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SUMMARY

We propose a rather simple model, which fits well the weekly human influenza incidence data

from England and Wales. A standard way to analyse seasonally varying time-series is to

decompose them into different components. The residuals obtained after eliminating these

components often do not reveal time dependency and are normally distributed. We suggest

that conclusions should not be drawn only on the basis of residuals and that one should consider

the analysis of squared residuals. We show that squared residuals can reveal the presence of the

remaining seasonal variation, which is not exhibited by the analysis of residuals, and that the

modelling of such seasonal variations undoubtedly improves model fit.

INTRODUCTION

Influenza is an acute contagious disease caused by a

virus [1]. There are three types of the virus, designated

A, B, and C, but only types A and B cause more

serious contagious infections. Influenza occurs most

often in late autumn, winter and early spring, and

it usually reaches peak prevalence in winter. It is a

serious infection, afflicting millions of people through-

out the world every year. Therefore, it is very im-

portant to have a good model describing influenza’s

behaviour and giving reliable predictions. Even

though influenza cases are count data they exhibit

time-series properties. In this paper we use a time-

series approach to model data on the weekly incidence

of human influenza A cases in England and Wales in

1992–2005 [2].

Many authors have used a time-series approach to

model infectious diseases. Choi & Thacker [3, 4] pro-

posed the ARIMA model for forecasting the expected

mortality and the percentage of pneumonia and in-

fluenza death. Quénel & Dab [5] modelled the weekly

influenza incidences in France by a SARIMA model.

They developed epidemic criteria based on time-series

analysis. A time-series analysis approach was also

used by Crighton et al. [6]. Their main concern was

the gender- and age-specific influenza and pneumonia

hospitalization seasonality. Mugglin et al. [7] used a

Bayesian hierarchical approach for modelling of in-

fluenza epidemic dynamics in both time and space,

while Cliff & Hagget [8] give a review of applications

of statistical models to outbreaks of (measles and)

influenza.

We propose to model the weekly influenza inci-

dences by a Gaussian random process with a seasonal

variance. In a good time-series model, residuals

obtained after removing deterministic components

should be randomly distributed, exhibit a normal
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distribution, have non-significant autocorrelations

and partial autocorrelations, and have a mean of zero

and homogeneous variance over time. However, some

financial and meteorological applications [9, 10]

clearly indicate that even though the final residuals

of a time-series model fulfil those requirements, the

analysis of squared residuals and their autocorre-

lation function often show the presence of seasonal

effects. We can improve the model quality and pre-

diction reliability by detecting and modelling such

effects by relatively simple methods. Kakehashi et al.

[11] use a somewhat similar approach for modelling

monthly influenza (and measles) time-series from

Japan. They decompose the time-series into a seasonal

component presented as seasonal indices, a (quad-

ratic) trend and an AR(1) process. Their model fits

the data well. They also present an attractive TS-

decomposition diagram. This paper aims to show that

relatively simple additional analyses of the residuals

can improve the modelling.

The remainder of the paper is divided into five sec-

tions. First, we present a detailed description of the

English and Welsh influenza incidence data. Next,

we perform a simple statistical analysis to explore the

data and generate some ideas for a possible model.

Third, we present a time-series model and estimate the

proposed model on the basis of in-sample data.

Fourth, the out-of-sample data are used for the vali-

dation of the model. Here we also demonstrate how

the proposed model can be used for the prediction of

influenza incidence. In the last section we summarize

the results.

Data were analysed by Excel (Microsoft, Red-

mond, WA, USA), SPSS (SPSS Inc., Chicago, IL,

USA), and Matlab (MathWorks Inc., Natick, MA,

USA).

