
Canad. J. Math. Vol. 67 (6), 2015 pp. 1358–1383
http://dx.doi.org/10.4153/CJM-2014-044-6
©Canadian Mathematical Society 2015

On the Rate of Convergence of Empirical
Measures in ∞-transportation Distance

Nicolás Garćıa Trillos and Dejan Slepčev

Abstract. We consider random i.i.d. samples of absolutely continuous measures on bounded con-
nected domains. We prove an upper bound on the∞-transportation distance between the measure
and the empirical measure of the sample. _e bound is optimal in terms of scaling with the number
of sample points.

1 Introduction

Consider a bounded open set D ⊂ Rd . Given two probability measures ν and µ on D,
the∞-transportation distance between ν and µ is deûned by

(1.1) d∞(ν, µ) ∶= inf { esssupγ { ∣x − y∣ ∶ (x , y) ∈ D × D} ∶ γ ∈ Γ(ν, µ)} ,

where Γ(ν, µ) is the set of all couplings (transportation plans) between ν and µ, that
is, the set of all probability measures on D × D for which the marginal on the ûrst
variable is ν and the marginal on the second variable is µ. More precisely,

Γ(ν, µ) = {γ ∈ P(D × D) ∶ (∀A− Borel)γ(A× D) = ν(A), γ(D × A) = µ(A)}.

We consider the∞-transportation distance between a given measure, ν, and the
empirical measure associated with a random i.i.d. sample drawn from the measure ν.
We consider ν to be absolutely continuous with respect to the Lebesguemeasure. Our
main result is the following upper bound.

_eorem 1.1 Let D ⊆ Rd be a bounded, connected, open set with Lipschitz boundary.
Let ν be a probability measure on D with density ρ∶D → (0,∞) such that there exists
λ ≥ 1 for which

(1.2) (∀x ∈ D) 1
λ
≤ ρ(x) ≤ λ.

Let X1 , . . . , Xn , . . . be i.i.d. samples from ν. Consider νn the empirical measure

νn ∶=
1
n

n
∑
i=1
δX i .
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_en, for any ûxed α > 2, except on a set with probability O(n−α/2),

d∞(ν, νn) ≤ C

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ln(n)3/4

n1/2 , if d = 2,

(ln n)1/d

n1/d , if d ≥ 3,

where C depends only on α, D, and λ.

We also establish that the bound above is optimal in terms of scaling in n.

1.1 Background

_e ∞-transportation distance d∞(ν, µ) is the least possible maximal distance by
which a transportation plan between ν and µ has to move the mass. Related to it is
the p-transportation distance (i.e., Monge–Kantorovich–Rubinstein or p-Wasserstein
distance), which measures the average of the power of the distance by which the mass
is moved. For 1 ≤ p < ∞,

dp(ν, µ) ∶= ( inf{∫ ∣x − y∣pdγ(x , y) ∶ γ ∈ Γ(ν, µ)})
1
p

.

_e above function metrizes the weak convergence of measures on D (for D
bounded). It follows from the work of Dudley [10] that for 1 ≤ p < ∞ and d ≥ 3
and under rather general conditions on ν (weaker than the ones assumed in _eorem
1.1) that the expected p-transportation distance between a measure ν and the empiri-
cal measure νn scales as n−1/d , that is,

dp(ν, νn) ∼ n−1/d for d ≥ 3.

A related problem consists of comparing two measures νn and µn , both of which
are discrete measures with the same number of points of the same mass. _en the
∞-transportation distance d∞(νn , µn) is also known as the min-max matching dis-
tance. _ere are a number of works on the matchings in the case that µn and νn are
measures on the cube (0, 1)d and νn is the empirical measure associated with i.i.d.
samples drawn from the Lebesgue measure and µn is either another empirical mea-
sure of another independent sample or a measure supported on a regular grid. It is
worth remarking that the discrete matching results imply the estimates on the dis-
tance between νn and ν. _e converse also holds. Ajtai, Komlós, and Tusnády in [1]
showed optimal bounds on the p-transportation distance, for 1 ≤ p < ∞, between
two empirical measures sampled from the Lebesgue measure on a square. _at is,
they showed that if X1 , . . . , Xn , . . . ∈ (0, 1)2 and Y1 , . . . ,Yn , . . . ∈ (0, 1)2 are two inde-
pendent samples and µn = 1

n ∑
n
i=1 δYi , while νn is as before, then the minimum over

all permutations π of {1, . . . , n} satisûes

min
π

1
n

n
∑
i=1

∣Xπ(i) − Yi ∣ ≤ C
√

ln n
n
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with probability 1 − o(1). _ey introduced the technique of obtaining probabilistic
estimates by dyadically dividing the cube into 2k subcubes, obtaining a matching es-
timate at the ûne level, and estimating the transformations needed to bridge diòerent
scales to obtain an upper bound on the total distance. Our proof also relies on a
similar decomposition of the domain. Dobrić and Yukich [9], Talagrand [15], Tala-
grand and Yukich,[16], Bolley, Guillin, and Villani [6], Boissard [5], and others later
reûned these results and obtainedmore precise information on the distribution of the
p-transportation distance between a measure on a cube and the empirical measure.
For the∞-transportation distance obtaining estimates is more delicate, since al-

most all of the mass needs to be matched within the desired distance to obtain the
bound. Furthermore, the optimal scaling itself has a logarithmic correction compared
to the case p < ∞.

_e optimal scaling in dimension d = 2, for ν being the Lebesgue measure, was
obtained by Leighton and Shor [11]. _ey consider i.i.d. random samples X1 , . . . , Xn
distributed according to the Lebesguemeasure and pointsY1 , . . . ,Yn on a regular grid.
_ey showed that there exist c > 0 and C > 0 such that with very high probability:

c(ln n)3/4

n1/2 ≤ min
π

max
i

∣Xπ(i) − Yi ∣ ≤
C(ln n)3/4

n1/2 ,

where π ranges over all permutations of {1, . . . , n}. In other words, when d = 2,
with high probability the∞-transportation distance between the measure µn and the
measure νn is of order (ln n)3/4/n1/2. For d ≥ 3, Shor and Yukich [12] proved the
analogous result on (0, 1)d with ν being the Lebesgue measure restricted to (0, 1)d .
_ey showed that there exist c > 0 and C > 0 such that with very high probability:

c(ln n)1/d

n1/d ≤ min
π

max
i

∣Xπ(i) − Yi ∣ ≤
C(ln n)1/d

n1/d .

_e result in dimension d ≥ 3 is based on thematching algorithm introduced by Ajtai,
Komlós, and Tusnády in [1]. For d = 2 the AKT scheme still gives an upper bound,
but not a sharp one. As remarked in [12], there is a crossover in the nature of the
matching when d = 2. For d ≥ 3, thematching length between the random points and
the points in the grid is determined by the behavior of the points locally; for d = 1 on
the other hand, the matching length is determined by the behavior of random points
globally, and ûnally for d = 2 the matching length is determined by the behavior of
the random points at all scales. At the level of the AKT scheme this means that for
d ≥ 3 the major source of the transportation distance is at the ûnest scale, for d = 1 at
the coarsest scale, while for d = 2 distances at all scales are of the same size (in terms
of how they scale with n). _e sharp result in dimension d = 2 by Leighton and Shor
required amore sophisticatedmatching procedure; an alternative proof was provided
by Talagrand [15] who also provided more streamlined and conceptually clear proofs
in [13, 14].

In this paper, our main contribution is that we extend the previous results to gen-
eral domains and general densities.
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1.2 Outline of the Approach

One of themain steps in the proof of_eorem 1.1 consists of establishing estimates for
the∞-transportation distance between two measures that are absolutely continuous
with respect to the Lebesgue measure and whose densities are bounded from above
and below by positive constants. We prove the following result, which is of interest
on its own.

_eorem 1.2 Let D ⊂ Rd be a bounded, connected, open set with Lipschitz bound-
ary. Let ν1 , ν2 be measures on D of the same total mass: ν1(D) = ν2(D). Assume the
measures are absolutely continuous with respect to Lebesgue measure and let ρ1 and ρ2
be their densities. Furthermore, assume that for some λ > 1, for all x ∈ D,

1
λ
≤ ρ i(x) ≤ λ for i = 1, 2.

_en there exists a constant C(λ,D) depending only on λ and D such that for all ν1, ν2
as above,

d∞(ν1 , ν2) ≤ C(λ,D)∥ρ1 − ρ2∥L∞(D) .

Weuse this result in proving_eorem 1.1. Weûrst consider the domainD = (0, 1)d .
Note that when the density ρ is constant the result was obtained by Shor and Yukich
[12] in case d ≥ 3 and by Leighton and Shor [11] in case d = 2. In dimensions d ≥ 3
we use a dyadic decomposition similar to the one introduced by Ajtai, Komlós, and
Tusnády (also used by Shor andYukich). However, the fact that we adjust the densities
and not the geometry of the subdomains makes it easier to handle general densities.
We remark that the probabilistic estimates in [12] are similar to the ones we use in our
proof of_eorem 1.1 for d ≥ 3. To obtain the optimal scaling when d = 2 amore subtle
approach is needed. Talagrand’s [13] proof of Leighton and Shor’s theorem provides
�exible tools that we adapt to nonuniform densities.

