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Abstract
This manuscript reports structure–function studies of Catechol 2,3-dioxygenase (C23O64), which is the
second enzyme in the metabolic degradation pathway of 3-nitrotoluene by Diaphorobacter sp. strain DS2.
The recombinant protein is a ring cleavage enzyme for 3-methylcatechol and 4-methylcatechol products
formed after dioxygenation of the aromatic ring. Here we report the substrate-free, substrate-bound, and
substrate-analog bound crystal structures of C23O64. The protein crystallizes in the P6(2)22 space-group.
The structures were determined by molecular replacement and refined to resolutions of 2.4, 2.4, 2.2 Å,
respectively. A comparison of the structures with related extradiol dioxygenases showed 22 conserved
residues. A comparison of the active site pocket with catechol 2,3-dioxygenase (LapB) from Pseudomonas sp
KL28 and homoprotocatechuate 2,3-dioxygenase (HPCD) from Brevibacterium fuscum shows significant
similarities to suggest that the mechanism of enzyme action is similar to HPCD.
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Introduction

Microbes degrade aromatic compounds aerobically using well-established pathways. Most reported
aerobic degradation pathways proceed through the dioxygenation of the aromatic ring forming catechol-
like intermediates (Mason & Cammack, 1992). Subsequently, the thermodynamically stable aromatic
ring is cleaved to generate products that can enter the Krebs cycle directly for complete aerobic
degradation. The dihydroxylated catechol ring is either cleaved in an intradiol manner (Hayaishi
et al., 1955) or an extradiol fashion (Kojima et al., 1961). The extradiol dioxygenase class of enzymes
has three distinct evolutionary family trees based on diverse substrate preferences (Vilchez-Vargas et al.,
2010). Since the first structure of an extradiol dioxygenase 2,3-dihydroxybiphenyl 1,2-dioxygenase
(DHBD) from Pseudomonas sp. LB-400 (Han et al., 1995), numerous studies have elucidated the
mechanism for these classes of enzymes (Kovaleva & Lipscomb, 2008). The structures typically contain
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two repeating βαβββ motifs in a domain forming a funnel-shape to accommodate the
2-His-1-carboxylate active site residues that are bound to Fe(II) or Mn(II) metal ions as a facial triad
(Kita et al., 1999). Mostly, no cofactor other than the metal ion is present in these reported structures, and
the electron transfer occurs primarily to the bound substrate via the metal to the bound oxygen, activating
them both for the reaction. Our study enriches the structural aspect of a catechol 2,3-dioxygenase of a
Diaphorobacter sp. strain DS2 (Singh & Ramanathan, 2013), which is a non-motile gram-negative
bacterium that specifically degrades 3-nitrotoluene and can use it as the sole nitrogen and energy source.
We report the crystal structures of recombinant C23O64 catechol dioxygenase enzyme in three forms:
ligand-free, 4-methylcatechol-bound (4-MC), and 3-fluorocatechol-bound (3FA).

Objective

Elucidate the structure of C23O64 (catechol dioxygenase) from Diaphorobacter sp. strain DS2 using
X-ray crystallography. The structure was then comparedwith other extradiol enzyme structures to infer a
reasonable reaction mechanism for C23O64.

Methods

The supporting information contains all the specific methods used in this manuscript.

Table 1. Structure solution and refinement values in parentheses are for the outer shell.

Substrate free C23O64-3FA C23O64-4MC

PDB-ID 5ZSZ 5ZSX 5ZNH

Resolution range (Å) 46.7–2.4 (2.48–2.4) 47.9–2.2 (2.28–2.2) 46.5–2.4 (2.49–2.4)

Completeness (%) 99.88 (100.00) 98.89 (89.27) 99.81 (100.00)

No. of reflections, working set 14,283 (1388) 18,244 (1606) 14,254 (1402)

No. of reflections, test set 706 (71) 932 (85) 716 (77)

Final Rcryst 0.21 (0.28) 0.19 (0.44) 0.19 (0.21)

Final Rfree 0.24 (0.30) 0.24 (0.50) 0.24 (0.34)

No. of non-H atoms

Protein 2,285 2,454 2,454

Ligand 2 26 22

Water 25 64 33

Total 2,312 2,544 2,509

R.m.s. deviations

Bonds (Å) 0.003 0.004 0.008

Angles (°) 0.91 1.00 1.25

B-factor (Å2)

Overall 56.61 49.65 52.68

Protein 56.65 49.60 52.71

Ligand 73.41 61.47 56.73

Ramachandran plot

Most favored (%) 97.59 97.76 96.79

Allowed (%) 2.41 2.24 3.21
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Fig. 1. (a) A monomer of C23O64 in 3-fluorocatechol bound crystal. The active site is present in the C-terminal domain
(b) Diagram for the active site of the 3-fluorocatechol bound protein, the ligand was omitted from the structure, and a
simulated annealed omit map (to remove bias) was calculated in the region of the ligand using Phenix. The grey map is the
(2Fo-Fc) map at 1*RMS around the active site. In Magenta is the (Fo-Fc) at 1*Sigma. The position of the refined 3FA fits the
difference electron density nicely. The electron density for the water molecule bound to Fe was also omitted and is visible in
the structure. The figure wasmadewith Pymol (c) Active site of the protein in different crystals showing different coordination
geometries around the metal ion and two-dimensional representation of substrate interaction in the active site pocket using
LIGPLOT (i) In the 4-methylcatechol bound protein, the Fe is having distorted square pyramidal geometry (ii) In the substrate-
free structure, the active site Fe is bound to two water molecules while exhibiting a distorted trigonal bipyramidal geometry
(iii) In the 3-fluorocatechol bound protein, the Fe is coordinated to the substrate and one water molecule, displaying a
distorted octahedral geometry.
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Results and discussion

