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I. SATAKE

The notion of "Siegel domains" was introduced by Pjateckii-Sapiro
[8]. It was then shown that every homogeneous bounded domain is
holomorphically equivalent to a Siegel domain (of the second kind) deter-
mined uniquely up to an affine isomorphism ([15], cf. also [2], [4], [9b]).
In a recent note [10b], I have shown that among (homogeneous) Siegel
domains the symmetric domains can be characterized by three conditions
(i), (ii), (iii) on the data (U, V, Ω, F) defining the Siegel domain (see Theorem
in § 2 of this paper)υ. The class of homogeneous Siegel domains satisfying
partial conditions (i), (ii), which we propose to call "quasi-symmetric", seems
to be of some interest, since for instance the fibers appearing in the
expressions of symmetric domains as Siegel domains of the third kind fall
in this class ([10b], [16]). Recently, using a method of S-algebras ([lla, b]),
Takeuchi [lie] gave a complete classification of quasi-symmetric domains,
which naturally implies a new classification of symmetric domains2). The
purpose of the present note is to show that this classification can also be
obtained immediately from my previous result on linear imbeddings of
self-dual cones ([10a]).

Our method is based on the following two observations:
(I) There are natural equivalences between the three categories of

(punctured) self-dual cones, the corresponding reductive Lie algebras (with
fixed Cartan involutions), and formally real Jordan algebras (§ 1).

(II) There is a natural bisection between the set of isomorphism
classes of quasi-symmetric Siegel domains and that of equivalence classes
of the pairs formed of a self-dual cone and a (linear) "representation"
of it (§3, Proposition 2).

Received October 7, 1975.
1) A similar result was also obtained independently by J. Dorfmeister.
2) Several results toward the classification of Siegel domains satisfying only the

condition (i) have been obtained by Takeuchi [lib], Tsuji [13] and others.
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2 I. SATAKE

It follows that the classification of quasi-symmetric Siegel domains

with a fixed self-dual cone Ω amounts to the determination of all "repre-

sentations" of Ω. This is precisely what was done in [10a] in terms of

the corresponding Lie algebras qfjΩ). For example, if Ω is the ex-

ceptional irreducible self-dual cone ^ 3(0), then the only possible represen-

tation is the trivial one3), which corresponds to the symmetric tube domain

U + iΩ, i.e., the exceptional irreducible symmetric domain of type (E7).

An open problem in this direction is to give an explicit description of

morphisms (e.g. strongly equivariant holomorphic maps) between quasi-

symmetric domains in terms of the corresponding pairs mentioned in (II).4)

It would also be interesting to find an analytic or differential geometric

characterization of quasi-symmetric domains.

§ 1. Self-dual cones

Let U be a (finite-dimensional) real vector space. By a cone in U

we always mean a non-empty open convex cone in U with vertex at the

origin and not containing any straight line. A cone Ω in U is called

"homogeneous" if the linear automorphism group

(1) G(Ω) = {Ae GL(U)\AΩ = Ω}

acts transitively on Ω. We fix once and for all a positive-definite inner

product < y on U and set

(2) β* = {ueU\<u,u'}> 0 f or all v! e Ώ - {0}},

where Ώ is the topological closure of Ω. Ω is called "self-dual" if Ω is

homogeneous and 42* = Ω, or equivalently, tow) — G(Ω), t denoting the

adjoint with respect to < ).

Let Ω be a self-dual cone in £7. Then it is known ([14]) that G(Ω)

is an open subgroup of a reductive real algebraic group and the isotropy

subgroup Ka of G(Ω) at any point a e Ω is a maximal compact subgroup.

It follows that there exists an element eeΩ such that

(3) Z e = {AeG(β)| ίA = A-1}.

Let e(fl) be the (linear) Lie algebra of G(Ω) ( c βt(t7)). Then the Cartan

involution of Q(Ω) at e is given by

3) This is essentially a theorem of Albert (Ann. of Math. 35 (1934)).
4) For the subcategory of symmetric tube domains, this is one of the questions

raised in [10a], which can easily be answered by using the description of automorphism
groups of symmetric tube domains in terms of Jordan algebras ([5a, c], [-9b], [10b]).
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( 4 ) θe:Aϊ >-<A,

and we have the Cartan decomposition:

= ϊβ + Pe ,

where ϊe = {A e q(Ω)\ιA = -A ( φ Ae = 0)} is the Lie algebra of Ke.

The "reference point" e may be chosen arbitrarily by the homogeneity

of Ω, but will be fixed throughout the paper.

