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A semigroup is a nonvoid Hausdorff space together with a continuous as-
sociative operation. A semiring is a nonvoid Hausdorff space together with a couple
of continuous associative operations, one of which (usually denoted as multi-
plication) distributes over the other (usually denoted as addition). If R is a semi-
ring then an R-semimodule is a semigroup M under addition together with a
continuous operation Rx M -* M which satisfies the associativity and distribu-
tivity conditions usually stipulated in the instance of an /?-module. It is purpose
of this paper to establish for semimodules certain propositions proved by Kap-
lansky [4], Pearson [8], Selden [9], Beidleman-Cox [1] and others.

For results used here concerning semigroups reference is made to the excellent
expository paper by Jane M. Day [2], the quite comprehensive dissertation by
Paalman-de-Miranda [7] (though this omits algebraic topology) and the mo-
numental Elements of Hofmann-Mostert [3]. The terminology is generally that
common to these works.

If (R, +, •) is a semiring then the distributivity conditions are

x(y + z) = xy + xz and (x+y)z = xz+yz,

while those for a semimodule are
(rr')m = r(r'm), r(m + m') = rm + rm' and (r + r')m = rm + r'm.
Although none of their results will be used here, the reader may consult the

numerous papers on semirings by Samuel Bourne, as well as a paper by Beidelman
and Cox [1] on near-rings.

It should be explicitly stated that, in the definition of a semiring and a semi-
module as used here, commutativity is nowhere demanded.

I am greatly indebted to K. R. Pearson for sending me a preprint of his paper
[8], and to Mr. D. A. Robbie and Professor K. N. Sigmon for their kind comments
and suggestions. Some of the results here will be given in more generality by Mr.
Robbie in his dissertation.
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The first result of this section extends propositions due to Kaplansky [4].
Pearson [8] and Beidleman-Cox [1]. The second extends another result of Kap-
lansky. While it would no doubt be possible to use local compactness and boundness,
as Kaplansky did, attention is restricted here to compactness.

THEOREM 1. If M is a compact additive group which is an R-semimodule over
the compact semiring (R, +, •) with (R, +) a group, and if C is the component of
R containing the additive neutral element, then CM = 0.

Before embarking on the proof it is desirable to state two propositions in-
volving Lie groups, Montgomery-Zippin [5].

(A) A compact group is a Lie group if and only if there is some open set about
the neutral element which properly contains no closed subgroup.

(B) If G is a compact group and if U is any open set about the neutral element
then there is a morphism f (continuous^ of G onto a Lie group with ker/ c U.

PROOF OF THEOREM 1. Let / b e any morphism of (M, +) onto the additively
written Lie group L, let W be an open set about the unit 1 of L which properly
contains no closed subgroup (A), and define

' ( / ) = {r\f{rM)= \,reR}.

Notice that, as used here, a morphism is continuous and that f(m + m') =
f{m)f{m)'). It is readily concluded that / ( / ) contains the neutral element 0 of
(R, +) and, indeed, that / ( / ) is a subgroup of (R, +). Since QM = 0, as is quickly
verified, and since M is compact and all operations are continuous by assumption,
there is an open set V about 0 such that VM c f~l(W), recalling that/(O) = 1.
When it is shown that V c / ( / ) , it may be concluded that / ( / ) is an open (and
hence closed) subgroup of (R, +). Notice that whatever r e R, the set rM is a
compact subgroup of (M, +) and therefore/(rM) is a closed subgroup of L.
If r e V then f(rM) is a subset of W and a closed subgroup of L and hence
f(rM) = 1. Thus, as indicated above, / ( / ) is an open and closed subset of R
containing 0, hence containing C, the component of R which includes 0.

To complete the proof, suppose that cm ^ 0, with c e C and m e M, and let
U in (B) be M\{cm} so that, with that morphism/ it devolves that/(cm)#l,
contrary to the conclusion of the preceding paragraph.

In the same fashion, mutatis mutandis, the following proposition may be
established.

THEOREM 2. If M is a compact additive group which is an R-semimodule over
the compact semiring (R, +, •) with (R, +) a group, and if D is the component of
M which contains 0 then RD = 0.
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An R-subgroup of the .ft-semimodule M is such a subgroup N of M that
RN a N.