We note that having the result on (0, 1)d implies the result on any domain that is
bi-Lipshitz homeomorphic to (0, 1)d .

To prove _eorem 1.1 on general domains we partition them into ûnite number
of subdomains that can be transformed via a bi-Lipschitz map to the unit cube. _e
diõculty that arises is that the empirical measure on the subdomain may not have
the same total mass as the restriction of the measure to the subdomain. _e mass
discrepancy is small, but since we seek estimates in ∞-transportation distance, the
mass discrepancy needs to be carefully redistributed. _us we introduce special ways
to partition domains that enable the appropriatemass exchange between subdomains.
We call the domains well partitioned (see Deûnition 3.1) if they admit the desired
partitioning. We prove the _eorem 1.1 on well partitioned domains using induction
on the number of subdomains needed in the partition.

We then show that all connected bounded domains with smooth boundary can be
well partitioned by a careful geometric argument that uses Voronoi tessellation. _e
ûnal step in proving_eorem 1.1 consists of reducing the problem to domains that are
well partitioned by proving that it is possible to ûnd a bi-Lipschitz homeomorphism
between an arbitrary open, connected, bounded set D with Lipschitz boundary and
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a domain that is well partitioned. In fact, by a result in [3] an open and bounded
domainDwith Lipschitz boundary is bi-Lipschitz homeomorphic to an open domain
with smooth boundary. Finally, Proposition 3.2 says that open and bounded domains
with smooth boundary are well partitioned.

_e paper is organized as follows. In Subsection 1.3 we introduce notation and
present some results related to the∞-transportation distance. In Section 2 we start
by proving _eorem 1.2 for D = (0, 1)d and then prove _eorem 1.1 for D = (0, 1)d ,
in Subsection 2.1 when d ≥ 3 and in Subsection 2.2 when d = 2. In Section 3 we
deûne well partitioned domains and prove _eorem 1.2 in full generality; then we
prove _eorem 1.1. Finally, in the Appendix we prove Proposition 3.2, which states
that open and bounded domains with smooth boundary are well partitioned.

1.3 Preliminaries and Notation

Let D be an open and bounded domain in Rd . Given a ûnite Borel measure ν and a
Borel map T ∶D → D, the push-forward of ν, denoted by T♯ν, is the measure such that
for all A ∈B(D),

T♯ν(A) ∶= ν(T−1(A)).

We say that a Borel map T ∶D → D is a transportation map between ν and µ if T♯ν = µ.
Note that a transportation map T between ν and µ induces the coupling γT given by
γT ∶= (Id×T)♯ν. A natural question that arises from the connection between trans-
portationmaps and transportation plans is the following: in the deûnition of d∞(ν, µ)
can we restrict our attention to couplings induced by transportation maps? _e an-
swer to this question is aõrmative in the case where the measure ν is absolutely con-
tinuous with respect to the Lebesgue measure. In fact, this is one of the results in
[7], where it is proved that there exist solutions to the problem (1.1) that are also ∞-
cyclically monotone, that if ν ≪ Ld , are induced by transportationmaps. In this paper
ν is taken to be dν = ρdx, where ρ is bounded above and below by positive constants,
and so in this setting the results in [7] can be stated as follows: if ν(D) = µ(D), then
there exists a transportation map T∗∶D → D with T∗

♯ ν = µ and such that

(1.3) d∞(ν, µ) = ∥T∗ − Id ∥L∞(D) .

_e question of uniqueness of the optimal transportation map T∗, although interest-
ing on its own, is not of importance for the results we present in this paper. Neverthe-
less, it is worth mentioning that if µ is concentrated on ûnitely many points, then the
transportation map T∗ for which (1.3) holds is unique. _is is the content of [7, _e-
orem 5.4]. In particular, if µ is taken to be νn , where νn is the empirical measure
associated with data points X1 , . . . , Xn sampled from ν, then the uniqueness of the
optimal transportation map is guaranteed.

We remark that for any transportation map Tn between ν and νn , it holds that

d∞(ν, νn) ≤ ∥Tn − Id ∥L∞(D) .

_us, we can estimate d∞(ν, νn) by estimating the right-hand side of the previous
expression for some Tn .
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2 The Matching Results for (0, 1)d
_e ûrst goal of this section is to prove _eorem 1.2 for D = (0, 1)d . In order to do
this we need a few preliminary lemmas.

Lemma 2.1 Let Q ⊆ Rd be a rectangular box (rectangular parallelepiped). Let Q1 ,Q2
be the rectangular boxes obtained fromQ by bisecting one of its sides. Let ρ∶Q → (0,∞)
be given by

ρ(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

c1 , if x ∈ Q1,
c2 , if x ∈ Q2 ,

where c1 , c2 > 0 are such that 1 = c1
2 +

c2
2 . Denote by ν the measure with dν = ρ(x)dx

and let ν0 be the Lebesgue measure restricted to Q. _en

d∞(ν0 , ν) ≤
L
2
∣ ν(Q1)
ν0(Q1)

− 1∣ ,

where L is the length of the side of Q bisected to generate Q1 and Q2.

Proof Without the loss of generality we can assume that Q = [0, L] × Q̂, where Q̂ is
a (d − 1)-dimensional rectangular box. _us Q1 = [0, L

2 ] × Q̂ and Q2 = [ L
2 , L] × Q̂.

Note that the condition 1 = c1
2 +

c2
2 is equivalent to ν(Q) = ν0(Q). Let us introduce

auxiliary functions

h(t) = c11[0, L2 ](t) + c21( L
2 ,L](t) and f (t) = 1[0,L](t).

For t ∈ [0, L] let F(t) = ∫
t
0 ds = t and H(t) = ∫

t
0 h(s)ds; that is,

H(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

c1 t if 0 ≤ t ≤ L
2 ,

c1
2 L + c2(t − L

2 ) if L
2 ≤ t ≤ L.

A direct computation shows that

H−1 ○ F(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

t
c1

if 0 ≤ t ≤ c1L
2 ,

t
c2
+ L

2 (1 −
c1
c2
) if c1L2 ≤ t ≤ L.

Notice that the map T1 ∶= H−1 ○ F is a transportation plan between the measures dt
and h(t)dt. _erefore, T = T1 × Id−1 is a transportation plan between ν0 and ν.
A direct computation shows that

∣T(x) − x∣ = ∣H−1 ○ F(x1) − x1∣ ≤
L
2
∣c1 − 1∣,

for all x ∈ Q. Since c1 = ν(Q1)
ν0(Q1) , we conclude from the previous inequality that

∥T − Id ∥L∞(Q) ≤
L
2
∣ ν(Q1)
ν0(Q1)

− 1∣ ,

which implies the result.
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Lemma 2.2 Let ρ∶ (0, 1)d → (0,∞) be integrable and let ν be the measure given by
dν = ρdx. Let a = ∫(0,1)d ρ(x)dx and denote by ν0 the measure on (0, 1)d given by
dν0 = adx. _en

d∞(ν0 , ν) ≤
C(d)
a

∥a − ρ∥L∞((0,1)d) ,

where C(d) is a constant that depends on d only.

Proof Given that
d∞(ν0 , ν) = d∞( 1

a
ν0 ,

1
a
ν) ,

by rescaling the densities, it is enough to prove the result for a = 1.
Consider ûrst the case where ∥1 − ρ∥L∞((0,1)d) < 1/2.

Step 1. For every k ∈ N we consider a partition of [0, 1]d into a family Gk of 2k rect-
angular boxes. _e boxes are constructed recursively. Let G0 = {(0, 1)d}. Given the
collection of boxes Gk , the collection of rectangular boxes Gk+1 is obtained by bisect-
ing each of the rectangular boxes belonging to Gk through one of their longest sides.
We note that all boxes in Gk have volume 1

2k and have the same diameter (which de-
pends only on k and d).
Consider ρ0 ∶= 1 and for all k > 0 and all Q ∈ Gk , let

ρk(x) ∶=
1

ν0(Q) ∫Q
ρ(z)dz = ν(Q)

ν0(Q) for all x ∈ Q .

Let νk be themeasure on (0, 1)d with density ρk . _e assumption ∥1−ρ∥L∞((0,1)d) < 1
2

implies 1
2 ≤ ρ ≤ 3

2 and consequently for all k,
1
2 ≤ ρk ≤ 3

2 .
Note that for all Q ∈ Gk and all j ≥ k, ν j(Q) = νk(Q) = ν(Q). We denote by

νk⌞Q , the restriction of the measure νk to Q. _e relation of ν to νk on Q is simi-
lar to the one of ν to ν0 on (0, 1)d , but the scale is smaller. We show that estimates
on ∞-transportation distance on the ûner scale lead to the desired estimates on the
macroscopic scale. Note that

(2.1) d∞(νk , νk+1) ≤ max
Q∈Gk

d∞(νk⌞Q , νk+1⌞Q)

and that

(2.2) d∞(νk , ν) ≤ max
Q∈Gk

d∞(νk⌞Q , ν⌞Q) ≤ max
Q∈Gk

diam(Q) ≤ C
2k/d ,

where C is a constant only depending on d.