From the above, it is clear that, for every u e U, there exists a unique

element Tu in pe such that

( 5) Tu(e) = u

in particular, Te = lv (the identity transformation of U). The corre-

spondence u^» Tu gives a linear isomorphism Z7 = pe. It is known ([1],

[5a], [14]) that, if we define a product o in U by

(6) uλou2 = TUχ(u2) (u19 u2eU) ,

then C7 becomes a Jordan algebra with the unit element e, which is

"formally real" (or "compact") in the sense that u{ + u2

2 = 0 implies ux

= u2 — 0, or equivalently, that tr (Tu9) is a positive-definite quadratic

form on U. Moreover, Ω coincides with the interior of {u2\ue U}. Con-

versely, all formally real Jordan algebras are obtained in this manner

from self-dual cones.

Now let Ωr be another self-dual cone in a real vector space U' with

a reference point e'. We use a similar notation as above with primes to

denote the objects relative to (Ω', ef) e.g., T'u, (u' e U') denotes the unique

element in #, such that Tr

u,(ef) — u\ The following Lemma is fundamental.

LEMMA. Let ψ: U —> U/ be a linear map with φ(e) — ef. Then ψ is

a Jordan algebra homomorphism, if and only if there exists a Lie algebra

homomorphism p: §(Ω) —> ĝ flO satisfying the following conditions:

(7) φ(Au) = p(A)φ(u) for all A e g(β), u e U ,

(8) p θe^& p.

When this is the case, p and ψ determine each other uniquely by the

relation

(9)

https://doi.org/10.1017/S0027763000024715 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024715


4 I. SATAKE

Moreover, one has <p(Ω) c Ωf.

Proof. First, suppose there exists a Lie algebra homomorphism p
satisfying the conditions (7), (8). Then from (8) one has ρ(ϊe) c ί̂ ,
p(pe) c pr

e,. Hence, by (7) and the uniqueness of ϊ7^, one obtains the
relation (9). It follows that

φ{uχou2) = <p(TUl(u2)) = p(TUl)φ(u2) = T'φ(Uι)φ(u2) = φ{ux)oφ{u2) ,

i.e., φ is a Jordan algebra homomorphism. Conversely, suppose ψ is a
Jordan algebra homomorphism and define a linear map p: pe -* & by (9).
Then, by the following well-known identity in a Jordan algebra:

one has

p(lTUl, [Γ«,, Γ«.]])

Since g(β) is reductive and generated by pe, it follows that p can uniquely
be extended to a Lie algebra homomorphism Q(Ω) —> $(£?'). It is then
clear that the conditions (7), (8) are satisfied. Finally, from (7) one obtains
φ(Ω) = φ(G(Ω)°e) c G(Ω')°e' = Ω', where the superscript ° denotes the
identity connected component of a topological group, q.e.d.

A map of a self-dual cone Ω into another self-dual cone Ωf is called an
equivariant (resp. strongly equivariant) linear map of (Ω, e) into (Ω', e'),
if it is the restriction of a linear map φ: £7 -> t/' with ρ(e) = e' such that
there exists a Lie algebra homomorphism p satisfying (7) (resp. (7),(8)).5) The
above Lemma implies that the following three categories are equivalent:

(a) the category of (punctured) self-dual cones (Ω, e), morphisms be-
ing strongly equivariant linear maps;

(b) the category of the corresponding reductive Lie algebras g(42)
with fixed Cartan involutions θe, morphisms being Lie algebra homomor-
phisms satisfying (7), (8) (with φ defined by (9));

(c) the category of formally real Jordan algebras U, morphisms be-
ing (unital) Jordan algebra hόmomorphisms.

Thus, in particular, the classification of self-dual cones (up to linear
isomorphisms) is equivalent to that of formally real Jordan algebras ([1],
[14]). In order to fix the notation which will be used in the next section,

5) It seems likely that any equivariant linear map is necessarily strongly equi-
variant. This is true at least for Ω' = ^m(C) (see the proof of Proposition 1).
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we give here a description of the classical cones over the complex field

C. Let 7 be a (finite-dimensional) vector space over C and / a positive-

definite hermitian form on 7. We denote by J^(7, /) the real vector space

of all "hermitian" (i.e. self-adjoint) transformations of 7 with respect to

/ , and by ^ ( 7 , /) the subset of je(V, /) formed of all positive-definite

transformations. Then Ω = &(V, /) is a self-dual cone in U = Jf(V, f)

with respect to the inner product <£Γ1,H2>=tr {HJI^. The full endomor-

phism algebra gΓ(V) acts on Jf(V,f) by

(10) (B, fl).—> BH + HB* (B e βI(V), H e Jt*(V, /)) ,

* denoting the adjoint with respect to / . This action gives rise to a

surjectivehomomorphism gl(V)-»g(β) with kernel {V — lλl v \λeR}. Hence,

if we set

then g(β) can naturally be identified with gI°(V). The Jordan product in

, /) with the unit element e = lv is given by

(11)