DATA

Our data source is the routine influenza laboratory

reports from hospitals in England and Wales [2], re-

presenting influenza A cases registered in England

and Wales in the period from the beginning of 1992 to

the end of 2005 by week per 100 000. The total length

of the series is 728 weekly observations. Observations

are missing for 28 weeks (3.8%). The years 1992,

1998, and 2005 had 53 weeks, with the 53rd week

having 1, 221 and 6 cases, respectively. To avoid

problems with periodicity, we merged the obser-

vations from weeks 53 of 1992 and 2005 with the ob-

servation in week 52 in the corresponding year. We

split the 221 observations from week 53 of 1998 into

two parts : 110 to week 52 in 1998 and the rest (111) to

week 1 of 1999. The 28 missing values were substi-

tuted with the mean of two nearby points. A number

of descriptive statistic characteristics for the sample

with missing values and the sample with imputed

missing values are presented in Table 1 (columns 2

and 3), showing that the two datasets are nearly

identical ; their means and variances were not signifi-

cantly different, neither were the 95% confidence

intervals for skewness and kurtosis. We also tried

a number of other substitution methods; however,

variations in descriptive characteristics were only

Table 1. Descriptive statistic characteristics for sample with missing values,

sample with missing values imputed, and the logarithmically transformed

data

Characteristics
Sample with
missing values

Sample with missing
values imputed

Logarithmically
transformed sample

n 700 728 728

Minimum 1 1 0
Maximum 463 463 6.14
Lower quartile 4 3 1.10
Median 9 9 2.20

Upper quartile 33 31.75 3.46
Mode 3 3 1.10
Mean 31.78 30.66 2.35

Standard deviation 55.76 54.97 1.45
Skewness 3.46 3.53 0.36
Kurtosis 15.61 16.24 x0.66
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minor. Thus, we have 728 valid observations, which

we plot in Figure 1 and their logarithm in Figure 2.

We see from Figure 1, that influenza peaks differ

in size but the peaks appear in a quite regular

manner, corresponding to the influenza season, which

usually lasts from week 40 to week 20. Note that the

variation is season-dependent, higher in a cold season

and lower in a warm one. Figure 3 shows that the

distribution is strongly left-skewed. It indicates clear

presence of extremes ; there are years with very high

peaks, e.g. in week 1 there were peaks in two years

(463 cases/100 000 in 1999 and 419 cases/100 000 in

2000).

In the autocorrelation function (ACF) of influenza

cases (Fig. 4a), we also observe strong seasonal effects

and significant autocorrelations : the autocorrelation

values are far beyond the 95% confidence intervals.

The regression analysis of influenza observations

and logarithmically transformed influenza obser-

vations on time resulted in higher R2 value for

logarithmically transformed data. The logarithmic

transformation also symmetrized the distribution of

the considered data; skewness, even though signifi-

cant, is close to zero for transformed data. The kur-

tosis of the distribution does not differ significantly

from zero. Therefore, we choose to use logarithmi-

cally transformed time-series. We still observe strong

seasonal variations in the transformed series (Fig. 2).

Moreover, the ACF (Fig. 4b) preserves the pattern

observed for the original data. It should be noted that

the logarithmical transformation was possible since

the minimum count in the original series was 1.

Before defining the model for influenza obser-

vations, we shall briefly describe themodelling idea. As

more people than before may be vaccinated against

influenza one might expect a decrease in the frequency

of influenza cases. Therefore, a first step in the data

analysis would be to check for the presence of a trend.

As can be seen in Figures 1 and 2 it is obvious that

influenza has a clear seasonal pattern. We model such

seasonal variations with a simple cosine function.

Usually the frequency of infections falls after cer-

tain peak is reached. Therefore, we include the auto-

regressive (AR) process in the model as well. The

partial ACF (PACF) will be used to define the order

of the AR process.

We eliminated those components from the data

step by step. First, we detrended and deseasonalized

the influenza observations. We then applied the AR

process to the resulting data and checked whether the
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residuals were uncorrelated and normally distributed.

As will be shown later, a more complicated model for

residuals was needed.

We estimated the proposed model on the basis of

the in-sample data, which consisted of observations

from the period 1992–2004 (676 observations). For
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Fig. 4. Autocorrelation function (ACF) (with 95% confidence intervals) of (a) influenza cases ; (b) logarithm of influenza

cases ; (c) residuals after trend and seasonal effects were eliminated ; (d ) partial ACF of residuals after trend and seasonal
effects were eliminated ; (e) ACF of residuals after removal of trend, seasonal effects, and AR(2) process ; ( f ) ACF of squared
residuals after removal of trend, seasonal effects, and AR(2) process.

Modelling and prediction of influenza 1661

https://doi.org/10.1017/S0950268808000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268808000307


validation of the proposed model we used the data

from 2005 (out-of-sample data).

MODEL

In this section we define our model for the influenza

observations.