Step 2. Let Q ∈ Gk and let Q1 ,Q2 ∈ Gk+1 be the two sub-boxes of Q. _en νk(Q1) =
1
2 νk(Q) and ν0(Q1) = 1

2 ν0(Q). It follows that

∣ν(Q1) − νk(Q1)∣ ≤ ∣ν(Q1) − ν0(Q1)∣ + ∣ν0(Q1) − νk(Q1)∣

= ∥ρ − 1∥L∞((0,1)d)ν0(Q1) + ∣ 1
2
ν0(Q) − 1

2
νk(Q)∣

≤ ∥ρ − 1∥L∞((0,1)d)ν0(Q1) +
1
2
∥ρ − 1∥L∞((0,1)d)ν0(Q)

= 2∥ρ − 1∥L∞((0,1)d)ν0(Q1).
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_erefore,

(2.3)
∣ν(Q1) − νk(Q1)∣

νk(Q1)
≤

2∥ρ − 1∥L∞((0,1)d)ν0(Q1)
ν0(Q1)/2

= 4∥ρ − 1∥L∞((0,1)d) .

Step 3. For a ûxed cube Q ∈ Gk , denote the value of ρk in Q by b. _en

d∞(νk⌞Q , νk+1⌞Q) = d∞( 1
b
νk⌞Q ,

1
b
νk+1⌞Q) .

By Lemma 2.1 and by (2.3) we have

d∞( 1
b
νk⌞Q ,

1
b
νk+1⌞Q) ≤ 1

2k/d ∣
ν(Q1)
νk(Q1)

− 1∣

≤ 4
2k/d ∥ρ − 1∥L∞((0,1)d) .

From (2.1) and the previous inequality it follows that for every k ∈ N,

d∞(νk , νk+1) ≤
4

2k/d ∥ρ − 1∥L∞((0,1)d) .

Choose k̃ such that 2−k̃/d ≤ ∥ρ − 1∥L∞ . From the previous inequality and (2.2) we
deduce that

d∞(ν0 , ν) ≤
k̃−1
∑
k=0
d∞(νk , νk+1) + d∞(ν k̃ , ν)

≤ 4∥ρ − 1∥L∞((0,1)d)
k̃−1
∑
k=0

1
2k/d + C

1
2k̃/d

≤ C(d)∥ρ − 1∥L∞((0,1)d) ,

which shows the desired result.

We now turn to the case where ∥ρ−1∥L∞((0,1)d) ≥ 1/2. _e desired estimate follows
from

d∞(ν0 , ν) ≤ diam((0, 1)d) =
√
d ≤ 2

√
d∥1 − ρ∥L∞((0,1)d) .

In conclusion, taking the larger of the constants of the cases above,

C = max{C(d), 2
√
d},

provides the desired estimate.

Proof of_eorem 1.2 for D = (0, 1)d . Suppose ûrst that ∥ρ1 − ρ2∥L∞((0,1)d) ≤ 1
2λ .

Let g(x) = ρ1(x) − ρ2(x) + 1
λ . Note that g ≥ 0 and that

ρ1 = ( ρ2 −
1
λ
) + g , ρ2 = ( ρ2 −

1
λ
) + 1

λ
.

By Lemma 2.2 and by (1.3), there exists a transportationmap T between the measures
gdx and 1

λ dx such that

∥T − Id ∥L∞((0,1)d) ≤ λC(d)∥ g − 1
λ
∥

L∞((0,1)d)
= λC(d)∥ρ1 − ρ2∥L∞((0,1)d) .

Note that
γ ∶= (Id× Id)♯( ρ2 −

1
λ
)dx + (Id×T)♯gdx ∈ Γ(ν1 , ν2).
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Moreover for γ-a.e. (x , y) ∈ (0, 1)d × (0, 1)d ,
∣x − y∣ ≤ λC(d)∥ρ1 − ρ2∥L∞((0,1)d) .

_us,
d∞(ν1 , ν2) ≤ λC(d)∥ρ1 − ρ2∥L∞((0,1)d) .

To get our estimate in case ∥ρ1 − ρ2∥L∞ > 1
2λ , note that

d∞(ν1 , ν2) ≤ diam((0, 1)d) =
√
d ≤ 2λ

√
d∥ρ1 − ρ2∥L∞((0,1)d) .

Remark 2.3 Note that from the previous proof,_eorem 1.2 is true for any domain
D of the formD = (a1 , b1)×⋅ ⋅ ⋅×(ad , bd). To deduce this fact, it is enough to consider
a translation and rescaling of the coordinate axes to transform the rectangular box D
into the unit box (0, 1)d and then use _eorem 1.2 for the unit cube.

2.1 The Matching Results for (0, 1)d : d ≥ 3.

Now we prove _eorem 1.1 for D = (0, 1)d when d ≥ 3. To achieve this it is useful to
consider a partition of the cube (0, 1)d into rectangular boxes analogous to the ones
used in the proof of Lemma 2.2. _e main diòerence is that we divide rectangular
boxes into sub-boxes of the same ν-measure, instead of the same Lebesgue measure.

Let ρ∶ (0, 1)d → (0,∞) be a density function satisfying 1/λ ≤ ρ ≤ λ. For every
k ∈ N we construct a family Fk of 2k rectangular boxes that partition the cube (0, 1)d
with each rectangular box having ν-volume equal to 1

2k and aspect ratio (ratio between
its longest side and its shortest side) controlled in terms of λ. We let F0 = {(0, 1)d}.
For k = 1 we construct rectangular boxes Q1 and Q2 by bisecting one of the sides (say
the one lying on the ûrst coordinate) of the cube (0, 1)d using the measure ν. _at
is, we deûne Q1 ∶= (0, a) × (0, 1)d−1 and Q2 ∶= [a, 1) × (0, 1)d−1 where a ∈ (0, 1) is
such that νQ1 = 1/2ν(Q) . Recursively, the collection of rectangular boxes at level k+ 1
is obtained by bisecting, according the measure ν, each rectangular box from level k
through one of its longest sides.

Lemma 2.4 _e aspect ratio of every rectangular box in Fk is bounded by 2λ2.

Proof We show that for every k ∈ N, every rectangular box in Fk has aspect ratio
less than 2λ2. _e proof is by induction on k.

Base Case: At level k = 1 we consider Q1 = (0, a)×(0, 1)d−1, a chosen so that ν(Q1) =
1/2. Note that the aspect ratio of Q1 is equal to 1/a. Notice that,

1
2
= ∫

Q1

ρ(x)dx ≤ aλ.

From this we conclude that the aspect ratio ofQ1 is no larger than 2λ and in particular
no larger than 2λ2. By symmetry, the aspect ratio of Q2 is no larger than 2λ2.

Inductive Step. Suppose that the aspect ratio of every rectangular box inFk is bounded
by 2λ2. Let Q be a rectangular box in Fk+1. Note that Q is obtained by bisecting
(using the measure ν) the longest side of a rectangular box Q′ ∈ Fk . Without the
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loss of generality we can assume that Q′ = [a1 , b1] × [a2 , b2] × ⋅ ⋅ ⋅ × [ad , bd] and that
Q = [a1 , c] × [a2 , b2] × ⋅ ⋅ ⋅ × [ad , bd] , where a1 < c < b1. If (a1 , c) is not the smallest
side ofQ, then the aspect ratio ofQ is no greater than the aspect ratio ofQ′ and hence
by the induction hypothesis is less than 2λ2. If on the other hand (a1 , c) is the smallest
side of Q then we let (a i , b i) be the longest side of Q; the aspect ratio of Q is then
equal to b i−a i

c−a1
. Since (a1 , b1) is the longest side of Q̃, we have

b i − a i

c − a1
= b1 − a1
c − a1

b i − a i

b1 − a1
≤ b1 − a1
c − a1

.

Finally, since ν(Q) = 1
2 ν(Q̃), we deduce that

(c − a1)λ ≥
1
2λ

(b1 − a1).

_is implies the desired result.

_e proof of _eorem 1.1 requires estimating how many of the sampled points fall
in certain rectangles. _ese estimates rely on two concentration inequalities for bi-
nomial random variables, which we now recall. Let Sm ∼ Bin(m, p) be a binomial
random variable, with m trials and probability of success for each trial of p. Cher-
noò ’s inequality [8] states that

(2.4) P( ∣ Sm

m
− p∣ ≥ t) ≤ 2 exp(−2mt2).

Bernstein’s inequality [4], which is sharper for small values of p gives that

(2.5) P( ∣ Sm

m
− p∣ ≥ t) ≤ 2 exp(−

1
2m

2 t2

mp(1 − p) + 1
3mt

) .

Proof of_eorem 1.1 for D = (0, 1)d when d ≥ 3.

Step 1. Let ρ0 ∶= ρ and let µ0 ∶= ν. For every Q ∈ Fk , consider

(2.6) ρk(x) ∶=
νn(Q)
ν(Q) ρ(x) = νn(Q)

2−k ρ(x) for all x ∈ Q .