When 7 = Cm and / is the standard hermitian form on Cm, we write

jen(O and ^m(C) for 3f(V,f) and ^ ( 7 , / ) . In [10a] we have determined

all possible equivariant linear maps of an arbitrary self-dual cone (Ω, e)

into

§2. Siegel domains

To define a Siegel domain (of the second kind), we need the follow-

ing data:

U = a (finite-dimensional) real vector space,

7 = a (finite-dimensional) complex vector space,

Ω = an (open convex) cone in [7,

ί1 — an β-hermitian form on 7,

where an "β-hermitian form" F is a hermitian sesquilinear map F:

V X 7 —> Z7C = Ό®RC (which we assume to be C-linear in the second

variable) satisfying the condition

(12) F(y, v) e Ώ - {0} for all v e 7, v Φ 0 .

A Sie^eί domain 3> = ^(C7, 7, £?, F) is then defined by
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6 I. SATAKE

(13) 9 = {(u,v)eUcx V\lmu-F(v,v)eΩ} .

We denote by G = Hoi {0) the Lie group of all holomorphic automorphisms

of 3f and by g = §(0) its Lie algebra. It is known ([4]) that one has a

natural gradation:

(14) 9 = 8-i + β-i + Go + 8* + 8i

such that the non-positive part g_ = 2]»<;o 8* is the Lie algebra of the

affine automorphism group Aff (0). More precisely, g_x, g_4, and g0 can

naturally be identified with U, V, and the following subalgebra of g(β)

Θ8ΪO0:

{(A, B) IA G g(J2), B e $ί(V), B associated to A},

respectively, where "B is associated to A" (with respect to F) means

that the relation

(15) AF(v19 v2) = F(Bvlf v2) + F{vl9 Bv2)

holds for all v19v2eV. If the Siegel domain Of is homogeneous, i.e.,

Hoi {0) is transitive on £&> then it is affinely homogeneous, i.e., Aff {0)

is transitive on @9 and hence the cone Ω is also homogeneous. When @

is homogeneous, the positive part of g can be described explicitly in terms

of g_ (cf. [6],[10b],[12])6\

Now, for u e Z7, we set

(16) Fu(!ul9vJ = <u,F(v19vd>,

where ( > i s the (symmetric) C-bilinear extension to Uc X Uc of the fixed

inner product on U. Then Fu {u e U) is a hermitian form on V in the

ordinary sense, and is positive-definite if ueΩ*. In particular, when Ω

is self-dual, / = Fe is a positive-definite hermitian form. In that case,

we define Ru e QI(V) by

(17) Fu(v1,v2) = 2f(v1,Ruv2) .

Then Ru e J$?(V, / ) , and Ru e ̂ ( 7 , /) if w 6 Ω in particular, i?e = J1 F . In

this notation, the relation (15) can be rewritten as

(150 RtAu = B*RU + RUB (ueϋ) .

We denote by R the linear map U ->J^(V9f) given by u*->Ru. (We also

6) For the treatment of non-homogeneous case, see [3], [7], [9b].
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QUASI-SYMMETRIC DOMAINS 7

use the same notation R to denote its C-linear extension Z7c—>gI(V).)

As is well-known, <& is symmetric if and only if 2 is homogeneous

and ςfβf) is semi-simple. In that case, g0 (being the centralizer of a

semi-simple element ( l σ , i l F )) is reductive, and hence Ω is self-dual. In

[10b], we gave the following characterization of symmetric domains.

THEOREM. A Siegel domain S = S(C7, V, Ω,F) is symmetric if and

only if the following three conditions are satisfied (for a suitable <( ) ) :

( i ) Ω is self-dual.

(ii) For every ueU, Ru is associated to Tu.

(111) The following r e l a t i o n i s s a t i s f i e d f o r a l l v19 v29 v z e V

(18) F(v19 R(F(v29 v,))v3) = F(R(F(v39 vj)v2, v3) .

When 2 is symmetric, the Cartan involution θ of g at (*f^Λe, 0)

reverses the gradation: #(&,) = g_y, and on g0 one has

(19) θ:(A,B)\ > ( - Ά , - β * ) .

Moreover, explicit expressions can be given for β(u) and θ(v) (ueU = Q_19

V6 7=ί . j ) ([10b]).

§ 3 . Quasi-symmetric Siegel domains

First we prove the following proposition concerning the second

condition (ii).