We denote by X(t) the number of influenza in-

cidences observed at the time moment ts[0, O). We

decomposed – as this is a standard procedure – X(t)

into a mean component m(t), modelling the trend, and

a residual component e(t), modelling the fluctuations

around the trend in time:

X(t)=m(t)+e(t),

the mean m(t) is given by

m(t)=S(t)+
Xp

k=1

ak(X(txk)xS(txk)),

where S(t) is a deterministic seasonal function of time

given by

S(t)=a0+a1t+a2 cos (2p(txa3)=52),

with level a0, linear trend slope a1, amplitude a2 and

time shift a3. The function S(t) describes the (linear)

trend and the seasonality in data. One might also

consider the higher order (e.g. quadratic) trend;

however, the second-order function implies problems

with extrapolation for out-of-sample data. The coef-

ficient ak (k=1, …, p), is a parameter of the AR pro-

cess of order p (AR( p)).

The residuals of a model that fits the data well

should be a white noise. However, experience shows

that this is often not the case, i.e. we may need to

factorize the residual process into

e(t)=s(t)d(t),

where s(t) is a non-random (possibly) seasonal func-

tion. Assume that {d(t) : ts[0, O)} is a zero-mean

stationary Gaussian random process, which is inde-

pendent in time, or white noise. If the ACF of the

squared residuals exhibits seasonal variation, one can

model them in many different ways. One could use for

instance the following (rather general) function

s2(t)=b0+
XI

i=1

[bi cos (2ip t=52)+bi+1 sin (2ip t=52)]:

(1)

It might also be that the empirical variance or the

average variance can simply be enough to obtain the

white-noise residuals. In the next section we fit the

suggested model to the in-sample influenza data and

choose an appropriate model for the variance of re-

siduals. This additional step in the analysis helps us to

obtain the residuals, which are more or less white

noise.

Model fitting

First, we checked for linear trend in the considered

dataset, by simply regressing influenza cases on the

time variable. Intercept (2.728) and slope (x0.001)

values were both significant at the 1% level. This

presence of linear trend basically means that the

average number of influenza cases has decreased by

0.67 on a logarithmic scale, which corresponds to a

decrease of about 1.96 cases/100 000 per week.

In the proposedmodel, the linear trend and seasonal

component were estimated simultaneously. The par-

ameters of function S(t) were fitted using the NLINFIT

procedure in Matlab. All estimates were significant at

the 5% level and are reported in Table 2 (columns

1–4). The function S(t) fits the data reasonably well,

with R2=42%.

We then eliminated the trend and seasonal effects

from the data and evaluated the properties of the

resulting residuals. The residuals were normally dis-

tributed [P value=0.918 for the Kolmogorov–

Smirnov (KS) test] ; however, we still observed strong

significant autocorrelations (Fig. 4c). Admittedly, the

P value should be treated with care since the KS test is

designed for use with independent observations.

The PACF plot in Figure 4d clearly indicated a

need for – at least – an AR(2) process to explain the

remaining variation in the residuals. The parameters

of the AR(2) process (Table 2, columns 5 and 6) were

both significant at the 1% level. Naturally, the con-

stant of the AR(2) process was insignificant and

therefore excluded from the model. We modelled the

process both as AR(2) and AR(3). The AR(3) process

gave a better fit, however, the differences in the values

of coefficients were not great, and the mean square

Table 2. Estimates of parameters of the seasonal

function, the AR(2) process and the seasonal variance

function

a0 a1 a2 a3 a1 a2 b0 b2

2.668 x0.001 1.300 5.952 0.621 0.255 0.255 0.255
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error (MSE) differed by only <1%. Therefore, we

chose to model the data with an AR(2) process.

After the AR(2) process was fitted and eliminated,

residuals were close to normal (P=0.046 for KS test)

and not autocorrelated (see Fig. 4e) according to the

Box–Ljung test. Now the value of R2 has increased to

83%, indicating a good model fit.

As the ACF of the residuals is often insufficient to

check if all seasonal effects are removed, we plotted

the ACF of the squared residuals (Fig. 4f ). As that

plot shows, the residuals still exhibit seasonal vari-

ation, which should be modelled. The residuals con-

tain a seasonal component s(t)=s(t+52), which we

suggest to be modelled in the following way. We cal-

culated the weekly empirical variance by averaging

the values of the squared residuals of the particular

week over all years. Then we modelled it by the

function (1). First, we fitted a function with nine par-

ameters ; however, most of the parameters were

not significantly different from zero. We concluded

that the following function with only two parameters

describes well the seasonal behaviour of the variance:

s2(t)=b0+b2 sin (2p t=52):

The fitted parameters of this function are presented in

Table 2 (columns 7 and 8). For comparison, we also

used both the empirical weekly and the average em-

pirical variance in the model for the considered time-

series. The three variance functions are plotted in

Figure 5.

We observed that variations in the cold season are

considerably higher than those in the warm season.