Let µk be themeasure with density ρk . Note that for all Q ∈ Fk , and all j ≥ k, µ j(Q) =
µk(Q) = νn(Q). Since by construction ν(Q) = 2−k , nνn(Q) is a binomial random
variable with n trials and probability of success for each trial of p = 2−k . Fix α > 2 and
let

kn ∶= log2(
n

10α ln n
) .

Consider k ∈ N with k ≤ kn . Using Bernstein’s inequality (2.5) with t = p
2 we obtain

P( ∣νn(Q) − 1
2k ∣ ≥

1
2k+1 ) ≤ 2 exp(−

1
2 ⋅

1
4n

2p2

np(1 − p) + 1
3 ⋅

1
2np

)

≤ 2 exp(− 1
10

np)

≤ 2 exp(− 1
10

n
10α ln n

n
) = 2n−α .

(2.7)
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Since the probability of the union of events is less or equal to the sumof the probability
of the events, we obtain

P(max
Q∈Fk

∣νn(Q) − 1
2k ∣ ≥

1
2k+1 ) ≤ 2k2n−α .

Summing over all k ≤ kn , we deduce that with probability at least 1 − n−α/2,

(2.8)
1
2λ

≤ ρk ≤
3λ
2

on (0, 1)d ,

for every k ≤ kn .
Let Q ∈ Fk and let Q1 ,Q2 ∈ Fk+1 be the sub-boxes of Q. Let m = nνn(Q). Since

ν(Q1) = 2−(k+1) = 1
2 ν(Q), m νn(Q1)

νn(Q) ∼ Bin(m, 1
2 ) given νn(Q). Using Chernoò ’s

bound (2.4) and (2.7), we deduce that

P( ∣ νn(Q1)
νn(Q) − 1

2
∣ ≥

√
α2k ln n

n
) ≤ 4n−α .

Using the previous inequality, (2.6), and a union bound, we conclude that

P( sup
x∈(0,1)d

∣ ρk+1(x)
ρk(x)

− 1∣ ≥ 2

√
α2k ln n

n
) ≤ 2k4n−α .

Summing over all k ≤ kn , we deduce that with probability at least 1 − n−α/2,

(2.9) sup
x∈(0,1)d

∣ ρk+1(x)
ρk(x)

− 1∣ ≤ 2

√
α2k ln n

n

for every k ≤ kn .
Notice that for all Q ∈ Fk , and all j ≥ k, µ j(Q) = µk(Q) = νn(Q). _en

d∞(µk , µk+1) ≤ max
Q∈Fk

d∞(µk⌞Q , µk+1⌞Q),

and

(2.10) d∞(µk , νn) ≤ max
Q∈Fk

d∞(µk⌞Q , νn⌞Q) ≤ max
Q∈Fk

diam(Q) ≤ C(λ) 1
2k/d ,

where C(λ) is a constant only depending on λ; the last inequality in the previous
expression is obtained from Lemma 2.4 and from the fact that ν(Q) = 2−k .

Using estimates (2.8) and (2.9)

∥ρk − ρk+1∥L∞((0,1)d) ≤ ∥ρk∥L∞((0,1)d)∥
ρk+1

ρk
− 1∥

L∞((0,1)d)
≤ 2λ(α2k ln n

n
)

1/2
,

with probability at least 1−n−α/2. Hence from Lemma 2.4 and Remark 2.3, we deduce
that for all Q ∈ Fk

d∞(µk ∣Q , µk+1⌞Q) ≤ C(λ, d)diam(Q)(α2k ln n
n

)
1/2

≤ C(λ, d) 1
2k/d (α2

k ln n
n

)
1/2

.
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Using Lemma 2.1 and the previous inequalities, we conclude that except on a set
with probability O(n−α/2), for every k = 0, . . . , kn ,

d∞(µk , µk+1) ≤ C
1

2k/d (2k ln n
n

)
1/2
,

for some constant C depending only on λ, α, and d. From the triangle inequality and
(2.10), we obtain

d∞(ν, νn) ≤
kn

∑
k=1
d∞(µk−1 , µk) + d∞(µkn , νn)

≤ C(
kn

∑
k=1

1
2k/d (α2

k ln n
n

)
1/2
+ (ln n)1/d

n1/d )

≤ C(( ln n
n

)
1/2 kn

∑
k=1

2k(1/2−1/d) + (ln n)1/d

n1/d ) .

Given that d ≥ 3, the term∑kn
k=1 2

k(1/2−1/d) isO(1) and thus the previous expression
is O((ln n)1/d/n1/d). In summary, except on a set with probability O(n−α/2)

d∞(ν, νn) ≤ C
(ln n)1/d

n1/d ,

where C is a constant that depends only on α, λ, and d.

2.2 The Matching Results for (0, 1)2.

Now we prove _eorem 1.1 for D = (0, 1)2. We actually state and prove a stronger
result that is in agreement with the result by Talagrand in [13]. _e improvement with
respect to the statement of _eorem 1.1 has to do with the speed of decay of the tail
probability of the transportation distance. _eorem 1.1 is an immediate consequence
of the following theorem.

_eorem 2.5 Suppose that ρ∶ (0, 1)2 → (0,∞) is a density function satisfying

(2.11)
1
λ
≤ ρ ≤ λ

for some λ > 1. Let X1 , . . . , Xn be i.i.d. samples from ρ and denote by νn the empirical
measure

νn ∶=
1
n

n
∑
i=1
δX i .

_en there is a constant L > 0 depending only on λ such that except on a set with
probability L exp(−(ln n)3/2/L), we have

d∞(ν, νn) ≤ L
(ln n)3/4

n1/2 .

In order to match the empirical measure νn with the measure ν, we consider a
partition of (0, 1)2 into n rectangles Q1 , . . . ,Qn , each of which has ν-measure equal
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to 1/n. We then look for a bijection between the set of points X1 , . . . , Xn and the
set {Q1 , . . . ,Qn}, in such a way that every data point is matched to a nearby rectan-
gle. Note however, that in order to guarantee that all points within a rectangle are
close to the corresponding data point, we should be able to control the diameter of all
the Q is. _is is is important, since we want to obtain estimates on d∞(ν, νn). With a
slightmodiûcation to the construction preceding Lemma 2.4, we obtain the following
lemma.

Lemma 2.6 Let ρ∶ (0, 1)2 → (0,∞) be a density function satisfying (2.11) and let ν
be the measure dν = ρdx. _en for any n ∈ N there exists a collection of rectangles
{Q i ∶ i = 1, . . . , n} that partitions [0, 1]2 such that the aspect ratio of all rectangles is
less than 3λ2 and their volume according to ν is 1/n. In particular, for every Q i ,

(2.12) diam(Q i) ≤
C(λ)√

n
,

where C(λ) is a constant only depending on λ.

_e task now is to show that with high probability we can indeed ûnd a matching
between the points X1 , . . . , Xn and the rectangles Q1 , . . . ,Qn , in such a way that every
point is close to its matched rectangle. When ρ ≡ 1, the previous statement is directly
related to the result of Leighton and Shor [11]. _e proof of Leighton and Shor de-
pends on discrepancy estimates over all regions R formed by squares from a suitable
regular grid G′ deûned on D. By discrepancy we mean the diòerence between ν(R)
and νn(R) for a given region R. Obtaining a uniform bound on the discrepancy over
all regions R can be interpreted as obtaining probabilistic estimates on the supremum
of a stochastic process indexed by the mentioned class of regions R. A conceptually
clear and eõcient proof of this matching result, based on obtaining upper bounds
of stochastic processes, was presented by Talagrand [13, 14]. In order to prove _eo-
rem 2.5 we follow the framework of Talagrand and start by stating a general result on
obtaining bounds on the supremum of more general stochastic processes ([13, Sec-
tion 1]).

Let (Y , d) be an arbitrary metric space. For n ∈ N deûne,

en(Y , d) = inf sup
y∈Y

d(y,Yn),

where the inûmum is taken over all subsets Yn of Y with cardinality less than 22n .
Let {An}n∈N be a sequence of partitions of Y . _is sequence of partitions is called
admissible if it is increasing (in the sense that for every n, An+1 is a reûnement of
An) and it is such that the cardinality of An is no bigger than 22n . For a given y ∈ Y
and {An}n∈N admissible, An(y) represents the unique set in An containing y. For an
α > 0, consider

γα(Y , d) = inf sup
y∈Y

∑
n≥0

2n/α diam(An(y)),

where diam(An(y)) represents the diameter of the setAn(y) using the distance func-
tion d and where the inûmum is taken over all {An}n∈N admissible sequences of par-
titions of Y . With these deûnitions we can now state [13, _eorem 1.2.9].
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Lemma 2.7 Let Y be a set and let d1 , d2 be two distance functions deûned on Y. Let
{Zy}y∈Y be a stochastic process satisfying: for all y, y′ ∈ Y and all u > 0,

(2.13) P( ∣Zy − Zy′ ∣ ≥ u) ≤ 2 exp(−min( u2

d2(y, y′)2 ,
u

d1(y, y′)
)) ,

and also E[Zy] = 0 for all y ∈ Y. _en there is a constant L > 0 large enough such that
for all u1 , u2 > 0

P(sup
y∈Y

∣Zy − Zy0 ∣ ≥ L(γ1(Y , d1) + γ2(Y , d2)) + u1D1 + u2D2)

≤ L exp(−min{u2
2 , u1}) ,

(2.14)

where D1 = 2∑n≥0 en(Y , d1) and D2 = 2∑n≥0 en(Y , d2).