PROPOSITION 1. Under the condition (i), the following four conditions

are equivalent:

(iijXizr (ϋ)) For every ueϋ,Ru is associated to Tu.

(112) The map 2R: u »-• 2RU is a Jordan algebra homomorphism of

U into J?(V,f).

(113) There exists a (unique) Lie algebra homomorphism β: g(β) —>

gl°(V) such that

(20) β(A) is associated to A, i.e., RtAu = β(A)*Ru + Ruβ(A) for allueU ,

(21) β(ιA) = β(A)* (A e β(O)) .

(114) The projection map (A9B)^A of g0 into g(β) is surjective.

Proof. In view of (6), (11), and (150, (ϋi) is equivalent to (ii2).
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8 I. SATAKE

A p p l y i n g L e m m a t o TJf = ^ ( F , / ) , Ωf == ̂ ( F , / ) , a n d e' = 1 Γ , w e see t h a t

(112) is equivalent to (ii3). Note that, since g(^*(F, /)) is identified with

gI°(F) by the action (10), the conditions (20), (21) in (ii3) coincide with

(7), (8) with φ = 2R. It should also be noted that the image of a homo-

morphism β: Q(Ω) —> gϊ(F) satisfying (21) is necessarily contained in gl°(F).

Indeed, since ϊe is contained in the semi-simple part of g(β), one has

β(ϊe) c sί(V). Hence, for A e g(fl), one has by (21)

Im tr #A) = - | r tr (β(A) - β(A)*) = A - tr /3(A - Ά) = 0 ,

i.e., /3(A) e gP(F). The implication (iij) or (ii3) => (ii4) is trivial. Hence it

remains to show that (ii4) implies one of the conditions (iij ~ (ii3).

In [lie], Takeuchi proved (ii4) =$> (iix). Here we give an alternate proof,

showing (ii4) =Φ (ii3). Let GQ be the subgroup of G(Ω) x GL(V) formed of

all pairs (A,J5) satisfying the condition

AFQoί9 v2) = F(Bvu Bv2) (v19 v2 e V) .

Then Go is a real algebraic group with Lie algebra isomorphic to g0. The

condition (ii4) implies that the projection map p: (A, B) ^ A gives a

homomorphism of Go° cm£o G(Ω)°. Since the kernel of p is compact and

G(β) is reductive, GQ is also reductive. It follows that there exists a Lie

algebra homomorphism β: Q(Ω) -> gl(V) such that (A, /KA))eg0 for all

Aeg(β), i.e., β satisfies the condition (20). Putting u = e in (20), we

see that A e ϊ e implies β(A) = — β(A)*. These mean that the triple (F,

β 0e,f) is a "solution" for (g(J2), e) of the problem considered in [10a].

Hence ([10a], p. 127), β can be decomposed into a "commutative sum"

of two homomorphisms βt (i = 0,1) of g(ί2) into gί(F) such that βo(g(β))

c u ( 7 , F ) and /3X satisfies the conditions (20) and (21), or in the termi-

nology of [10a], (Vfβi-θe,/) is a "strong solution" of the same problem.

As we noted above, we then have βi(g(β)) c gI°(F). Thus the condition

(113) is satisfied, q.e.d.

We call a Siegel domain 2 quasi-symmetric if the data (C7, V, Ω, F)

defining Of satisfy the conditions (i), (ii). Note that this definition does

not depend on the expression of 2 as a Siegel domain by virtue of its

uniqueness. It is clear that a quasi-symmetric Siegel domain is affinely

homogeneous. We also remark (after Tsuji [13], Theorem 2.1, and

Nakajima) that, if 9t is an irreducible quasi-symmetric Siegel domain,
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which is not symmetric, then one has ĝ  = gx = {0} by a theorem of

Kaup [3] one can then conclude that Hol(^) = Aίf {0).

By Proposition 1, we have, for a quasi-symmetric Siegel domain 2

— @(U, V, Ω, F), the following morphisms in three categories:

(a) a strongly equivariant linear map 2R: (β, e) —> (^(F, / ) , 1F),

(b) a Lie algebra homomorphism β: q(Ω)—>gί°(F) satisfying (20), (21)

with Ru = β(Tu),

(c) a (unital) Jordan algebra homomorphism 2R: U —> ^f (7, / ) .