The diamond-shaped protein crystals appeared after 3 to 4 days at 18 °C (Fig. S2). The crystals formed in
0.2 MMgCl2, 0.1 MHEPES sodium salt pH-7.5, and 30% v/v PEG-400 was soaked in substrate solution.
Aerobic conditions were used for crystallization and soaking experiments. Therefore, the proteins in the
crystal were enzymatically inactive, due to oxidation of Fe (II) to Fe (III) at the active site.

The crystal structure was solved using molecular replacement methods. Table 1 shows the results
generated after iterative refinements. An asymmetric unit contains a 314 amino acid monomer,
whereas based on results from size exclusion chromatography, the protein is tetrameric in solution
(Fig. S4).

Crystal contacts form the biologically active tetramer. Like the other reported catechol dioxygenases,
the C23O64 protein is also a two-domain protein. It has a repeating βαβββmotif forming an antiparallel β
barrel structure in each N- and C-terminal domains. The active site is present in the C-terminal domain
within the barrel-shaped structure (Fig 1). The electron density map of the substrate-free crystal did not
show a good density for 294–314 amino acid residues, due to disorder in the absence of the substrate.

The active-site contains His150, His220, and Glu271 bound to the metal ion in a facial triad manner.
In the active-site of the substrate-free C23O64, the penta-coordinated Fe was bound to two water
molecules in a trigonal bipyramidal coordination geometry. In the 4-methylcatechol-bound form, the Fe
is penta-coordinated with a square pyramidal geometry. In contrast, in 3-fluorocatechol-bound

Fig. 2. Comparison of the active site pocket of catechol 2,3-dioxygenase (C23O64) from Diaphorobacter sp. strain DS2 (5ZNH)
with (a) LapB from Pseudomonas sp. KL28 (3HPY) and (b) HPCD from Brevibacterium fuscum (1Q0C). The metal binding facial
triad residues (His His Glu) has been hidden in the active site pocket for clarity.
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structure, the active-site iron is hexa-coordinate with the substrate and a water molecule in a distorted
octahedral geometry (Fig. 1). A comparison of the active-site pocket in these three forms of C23O64,
revealed changes in His252, Ile254, and Thr255 side chains with an RMSD of 0.393 Å (Fig. S3).

A comparison of the active sites of C23O64 with LapB from Pseudomonas sp KL28, having
approximately 42% sequence identity, revealed three differences. The residues F198, I298, and I254 in
C23O64 replace W193, L293, and V250 from LapB, respectively. These substitutions provide a better
binding pocket for 4-substituted catechols in C23O64 through hydrophobic interactions with I254 and
I298. Another significant comparison with HPCD from Brevibacterium fuscumwhose sequence identity

Fig. 3 Structure-based alignment of C23O64 from Diaphorobacter sp. strain DS2 5ZSZ and selected type 1 extradiol
dioxygenases that are reported. 1MPY from Pseudomonas sp. MT2 (43% sequence identity), 3HPV is LapB from Pseudomonas
sp. KL28 (42%), 1F1X is HPCD from Brevibacterium fuscum, 1F1R is HPCD from A. globiformis, and 3LM4 is DHBN from
Rhodococcus has less than 28% sequence identity
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is 28% (RMSD1.98 Å) suggests that residuesW192, R292 fromHPCD replace F198 and I298 in the active
site pocket of C23O64. These amino acid sidechains play a crucial role in accommodating catechol and
not homoprotocatechuate in the case of C23O64. The amino acid side chain substitutions explain the
inactivity of C23O64 to 2,3-dihydroxybenzoic acid, and 3,4-dihydroxybenzoic acid as the smaller active
site pocket cannot accommodate –COO� group. The C23O64 active-site also lacks ionic interactions
provided by R292 in HPCD. The sequence and structure comparisons present strong evidence that
explains the difference in binding sites for the substrate accommodation. Despite having less than 28%
sequence identity, the similarity in the active site pocket residues (Fig. 2) suggests a similar reaction
mechanism (Kovaleva & Lipscomb, 2007).

Sequence comparison of C23O64 with other reported extradiol dioxygenases (Fig. 3) shows that it is
indeed a type I extradiol dioxygenase. All these have 22 strictly conserved residues to play essential
structural and functional roles. Where the metal binding H150, H220, E271 and H206 (Kovaleva et al.,
2015), Y261 (Kovaleva & Lipscomb, 2012) play key functional role, others determine substrate specificity
and maintain structural integrity of the enzyme.
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