One of the consequences of the previous lemma is the following. In order to prove
a tail estimate of the supremum of the stochastic process {Zy}y∈Y , like the one in
(2.14), one needs to do two things. First, estimate the quantities γ1(Y , d1), γ2(Y , d2),
D1 and D2. Note that these quantities depend only on the distances d1 , d2 and hence
are not a priori related to the process {Zy}y∈Y . Secondly, relate the stochastic process
{Zy}y∈Y with the distances d1 , d2 by establishing condition (2.13).

We are now ready to prove _eorem 2.5. As mentioned earlier, this result is an
adaptation of the proof by Talagrand of Leighton and Shor’s theorem. We sketch some
of the main steps in the proof by Talagrand and give the details on how to generalize
it to non-constant densities.

Proof of_eorem 2.5 In what follows L > 0 is a constant that may increase from
line to line.

Discrepancy estimates. Let l1 be the largest integer such that 2−l1 ≥ (ln n)3/4/
√

n.
Consider G to be the regular grid of mesh 2−l1 given by

(2.15) G = {(x1 , x2) ∈ [0, 1]2; 2l1x1 ∈ N or 2l1x2 ∈ N}

A vertex of the grid G is a point (x1 , x2) in [0, 1]2 such that 2l1x1 ∈ N and 2l1x2 ∈ N.
A square of the grid G is a square of side length equal to 2−l1 and whose edges belong
to G. _e edges are included in the squares.
For a given vertex w of G and a given integer k, consider C(w , k) the set of simple

closed curves that lie on G that contain the vertexw and have length l(C) ≤ 2k . Note
that every closed simple curveC inR2 divides the space into two regions, one ofwhich
is bounded; this latter one is called the interior of the curve C and is denoted by C○.
For C ,C′ ∈ C(w , k) set d1(C ,C′) = 1 if C /= C′ and d1(C ,C′) = 0 if C = C′. Also set
d2(C ,C′) =

√
n∥χC○ − χC′○∥L2(D).

Claim 1: For a given vertex w of G and a given integer k with k ≤ l1 + 2, there exists
L > 0 large enough such that with probability at least 1 − L exp(−(ln n)3/2/L),

sup
C∈C(w ,k)

∣ ∑
i≤n

( χC○(X i) − ν(C○)) ∣ ≤ L2k√n(ln n)3/4 .
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1372 N. Garćıa Trillos and D. Slepčev

To prove the claim, the idea is to study the supremum of the stochastic process
{ZC}C∈C(w ,k), where

ZC ∶=
1
L
∑
i≤n

( χC○(X i) − ν(C○)) .

For ûxed C ,C′ ∈ C(w , k) one can write the diòerence ZC − ZC′ as

ZC − ZC′ = ∑
i≤n

Z i ,

where Z i = 1
L (χC○(X i)− χC′○(X i)− ν(C○)+ ν(C′○)). _e random variables {Z i}i≤n

are independent and identically distributed with mean zero; they satisfy ∣Z i ∣ ≤ 2
L , and

furthermore, their variance σ 2 is bounded by

σ 2 ≤ 1
L2E[ ∣χC○(X i) − χC′○(X i)∣2] ≤

λ
L2 ∥χC○ − χC′○∥

2
L2(D) .

Using Bernstein’s inequality and choosing L > 0 to be large enough, we obtain

P( ∣ZC − ZC′ ∣ ≥ u) ≤ 2 exp(− u2

n∥χC○ − χC′○∥2
L2(D) + u

)

= 2 exp(−min( u2

d2(C ,C′)2 ,
u

d1(C ,C′)
)) .

In the proof of [13, Proposition 3.4.3] in Talagrand, the estimates γ1(C(w , k), d1) ≤
L2k√n, γ2(C(w , k), d2) ≤ L2k√n(ln n)3/4, D1 ≤ 2(k + l1 + 1), and D2 ≤ L2k+1√n
are established. Setting u1 = (ln n)3/2 and u2 = (ln n)3/4 one can use Lemma 2.7 (with
Y = C(w , k), d1, d2 as above and y0 = {w}) to prove the claim.
Considering all possible vertices w of G and all possible integers k with −l1 ≤

k ≤ l1 + 2. It is a direct consequence of Claim 1 above that with probability at least
1 − L exp(−(ln n)3/2/L),
(2.16) sup

C
∣ ∑
i≤n

( χC○(X i) − ν(C○)) ∣ ≤ Ll(C)
√

n(ln n)3/4 ,

where the supremum is taken over all C closed, simple curves on G. See the proof of
[13, _eorem 3.4.2]. We denote by Ωn the event for which (2.16) holds.

Enlarging Regions. Consider an integer l2 with l2 < l1. We considerG′ the grid deûned
as in (2.15) but with mesh size 2−l2 . Note that in particular G′ ⊆ G. Let R be a union
of squares of the grid G′. One can deûne R′ to be the region formed by taking the
union of all the squares in G′ with at least one side contained in R. With no change
in the proof of [13,_eorem 3.4.1], it follows from the discrepancy estimates obtained
previously that in the event Ωn one has

(2.17) ν(R′) ≥ νn(R)
for all regions R formed with squares from G′, provided that

2−l2 ≥ 26L√
n
(ln n)3/4 .

What this is saying is that given the discrepancy estimates obtained previously, in
the event Ωn , for any region R formed by taking the union of squares in G′, one can
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enlarge R a bit to obtain a region R′ in such a way that the area of the enlarged region
R′ according to ν is greater than the area of the original region R according to νn . It
is worth remarking that the restriction to the number 2−l2 (the mesh size of G′), for
this to be possible, coincides with the scaling for the transportation cost we are a�er.

Matching between rectangles and data points. We choose l2 to be the largest integer
satisfying

2−l2 ≥ 26L√
n
(ln n)3/4 .

Consider {Q1 , . . . ,Qn}, the rectangles constructed from Lemma 2.6. Let B i =
{ j ≤ n ∶ dist(X i ,Q j) ≤ 2

√
2 ⋅ 2−l2} for i ∈ {1, . . . , n}

Claim 2: In the event Ωn , there is a bijection π∶ {1, . . . , n} → {1, . . . , n}with π(i) ∈ B i
for all i.
By the Hall marriage lemma, to prove this claim it is enough to prove that for every

I ⊆ {X1 , . . . , Xn}, the cardinality of ⋃i∈I B i is greater than the cardinality of I. Fix
I ⊆ {1, . . . , n} and denote by RI the region formed with the squares ofG′ that contain
at least one of the points X i with i ∈ I. Now, take

J = { j ≤ n ∶ Q j ∩ (RI)′ /= ∅};
then J ⊆ ⋃i∈I B i . From the properties of the boxes Q i and from (2.17) it follows that
#⋃i∈I B i ≥ #J = nν(⋃ j∈J Q j) ≥ nν((RI)′) ≥ #I. _is proves the claim.
Finally, we construct a transportation map Tn between ν and νn . Indeed, for x in

Q i , set Tn(x) = Xπ−1(i). From the properties of the boxes Q i , it is straightforward to

check that Tn ♯ν = νn and that ∥Tn − Id ∥L∞(D) ≤ L (ln n)3/4√
n due to the estimate on the

diameter of the rectangles Q i in (2.12).

3 The Matching Results for General D
_e goal of this section is to prove the optimal bounds on matching for all open,
connected, bounded domains D with Lipschitz boundary. In order to achieve this,
we ûrst prove _eorem 1.2 for general domains D. It is useful to consider ûrst a class
of domains D that are well partitioned.

Deûnition 3.1 Let D ⊆ Rd . We say that D satisûes the (WP) property with k poly-
topes if D is an open, bounded and connected set and is such that there exists a ûnite
family of closed convex polytopes {A i}k

i=1 covering D and satisfying the following.
For all i , j = 1, . . . , k:
(i) int(A i) ∩ D /= ∅;
(ii) if i /= j then int(A i) ∩ int(A j) = ∅;
(iii) A i ∩ D is bi-Lipschitz homeomorphic to a closed cube.

_e class of domains satisfying the (WP) property is convenient for our purposes
for two reasons. _e ûrst one because as we see below, in order to prove the matching
results for sets with the (WP) property, we can use induction on the number of poly-
topes. _e second reason, has to do with the fact that the class of sets that are well
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partitioned contains the class of open, bounded, connected domains with smooth
boundary. _is is the content of the next proposition whose proof is presented in the
Appendix.

Proposition 3.2 Let D ⊆ Rd be an open, bounded, and connected domain with
smooth boundary. _en, D satisûes the (WP) property with k polytopes for some k ∈ N.