The next proposition is readily proved.

LEMMA. If N is an open (closed) subset of the compact R-semimodule M over
the compact semiring R then

J0(N) = N n {m\Rm c N,meM}

is open (closed). If N is a subgroup of M then J0(N) is an R-subgroup of M, it being
understood that M is a group.

(C) It is convenient now to observe that any open set about the neutral element
of a compact totally disconnected group includes a compact open subgroup, Mont-
gomery-Zippin [5, 56].

THEOREM 3. If M is a compact group which is an R-semi-module over the
compact semiring (R, +, •) with (R, + ) a group, and if M contains no closed R-
subgroups other than itself and 0, then M is finite.

PROOF. If D is the component of M which contains 0 then RD = 0, by
Theorem 2, and since D is a closed subgroup of M it devolves that D is a closed
J?-subgroup of M, and thus that D = M or D = 0.

On the first line, M is connected and RM = 0. If M is a closed subgroup of
then N is also a closed .K-submodule of M, thus there obtains the fact that M prop-
erly contains no closed subgroup, and hence is a Lie group by (A). Accordingly
M contains (and therefore is) a toral group (cartesian product of circle groups)
by Montgomery-Zippin [5, 190], whence M itself is a circle group. Since the circle
group properly contains closed subgroup it follows that M has only one element.

On the second line, M is totally disconnected, so that, by the lemma above
and (C), the complement of any member of M, other than 0, contains an open and
closed .R-subgroup which must coincide with 0, whence 0 is open. Accordingly, M
is seen to be finite.

The propositions of this section extend (and in one instance remedy a hiatus
in) results of John Selden [9]. It is convenient to state first a result of Mycielski's
[6].

(D) A compact group is connected if and only if it is divisible: if written ad-
ditively, for each x and each positive integer n the equation ny = x is solvable, by
denoting the n-fold sum ofy.

THEOREM 4. If M is a compact R-semimodule over the compact semiring R
and if Tis an additive subgroup of M such that aT = Tfor some ae R then T is
totally disconnected.
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PROOF. Since aT* = T*, since T* is a subgroup (because T is, and because
M is compact) and if T* is totally disconnected the same will hold for T, it may
and will be assumed that Tis closed. (For these arguments see Day [2] or Paalman-
de-Miranda [7].) By the Swelling Lemma, Day [2, 287], there is a multiplicative
indempotent e in R such that eT = T, and if C is the component of the neutral
element of T then C is a compact connected group and, moreover, eC = C be-
cause e2 = e. Indeed, ex — x for any element x of T. By (D) there is, for each
(eCan element /' in C such that the w-fold sum of/' is t: otherwise, C is divisible.
From this it is concluded that

•••+e)C= C

and, since

{t\tC = C}

is a closed set (see Day [2, 285]) containing all «-fold sums of e, it contains the
closure of the additive semigroup generated by e thus an additive idempotent / ,
a result of Koch and Numakura, Day [2, 285]. Whatever t e C there is some
t' e C with t = ft' and there obtains,

t =ft' = (f+f)t'=ft'+ft' = t + t,

thence C is a group comprised of idempotents and therefore contains only one
element. Whence T is totally disconnected.

THEOREM 5. If M is a compact R-semimodule over the compact semiring R,
and if me Rm for each me M then each additive subgroup of M is totally discon-
nected.

PROOF. By the Swelling Lemma cited in the proof of Theorem 4 it may be
concluded, in virtue of the hypothesis m e Rm, that m ~ em for some multi-
plicative idempotent e of R. Suppose that T is an additive subgroup of M with
neutral element z, let C be the component of T which includes z, and let t e C
distinct from z. There is a multiplicative idempotent e of R with et = t, eC is a
subgroup of M and satisfies e • eC — eC. Because et # ez (otherwise / would
be an additive idempotent) the cardinal of eC exceeds 1, eC is connected and is
totally disconnected by Theorem 4. This contradiction shows that C is a singleton
and thus that J is totally disconnected.

While Theorem 5 does not subsume Selden's Theorem 1, such dependency
can easily be obtained by generalizing the notion of a bimodule.
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