For brevity, we call such a morphism (in any of the three categories)

a representation on V. It is clear that, conversely, given a self-dual

cone (β, β) in [/ and a "representation" 2# of it (or a representation 0

of g(β)) on V, then defining an β-hermitian form F on V by (16), (17),

we obtain data (U,V,Ω,F) satisfying the conditions (i), (ii). Thus a quasi-

symmetric Siegel domain 2 is determined by a pair formed of a self-

dual cone (β, e) in £7 and a "representation" of it on VP In particular,

^ is a tube domain (Siegel domain of the first kind) U + iΩ, if and only

if the corresponding representation is trivial, i.e., V = {0}. In that case,

the condition (iii) being trivially satisfied, 3d is necessarily symmetric.

Now, let Of' = @(U', V, Ω', F;) be another quasi-symmetric Siegel

domain determined by a self-dual cone (Ω', ef) in TJf and a representation

2Rr (or /JO on V'. We look for the conditions on these data under which

3f and 3ff are holomorphically equivalent. As is known ([4], Theorem 11),

this is the case if and only if 2 and 2' are linearly equivalent, i.e.,

there exist a pair of linear isomorphisms

such that

(22) φ(Ω) = Ωf ,

(23) φ(F(vl9 v2)) = F'GK^), ψ(v2)) (v19 v2 e V) .

Hence, for our purpose, we may assume from the beginning that U = U'f
Ω — Ω', and, since Stf is affinely homogeneous, e = <p(e) = ef as well. Then

one has φe G(Ω), φ(e) = β, i.e., <peKe, which implies ιψ = 9"1. The con-

dition (23) is equivalent to

7) The usefulness of the notion of "representations" for Siegel domains was
already pointed out by Rothaus [9a].

https://doi.org/10.1017/S0027763000024715 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024715


10

(230 Ftφ(u,y=F'u,

which in turn is equivalent to

(24) f = j

(25) Ru = ψ-1

I. SATAKE

t \^r X ΛJ/ί)

• (^jp X Λp^j y

(u'el

and

(ue U)

where / ' = F«. These mean that we have the following commutative

diagram of Jordan algebra homomorphisms:

U -—> U

2R\ \2R'

where we put ¥(H) = ψ H-ψ-1 for fle/(7,/). In terms of the corre-

sponding Lie algebra representations β and β\ the condition (25) is equi-

valent to

(26) β(A) = ψ-1 β'iφAφ-1). ψ (A e

because in view of the relations β(Tu) = Utt, β'(2V) = 1%,, pT^r 1 = Γf(tt)

(25) is equivalent to (26) with A = Γw and g(fl) is generated by pβ. When

the relations (24) and (25) (or (26)) are satisfied for some φ e Ke and a linear

isomorphism ψ: F -• F7, we say two representations 2β and 2β/ (or /3

and βf) are automorphically equivalent (at e) and write 2β « 2R'" (or jS

« ]80. Note that the condition (26) alone is sufficient for β « β', since

we can then modify ψ to satisfy (24) ([10a], Theorem 2). It is clear

that, conversely, if 2R « 2β r or j8 « ^^ then the quasi-symmetric Siegel

domains ^ and ^ are linearly equivalent with φeKe. We have thus

proved the following

PROPOSITION 2. Two quasi-symmetric Siegel domains £d and & with

the same self-dual cone (β, e) are holomorphically equivalent, if and only

if the two "representations" 2R and 2Rf (or β and βf) defining 3f and St-

are automorphically equivalent at e.

Thus the classification of quasi-symmetric Siegel domains 3ι with a

fixed self-dual cone (β, e) (up to holomorphic equivalence) is equivalent

to that of the "representations" 2R or β up to automorphic equivalence
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at β. The determination of all (non-trivial) "representations" β of
was given in [10a]. It was shown there that every such representation
is completely reducible and the classification can be reduced to the case
where both Ω and β are irreducible.8) For an irreducible self-dual cone
(β, β), let N be the number of (ordinary) equivalence classes of (non-
trivial) irreducible "representations" β of g(β). Then N <; 2. More
precisely, one has N = 2 for Ω = 0*m(C) (m ^ 2) and for the "quadratic
cones" of even dimension N = 0 for the exceptional cone &z{0) and N
= 1 for all other cases. For each of the cases with N = 2, it is easy
to see that two inequivalent irreducible "representations" are automor-
phically equivalent. In this way, we can reproduce the main result of
Takeuchi [lie]. For instance, for Ω = ^m(C) (m ^ 2), we define a repre-
sentation βrt8 of g(β) = gl°(m, C) on 7 = c m ( r + s ) by

βr,s = id Θ Θ id Θ id Θ Θ id ,

id denoting the identical representation and id its complex conjugate.
Then every "representation" β of Q(Ω) is automorphically equivalent to
one of βr>s (r ^ s ^ 0). The corresponding quasi-symmetric Siegel domain
S is symmetric if and only if s = 0, and in that case ^ is of type (/TO+Γfm).
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