We now prove a lemma that prepares the ground for an inductive argument to be
used in the proof of the matching results for domains with the (WP) property.

Lemma 3.3 Suppose that D is a domain that satisûes hypothesis (WP) with k poly-
topes (k > 1). Let {A i}k

i=1 be associated polytopes. _en there exists j such that D′ ∶=
D ∖ A j is connected.

Proof We say thatA l ∼ Am if resint(∂Am)∩resint(∂A l)∩D /= ∅, where resint(∂A i)
is the union of the relative interiors of the facets ofA i ( (d−1)-dimensional faces). _is
relation induces a graph G = (V , E) where the set of nodes V is the set of polytopes
A i and where an edge between Am and A l (m /= l) belongs to the graph if and only if
Am ∼ A l . We claim that G is a connected graph.

Indeed, consider m /= l . We want to show that there exists a path in the graph G
connecting Am with A l . For this purpose consider x ∈ int(Am)∩D and y ∈ int(A l)∩
D. Denote by C the union of all the ridges ((d − 2)-dimensional faces) of all the
polytopes A i . Given that C is the union of ûnitely many (d − 2)-dimensional objects
inRd , we conclude thatD∖C is a connected open set and as such it is path connected.
Since x ∈ int(Am) ∩ D and y ∈ int(A l) ∩ D, in particular x , y ∈ D ∖ C and so there
exists a continuous function γ∶ [0, 1] → D ∖ C such that γ(0) = x and γ(1) = y. Let
A i0 ,A i1 , . . . ,A iN be the polytopes visited by the path γ in order of appearance; this
list satisûes A is /= A is+1 for all s, A i0 = Am and A iN = A l . Now, note that for any given
s, the path γ intersects ∂A is ∩ ∂A is+1 at a point that belongs to the relative interior of
a facet (d − 1 dimensional face) of A is and of A is+1 ; this because γ lies in D ∖ C. From
this fact we conclude that A is ∼ A is+1 , and hence there is a path in G connecting Am
and A l . _is proves that G is connected.
From the fact that G is connected, we deduce that it has a spanning tree G′. _at

is, there exists a subgraph G′ of G that is a tree and includes all of the vertices of G.
Let A j be a leave of the spanning tree G′. It is now straightforward to show that A j is
the desired polytope from the statement.

Remark 3.4 ConsiderD andA j as in the statement of Lemma3.3. _enD′ ∶= D∖A j
satisûes the property (WP) with (k − 1) polytopes, and D′′ ∶= D ∩ A j satisûes the
property (WP) with one polytope.

Let A j be the polytope as in Lemma 3.3. Note that there exists i /= j such
that resint(∂A i) ∩ resint(∂A j) ∩ D /= ∅; we denote this polytope by Ã j . Let x̃ ∈
resint(∂Ã j) ∩ resint(∂A j) ∩ D. Note that, necessarily, F ∶= resint(∂Ã j)∩resint(∂A j)
is contained in a hyperplane, and hence we can consider e a unit vector that is orthog-
onal to F. Take r > 0 such that B(x̃ , r) ⊆ int((Ã j ∪ A j) ∩ D). Let z1 ∶= x̃ + re and let
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z−1 ∶= x̃ − re. Without the loss of generality we can assume that z1 ∈ int(Ã j). Denote
by C1 the set of points of the form tz1 + (1 − t)y, where t ∈ [0, 1] and y ∈ B(x̃ , r) ∩ F.
Similarly, denote by C−1 the set of points of the form tz−1 + (1 − t)y where t ∈ [0, 1]
and where y ∈ B(x̃ , r) ∩ F. Let z−1/2 ∶= x̃ − r

2 e and consider the set C−1/2 deûned
analogously to the way C1 and C−1 are deûned. We can think of C1 and C−1 as gates
connecting the sets D′ = D ∖ A j and D′′ = D ∩ A j . We illustrate the construction in
Figures 1 and 2.

D

D′′

x̃Ã j

A j

Figure 1. Polytope A j with neighbor Ã j .

C1 C- 1
2
C-1

x̃z1 z-1
e

y1 y y−1r r

Figure 2. Gate, enlarged.

We claim that there is a function ψ∶D′′ ∪ C1 → D′′ that is a bi-Lipschitz homeo-
morphism. In fact, for a given point y ∈ F ∩ B(x̃ , r) consider the line with direction
e passing through the point y. _is line intersects ∂C1 at the points y and y1; it inter-
sects ∂C−1 at the points y and y−1, and ûnally it intersects ∂C−1/2 at the points y and
y−1/2. We set ψ(y1) ∶= y, ψ(y) ∶= y−1/2 and ψ(y−1) ∶= y−1. On the segments [y−1 , y],
[y, y1] we deûne ψ to be continuous and piecewise linear. In this way we deûne ψ for
all points in C1∪C−1. Finally, setψ to be the identity on D′′∖C−1. It is straightforward
to check that ψ constructed in this way is a bi-Lipschitz homeomorphism.

Now we are ready to prove_eorem 1.2 for general domains.

Proof of_eorem 1.2

Step 1: Instead of proving the result for domains as in the statement, we ûrst prove the
result for domains D satisfying the (WP) property. _e proof is by induction on the
number of polytopes k.

We remark that the constant D(d , λ) may change (increase) from line to line in
the proof.

Base case. Suppose k = 1. In this case there exists ψ∶D → [0, 1]d a bi-Lipschitz home-
omorphism between D and the unit box. We use the map ψ to obtain measures ν̃1 , ν̃2
on (0, 1)d by setting ν̃ i ∶= ψ♯ν i for i = 1, 2. Using the fact that ψ is bi-Lipschitz, we can
use the change of variables formula to deduce that ν̃1 and ν̃2 are absolutely continuous
with respect to the Lebesgue measure with densities

ρ̃ i(y) = ρ i(ψ−1(y))∣det(Jψ−1(y))∣ for i = 1, 2.

Here, Jψ−1 represents the Jacobian matrix of ψ−1.
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Using the fact that ψ is bi-Lipschitz, we deduce that 1/λ̃ ≤ ρ̃1 , ρ̃2 ≤ λ̃, where λ̃ =
max{Lip(ψ)d , Lip(ψ−1)d}. By _eorem 1.2 applied to the unit cube,

d∞(ν̃1 , ν̃2) ≤ C(λ̃, d)∥ρ̃1 − ρ̃2∥L∞((0,1)d) .

Consequently,

d∞(ν1 , ν2) ≤ Lip(ψ−1)d∞(ν̃1 , ν̃2) ≤ C∥ρ̃1 − ρ̃2∥L∞((0,1)d) ≤ C∥ρ1 − ρ2∥L∞(D) .

for some constant C depending on λ and D only.

Inductive Step. Suppose that for any domain in Rd satisfying the (WP) property with
(k − 1) polytopes the proposition is true. Let D be a domain satisfying the (WP)
property with k polytopes and let ρ1 , ρ2∶D → (0,∞) be functions as in the statement.
By relabeling the functions if necessary, we can assume without loss of generality that
∫D′ ρ1(x)dx − ∫D′ ρ2(x)dx ≥ 0, where D′ is as in Remark 3.4. Since there is more
mass in D′ according to ν1 than according to ν2, we transfer this excess of mass from
the set D′ to the set D′′. To achieve this, we ûrst move the excess of mass on D′ to the
gate C1 so that we can subsequently move it to the set D′′. In mathematical terms, we
consider an intermediate distribution dν̃1 = ρ̃1dx, where

ρ̃1(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ2(x), if x ∈ D′ ∖ C1,
βρ1(x), if x ∈ C1,
ρ1(x), if x ∈ D′′,

and where

β = ∫D′
(ρ1(x) − ρ2(x))dx + ∫C1

ρ2(x)dx
∫C1

ρ1(x)dx
.

_e idea is to compare ν1 with ν̃1 and then compare ν̃1 with ν2.
First, note that there is a λ′ > 1 depending only on λ and D such that

1
λ′

≤ ρ1 , ρ̃1 ≤ λ′ .

Since by construction ν1(D′) = ν̃1(D′), we use Remark 3.4 and the induction hypoth-
esis to conclude that

d∞(ν1⌞D′ , ν̃1⌞D′) ≤ C(λ′ ,D′)∥ρ1 − ρ̃1∥L∞(D′) = C(λ,D)∥ρ1 − ρ̃1∥L∞(D′) ,

where ν1⌞D′ denotes themeasure ν1 restricted toD′ and ν̃1∣D′ themeasure ν̃1 restricted
to D′. Notice that we can write C(λ′ ,D′) = C(λ,D), because λ′ depends on λ and D
only. An immediate consequence of the previous estimate is that

(3.1) d∞(ν1 , ν̃1) ≤ C(λ,D)∥ρ1 − ρ̃1∥L∞(D) .

Given the deûnition of β, it is straightforward to show that

∥ρ1 − ρ̃1∥L∞(D) ≤ C(λ,D)∥ρ1 − ρ2∥L∞(D)
for some constant C(λ,D) depending only on D and λ. _e previous inequality com-
bined with (3.1) gives

d∞(ν1 , ν̃1) ≤ C(λ,D)∥ρ1 − ρ2∥L∞(D) .

