the numbers k\S(n, k), that is, the 
Stirling numbers weighted by the appropriate factorial. These numbers too admit 
a variety of combinatorial interpretations, all of which are closely linked to the 
interpretations of S(n, k). For example, in occupancy and distribution problems, 
k \S(n, k) counts the number of ways of placing n distinct balls into k distinct boxes. 
In terms of partitions of an «-set, k\S(n, k) is the number of distinct ordered 
partitions with k blocks. Other interpretations include the number of surjections 
from an «-set onto a fc-set [1] and the number of ordered nontrivial factorizations 
into k factors of a square-free integer which is the product of n distinct primes 
[7, 8]. 

It is perhaps curious that there appear to be very much fewer references to the 
related numbers Fn=^ss0 k\S(n, k) or the polynomials Fn(x)=^sa0 k\S(n, k)xk. 
The numbers Fn can be given a combinatorial interpretation analogous to the one 
for the Bell numbers Bn: if X is an «-set then Fn is the number of distinct ordered 
partitions of X. These numbers are discussed in [6] in connection with preference 
arrangements; the recursion for Fn is derived, as well as the exponential generating 
function and an asymptotic estimate. The latter two are also derived in [7] using 
a different technique. 

In the present paper we derive a variety of results, some apparently unnoticed, 
concerning Fn and Fn(x). In doing so we make use of a particularly elegant tech
nique developed by Rota in [13] and further extended in [9] to provide a rigorous 
formulation for the Blissard, or symbolic, calculus. By use of this approach we 
somewhat simplify (and unify) the derivation of these facts as well as provide some 
interesting and natural links to the Eulerian numbers. 

2. Recall from [13] that for any indeterminate u we can write 

(2) 2(«W> = «", 
•n 

where (u)NilT)=u(u— 1) • • • (u—N(7T) + 1) and where TT is any partition of an «-set 
and iV(7r) is the number of blocks of TT. Notice that \<N(7r)<n and further that 
the number of partitions with exactly k=N(ir) blocks is S(n9 k). 

Let V be the real vector space of polynomials in the variable u and define the 
linear functional L on the basis {(u)k:k>0} of F by 

L(l) = 1, L{{u\) = xkk !, fe = 1, 2, 3 , . . . 

where x is any (fixed) real number. Then L can be extended uniquely to all of V. 
Applying L to (2) we obtain 

!<«") = 2 L((uW 

= ZXNM(N(TT))I 
It 
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that is, for x a (fixed) arbitrary real number, 

(3) Fn(x) = L(H"). 

From the definition of L we have 

L((u)n+1) = xn+\n+l)l 

= x(n+l)L((u)n) 

= xL((n+1)(«)J 

= xL(A(u)n+1) 

where A is the difference operator defined by A/(M)=/(M+1 )—/(«). It follows that 
if p(u) is any polynomial, 

(4) Ltfu)) = x[p(0)+L(AX«))]. 

Set/»(«)=«"; then A/>(")=2£o (")"', and (4) becomes 

(5)
 L(»">HI(")"') 

Thus we have the recurrence 

(6) Fn(x) = xni^Fi(x). 

Notice that since (6) holds for an arbitrary but fixed real number x it follows that 
the polynomials Fn(x) defined by i7

n(^)=2Li klSfyt, k)xk satisfy (6). Specializing 
(6) to the case x=l yields (upon adding Fn to both sides) 

(7) 2 F . = i ( " ) F i ; 

using the usual notation of the "umbral" calculus, we have 

(8) 2Fn = (1+FT, F* = F,. 

The relation (7) appears in [6]. 
3. Using (3) we can follow a procedure similar to that given in [13] to obtain 

the exponential generating function of Fn(x) (and thence Fn) in a formalistic way: 

£F.(x)f<,_^I(«")f. 
w=o ft! n=o n ! 

= L(e«<). 
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Put et=l+v and expand (l+v)u using the binomial theorem: 
00 F (x) 

n=o n 

\n=o n ! / 

= 2——» 
«=o n! 

= 2 x"»n 

1 

1 — X t > 
Hence, 

/m V EÂ5) f = 1 
V „=o n! l - x ( e ' - l ) ' 

Specializing to the case x= 1 yields 

00 F 1 

do) 2 ^ ' " = ^ , 
«=on! 2—el 

which appears in [6, 7]. Alternatively, setting x = — 1 the right-hand side becomes 
e- '=2"=o ( ( - l)»/»!)f". Noting that F „ ( - l ) = 2 L o ( - 1)*A:!5(«, Jfc) we haveproved 

(11) i ( - l ) s / c !S (n , / c ) = ( - l ) " . 
fc=0 

This formula is not new; see for example, [8, p. 170]. 
From (9) we derive a remarkable representation of Fn(x) for x^ — 1 as an infinite 

series : 

1 1 
l - x ( e ' - l ) 

(1 + 4-itet) 
= _Lf(_JL.e<Y 

1+X7c=0\l+X / 

= 7J-It-2(~)kn 

1 +X n=0 7Î ! fc=0 \ 1 + XJ 

(i2) F»w = rrS(7f-Tkn-
The case x=l is known ([6, 7]): 

(i3) F « = ; ^ -
2&=o 2 

and hence we conclude that 
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Notice that (12) is not meaningful for x<— J since the right-hand side does not 
converge. Relation (13) is the formal analogue for Fn of the Dobinski formula 
[4] for the Bell numbers Bn while (12) is the analogue of a formula for the expo
nential polynomials appearing in [9, p. 205]. 

4. The linear functional L can be used to relate the polynomial Fn(x) to the 
Eulerian numbers [2], denoted here by antk. Recall the famous formula of Wor-
pitzky [15]: 

(.4) «»-i«.,.,("+^-1). 

Applying L to both sides of (14) gives 

(15) L ( H » ) = i ^ L ( ( « + y c - l ) J 

But (w+^~l)w=2r=o C)H( i - l ) „ - f and so simplifying (15) we obtain 
n n (k— U 

« )=lan.JC2,- — * 
k=i r=o (« — r) ! 

- l ^ l C - r ) * 
hence we conclude that 

(16) Fn(x) = Xare>ftx«-*+1(l +xf~\ 

I have been unable to find (16) in the literature, although the special case with 
x=l is known; see, for example, [11, p. 89] where the formula 

(17) F^Za^*-1 

7c=l 

is derived by means of generating functions. 
Using a probabilistic interpretation for the Eulerian numbers given in [14] we 

can rewrite (17) as 

(18) 2 ^ = 2 ^ 2 * 

where pk is the probability that the sum Sn of n independent uniform random 
variables on [0, 1) lies between k— 1 and k. It follows that 

(19) 2£* = i2*[Gn(fc)-Gn(fc-l)] > fVdGn\ 
n ! fc=i Jo m 

where Gn is the distribution function of Sn. Evaluating the integral in (19) recur
sively using integration by parts we can show that 

(20) f**«»-(£F-
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hence we obtain a lower bound for Fn. In fact it has been shown elsewhere [6, 7] 
that 

F / 1 \n+1 

(21) 2 ^ ~ ( — ) 
V n! \ln27 
so that the inequality (19) is not really very good There does not appear to be 
any way to obtain (21) directly from (19). 
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