Now we compare ν̃1 with ν2. First of all note that ν̃1(D′′1 ) = ν2(D′′1 ) , where D′′1 ∶=
D′′∪C1. From the discussion proceeding Remark 3.4 we know that D′′1 is bi-Lipschitz

https://doi.org/10.4153/CJM-2014-044-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-044-6


Convergence of Empirical Measures in∞-transportation Distance 1377

homeomorphic to the setD′′, which in turn is bi-Lipschitz homeomorphic to the unit
box. _us, D′′1 is bi-Lipschitz homeomorphic to the unit box and hence proceeding
as in the base case, we conclude that

d∞(ν̃1⌞D′′1 , ν2⌞D′′1 ) ≤ C(λ,D)∥ρ̃1 − ρ2∥L∞(D′′1 )

and consequently
d∞(ν̃1 , ν2) ≤ C(λ,D)∥ρ̃1 − ρ2∥L∞(D) .

A straightforward computation shows that

∥ρ̃1 − ρ2∥L∞(D) ≤ C(λ,D)∥ρ1 − ρ2∥L∞(D)
and thus

d∞(ν̃1 , ν2) ≤ C(λ,D)∥ρ1 − ρ2∥L∞(D) .
Using the previous inequality, (3.1), and the triangle inequality we obtain the de-

sired result.

Step 2: Now consider an open, connected, bounded domain D with Lipschitz bound-
ary. By [3, Remark 5.3] there exists an open set D̃ with smooth boundary that is bi-
Lipschitz homeomorphic to D. In particular D̃ is bounded and connected. By Propo-
sitions 3.2 and Step 1, the result holds for D̃. Proceeding as in the base case in Step 1
and using the fact that D and D̃ are bi-Lipschitz homeomorphic we obtain the desired
result.

We are now ready to prove_eorem 1.1.

Proof of_eorem 1.1 Let us consider the function ϕ∶N → (0,∞), which is given
by

ϕ(n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ln n)1/d

n1/d , if d ≥ 3,

(ln n)3/4

n1/2 , if d = 2.

Step 1. We ûrst prove the result for domains D satisfying the (WP) property. _e
proof is by induction on k, the number of polytopes used in the deûnition of the
property (WP). In what follows C may change from line to line, but always represents
a constant that depends only on λ and D. Furthermore, since the probability that
a sample point belongs to a boundary of one of the k polytopes is zero, we assume
without loss of generality that no sample point belongs to the boundary of any of the
polytopes considered.

Base Case. Suppose that D is a domain satisfying the (WP) property with one poly-
tope. _en D is bi-Lipschitz homeomorphic to the unit box. _at is, there exists a
bi-Lipschitz mapping ψ∶D → [0, 1]d . Given a density ρ∶D → (0,∞) satisfying (1.2),
we deûne measure ν̃ on (0, 1)d to be the push-forward of ν by ψ, i.e., ν̃ ∶= ψ♯ν. Given
the i.i.d. random points X1 , . . . , Xn on D distributed according to ν, we note that

X̃ i = ψ(X i) for i = 1, . . . , n

are i.i.d. random points on (0, 1)d distributed according to ν̃.
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As in the proof of _eorem 1.2 we use the fact that ψ is bi-Lipschitz to deduce that
ν̃ has a density ρ̃ satisfying

1
λ̃
≤ ρ̃ ≤ λ̃,

where λ̃ = λmax{Lip(ψ)d , Lip(ψ−1)d}. From _eorem 1.1 applied to the unit cube,
we know that for α > 2, except on a set with probability O(n−α/2),

d∞(ν̃, ν̃n) ≤ Cϕ(n),
which implies

d∞(ν, νn) ≤ Lip(ψ−1)d∞(ν̃, ν̃n) ≤ Cϕ(n).
where C only depends on λ, D and α.

Inductive Step. Suppose that the theorem is true for any domain in Rd satisfying the
(WP) property with k − 1 polytopes. Let D be a domain satisfying the (WP) property
with k polytopes and let ρ∶D → (0,∞) be a density function satisfying (1.2). Consider
ρ̃n ∶D → D the density function given by

ρ̃n(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

νn(D′)
ν(D′) ρ(x), if x ∈ D′,

νn(D′′)
ν(D′′) ρ(x), if x ∈ D′′,

where D′ and D′′ are as in Remark 3.4. Let ν̃n be the measure dν̃n = ρ̃ndx and note
that νn(D′) = ν̃n(D′) and νn(D′′) = ν̃(D′′). Also, notice that

(3.2) ∥ρ − ρ̃n∥L∞(D) ≤ C∣νn(D′) − ν(D′)∣
for some constant C that depends only on λ and D.

To give some probabilistic estimates on ∣νn(D′) − ν(D′)∣, we use Chernoò ’s in-
equality (2.4) to conclude that

(3.3) P( ∣νn(D′) − ν(D′)∣ >
√
α ln n

n
) ≤ 2n−2α .

Denote by Ωn the event in which ∣νn(D′) − ν(D)∣ ≤
√

α ln n
n . By (3.2) and _eo-

rem 1.2 (from its proof, it holds for well partitioned domains), given Ωn we have

(3.4) d∞(ν, ν̃n) ≤ C
(ln n)1/2

n1/2 .

We use the fact that νn(D′) = ν̃n(D′) and νn(D′′) = ν̃n(D′′) to estimate d∞(ν̃n , νn).
Indeed, by the induction hypothesis, given the event Ωn , with probability at least 1 −
cn−α/2,

d∞(ν̃n⌞D′ , νn⌞D′) ≤ Cϕ(n) and d∞(ν̃n⌞D′′ , νn⌞D′′) ≤ Cϕ(n).
In case the previous inequalities hold we conclude that

d∞(ν̃n , νn) ≤ max{d∞(ν̃n⌞D′ , νn⌞D′), d∞(ν̃n⌞D′′ , νn⌞D′′)} ≤ Cϕ(n).

_us, given Ωn , with probability at least 1 − cn−α/2,
d∞(ν̃n , νn) ≤ Cϕ(n).
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From the previous discussion, (3.3), and (3.4) we conclude that with probability at
least 1 − cn−α/2,

d∞(ν, νn) ≤ Cϕ(n) + C (ln n)1/2

n1/2 ≤ Cϕ(n).

Step 2. To prove the theorem for an arbitrary open, connected, bounded domain D
with Lipschitz boundary it is enough to notice that by [3, Remark 5.3] there exists
an open set D̃ with smooth boundary that is bi-Lipschitz homeomorphic to D. In
particular, D̃ is bounded and connected. By Proposition 3.2 the result holds for D̃ by
Step 1. Proceeding as in the base case in Step 1 and using the fact that D and D̃ are
bi-Lipschitz homeomorphic we obtain the desired result.

Appendix A Proof of Proposition 3.2

Consider D to be a bounded open set with smooth boundary. For ε > 0 we denote by
∂εD the set of points x ∈ Rd with d(x , ∂D) ≤ ε. _e fact that ∂D is a smooth compact
manifold implies that there exists 0 < ε0 < 1 such that for every x ∈ ∂ε0D there is a
unique point P(x) on ∂D closest to x. Furthermore the function P∶ x ∈ ∂2ε0D ↦ P(x)
is smooth.
For a given z ∈ ∂D we let n⃗z be the unit outer normal vector to ∂D at the point z.

_e fact that ∂D is a smooth manifold in Rd also implies that the outer unit normal
vector ûeld changes smoothly over ∂D.

We consider the signed distance function to ∂D, g∶ ∂2ε0D → R,

g(y) ∶=
⎧⎪⎪⎨⎪⎪⎩

dist(y, ∂D), if y ∈ Dc ,
−dist(y, ∂D), if y ∈ D.

_is function is smooth, and its gradient is given by

(A.1) ∇g(y) = n⃗P(y) .

We remark that for every y ∈ ∂ε0D, g(y) = ∣y−P(y)∣ if y /∈ D and g(y) = −∣y − P(y)∣
if y ∈ D.
For a ûxed 0 < ε < ε0 consider the family of open balls {B(x , ε2)}x∈∂D . _is is

an open cover of the set ∂D which is compact. Hence, there exists a ûnite subcover
{B(x1 , ε2), . . . , B(xN , ε2)} of ∂D. To ûx some notation, we let n⃗ i be the vector n⃗x i

and we let Ti be the tangent plane to ∂D at the point x i . Let V1 , . . .VN be the Voronoi
cells induced by the points x1 , . . . , xN ; that is , we let Vi be the set

Vi ∶= { y ∈ Rd ∶ ∣x i − y∣ ≤ ∣x j − y∣,∀ j /= i} .

Note that for every t ∈ [−ε, ε] we have P(x i + tn⃗ i) = x i . In particular,

(A.2) ∣x i + tn⃗ i − x i ∣ < ∣x i + tn⃗ i − x j ∣
for every j /= i. Consider x̃ i to be the point x̃ i ∶= − ε2 n⃗ i + x i and let T+

i ∶= εn⃗ i + Ti ,
T−

i ∶= εn⃗ i + Ti be the planes parallel to Ti passing though the points εn⃗ i + x i and
−εn⃗ i + x i , respectively. We denote by S i the closed strip delimited by the planes T+

i
and T−

i and let A i ∶= Vi ∩ S i . See Figure 3.
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We ûrst want to show that the region A i is contained in a circular cylinder whose
axis is the line passing through the point x i with direction n⃗ i and whose radius is
small compared to ε. To achieve this, for a point y ∈ Rd , denote by y i the projection
of y along the line passing through x i with direction n⃗ i .

Claim 1: For all 0 < ε < ε0
2 small enough, y ∈ A i implies that ∣y − y i ∣ ≤ 4ε3/2.

To prove the claim suppose for the sake of contradiction that there is y ∈ A i with
∣y − y i ∣ ≥ 4ε3/2. Since y ∈ S i , in particular ∣y i − x i ∣ = dist(y i , ∂D) ≤ ε. Consider
a point ỹ in the segment [y, y i] such that 4ε3/2 ≥ ∣ ỹ − y i ∣ ≥ 3ε3/2. _en ∣ ỹ − x i ∣ ≤
∣ ỹ − y i ∣ + ∣y i − x i ∣ < 4ε3/2 + ε < 2ε if ε is small enough. _us ỹ − P( ỹ)∣ < 2ε. Note
also that y ∈ A i and y i ∈ A i (from (A.2)). Since the set A i is convex, we conclude that
ỹ ∈ A i . To get to a contradiction we want to show that ∣ ỹ − xk ∣ < ∣ ỹ − x i ∣ for some
k; this would imply that ỹ /∈ Vi , which indeed would be a contradiction given that
ỹ ∈ A i .

Note that P( ỹ) ∈ B(xk , ε2) for some k. _us,

∣ ỹ − xk ∣2 ≤ ( ∣ ỹ − P( ỹ)∣ + ∣P( ỹ) − xk ∣)
2

= ∣ ỹ − P( ỹ)∣2 + 2∣ ỹ − P( ỹ)∣ ⋅ ∣P( ỹ) − xk ∣ + ∣P( ỹ) − xk ∣2

≤ ∣ ỹ − P( ỹ)∣2 + 4ε3 + ε4 .

(A.3)

Furthermore, note that

∣ ỹ − x i ∣2 = ∣y i − x i ∣2 + ∣ ỹ − y i ∣2

= g(y i)2 + ∣ ỹ − y i ∣2

= g( ỹ)2 + g(y i)2 − g( ỹ)2 + ∣ ỹ − y i ∣2

≥ ∣ ỹ − P( ỹ)∣2 − ∣g(y i)2 − g( ỹ)2∣ + ∣ ỹ − y i ∣2 .

(A.4)

Since g is smooth in ∂ε0D, there exists M such that M ≥ ∥D2g(x)∥ for all x ∈ ∂ε0D.
By (A.1), the gradient of the signed distance function g at the point y i is equal to n⃗ i .
Since ỹ − y i is orthogonal to n⃗ i , by Taylor expansion

∣g( ỹ) − g(y i)∣ = ∣g( ỹ) − g(y i) − Dg(y i) ⋅ ( ỹ − y i)∣ ≤ M∣ ỹ − y i ∣2 .
_us,

∣g( ỹ)2 − g(y i)2∣ = ∣g( ỹ) − g(y i)∣ ⋅ ∣g( ỹ) + g(y i)∣ ≤ 3Mε∣ ỹ − y i ∣2 .
Using (A.4) we deduce that

∣ ỹ − x i ∣2 ≥ ∣ ỹ − P( ỹ)∣2 + (1 − 3Mε)∣ ỹ − y i ∣2 ,
_erefore, for small enough ε > 0

∣ ỹ − x i ∣2 ≥ ∣ ỹ − P( ỹ)∣2 + 5ε3 .
Combining the previous inequality with (A.3) we deduce that ∣ ỹ − x i ∣ > ∣ ỹ − xk ∣. _is
proves the claim.
Consider the circular cylinder whose axis is the line passing through the point x i

with direction n⃗ i and whose radius is 4ε3/2. We let C+i be the portion of the cylinder
contained in S i .
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By (A.2) we can ûnd a circular cylinder of smaller radius, whose axis is the same
as that of C+i , but such that the portion of it contained in S i , denoted by C−i , satisûes

C−i ⊆ A i ⊆ C+i .
See Figure 3.

D

C+iC−i

T−
i

T+
i

S i x i

n⃗ i

x̃ i

A i

Figure 3

Claim 2. Let 0 < ε < ε0
2 be small enough. _en there exists a map Φ i ∶A i ∩ D → A i

which is a bi-Lipschitz homeomorphism. In particular, since A i is a closed convex
body with nonempty interior, we conclude that A i ∩D is bi-Lipschitz homeomorphic
to the unit cube.

To prove the claim, ûx 0 < ε so that the conclusions from Claim 1 hold. From the
bound on the second derivative of g and since the radius of C+i is 4ε3/2, we deduce
that there exists a universal constant L > 0 such that

(A.5) ∣n⃗z − n⃗ i ∣ ≤ Lε3/2 , ∀z ∈ ∂D ∩ A i ,

due to the fact that A i ⊆ C+i .
We now turn to constructing the bi-Lipschitz mapping between D ∩ A i and A i .

We do that by linear mappings along rays emanating from x̃ i . Consider Sd−1 the set
of all unit vectors in Rd . For n⃗ ∈ Sd−1 deûne sn⃗ and tn⃗ by

sn⃗ ∶= sup{ s > 0 ∶ x̃ i + sn⃗ ∈ D ∩ A i} , tn⃗ ∶= sup{ t > 0 ∶ x̃ i + tn⃗ ∈ A i} .

Since C−i ⊆ A i ⊆ C+i , we deduce that both functions n⃗ ∈ Sd−1 ↦ sn⃗ and n⃗ ∈ Sd−1 ↦
tn⃗ are bounded above and below by positive constants.

Now, note that for every n⃗ ∈ Sd−1, we have sn⃗ ≤ tn⃗ . Moreover, by (A.5) and the
fact that A i ⊆ C+i , we deduce that if sn⃗ < tn⃗ , then ∣n⃗ i − n⃗∣ ≤ Lε3/2 , where L is a
universal constant, which is not necessarily the same as in (A.5). In particular, by
choosing ε to be small enough we can assume that if sn⃗ < tn⃗ then, the ray starting at
x̃ i with direction n⃗ only intersects ∂D ∩ A i at one point. _is fact, together with the
smoothness of the outer normal vector ûeld implies that the map n⃗ ∈ Sd−1 ↦ sn⃗ is
Lipschitz. On the other hand, since the set A i is a convex set with piecewise smooth
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boundary (a convex polytope), we deduce that the function n⃗ ∈ Sd−1 ↦ tn⃗ is Lipschitz
as well.
Consider the map Φ i ∶D ∩ A i → A i deûned as follows. Set Φ i(x̃ i) = x̃ i . For

x ∈ D∩A i , x /= x̃ i we can write x = x̃ i + sn⃗, for some n⃗ ∈ Sd−1 and for some 0 < s ≤ sn⃗ ;
we let Φ i(x) be

Φ i(x) ∶= x̃ i +
stn⃗
sn⃗

n⃗.

Since both functions n⃗ ∈ Sd−1 ↦ sn⃗ and n⃗ ∈ Sd−1 ↦ tn⃗ are bounded above and
below by positive constants and are Lipschitz, we deduce that the map Φ i is a bi-
Lipschitz homeomorphism between D ∩ A i and A i . _is proves the claim.

Claim 3. For any ε < 1 it holds that ∂D∩(Vi ∖S i) = ∅. To prove this claim, assume for
the sake of contradiction that there exists x ∈ ∂D ∩ (Vi ∖ S i). Since x /∈ S i , it follows
that ∣x − x i ∣ ≥ ε. On the other hand, given that x ∈ ∂D, we know there exists k such
that x ∈ B(xk , ε2). Since ε < 1, we deduce that ∣x − xk ∣ < ∣x − x i ∣ and thus x /∈ Vi . _is
is a contradiction.

Now we have all the ingredients needed to prove Proposition 3.2. Indeed, take
ε > 0 small enough so that all of the conclusions of all the previous claims hold. From
Claim 3, we deduce that every Vi can be partitioned into three convex polytopes;
one that intersects ∂D, namely A i = Vi ∩ S i and other two polytopes, one which is
contained in int(Dc) and another one contained in D. We denote the later one by Â i .
We consider the family {A1 , Â1 , . . . ,AN , ÂN} of convex polytopes. _is family covers
D and is such that properties (i) and (ii) from Deûnition 3.1 are satisûed. Moreover,
given that Â i ⊆ D and given that Â i is convex, we deduce that Â i satisûes property
(iii) automatically, since all closed convex bodies with piecewise smooth boundary
are bi-Lipschitz homeomorphic. Finally, Claim 2 implies that property (iii) holds for
each of the A i . All together this implies that D satisûes the (WP) property.
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