This could possibly be explained by the low number

of influenza cases in the warm season.

We simulated 20 paths for each considered variance

function. The averages of the obtained mean square

simulation errors (MSSE) are presented in Table 3. As

expected, the smallest MSSE was obtained for the

fitted seasonal variance. In addition, we simulated the

path under the assumption that the residuals obtained

after eliminating trend, seasonal component and AR

process, are white noise. The MSSE in this case was

more than double that of the other MSSEs.

The ACFs of the final residuals for three considered

variance functions are shown in Figure 6(a–c). All

three plots show that the residuals are not auto-

correlated – as is confirmed by the non-significant

Box–Ljung statistics. Moreover, they are normally

distributed with an average around zero and a stan-

dard deviation (S.D.) around 1 (see Table 4). The hy-

pothesis about the homogeneity of weekly variances

was not rejected for the seasonal and empirical

variance functions while for the constant variance

function the homogeneity assumption was strongly

violated (Levene’s test statistic was significant at

the 1% level). The ACFs for squared residuals

(Fig. 6d–f ) clearly reflects the fact that seasonal vari-

ance is still present in the case of the constant variance

model. This illustrates the importance of seasonal

variance function in the model.

The residuals from the model with seasonal vari-

ance function have all the properties of a good model.

The next step is the validation of the suggested model

on the basis of the out-of-sample observations.

Model validation and prediction

We used 52 out-of-sample observations from 2005

for model validation. To validate the model, we
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Fig. 5. The empirical, constant (average), and fitted variance

functions.

Table 3. The average of three mean square simulation errors (MSSEs) for

considered variance functions

Seasonal

variance

Empirical

variance

Average

variance

White-noise

residuals

MSSE 0.0006 0.0007 0.0009 0.0021
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generated the one-week-ahead predictions for out-

of-sample observations. The prediction errors (the

differences between the observations and the pre-

dictions) turned out to be normally distributed

(P value=0.708 for KS test) with a mean value of

x0.123 and a standard deviation of 0.666, and not

autocorrelated. Figure 7 shows the observed and

predicted values for the out-of-sample period with

bands of 2 S.D. from the prediction (Fig. 7, solid line).

The standard deviation is calculated from the fitted
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variance function for each time-point. Only 8.0% of

observations were beyond these bands. For compari-

son, we drew the corresponding bands for the

empirical and average variances. In the case of the

empirical variance, 12% of all observations were

beyond the 2 S.D. interval. The corresponding number

for the case of average variance was 8%. The pro-

posed model had no observations beyond the 3 S.D.

interval, while 4% and 2% of observations were

outside the interval of 3 S.D. for the cases of empirical

and constant variances, respectively. Bearing in mind

the residuals analysis, we conclude that the considered

model performs well and therefore can generate re-

liable predictions.

We based the model validation on the prediction.

The one-week-ahead prediction was obtained from

the following equation:

X(t+1)=S(t+1)+a1
~XX(t)+a2

~XX(tx1),

where ~XX(t)=X(t)xS(t):

The three-weeks-ahead prediction, then, would be as

follows:

X(t+3)=S(t+3)+(a3
1+2a1a2) ~XX(t)

+(a2
1a2+a2

2)
~XX(tx1),

and so on.

DISCUSSION

In the paper we present a rather simple model, which

fits well the weekly influenza incidence data from

England and Wales. A quite standard way to analyse

seasonally varying time-series is decomposing them

into a seasonal component, a trend and an AR pro-

cess. The residuals obtained after eliminating these

components often do not reveal time dependency and

come from normal or close to normal distribution.

We suggest that conclusions should not be drawn

only on the basis of residuals and that one should

consider one more step – the analysis of squared re-

siduals.

We show that squared residuals can reveal the

presence of the remaining seasonal variation, which

is not exhibited by the analysis of residuals. The

modelling of such seasonal variations undoubtedly

improves model fit. In our paper we model the seas-

onal variance with a simple trigonometric function.

Although our method for estimating the variance

function may look somewhat ad hoc, it clearly dem-

onstrates the seasonality of data. Once the shape of

s2(t) becomes known, one can implement the maxi-

mum likelihood estimation procedure. In the case of

time-dependent residuals the weighted regression [12]

or even iteratively weighted regression [13] can be

performed.

The proposed model can relatively easily be gen-

eralized to the spatial case by choosing the best-fitting

spatial correlation function and incorporating it into

the model. However, we had only aggregated data

available.

There is an increasing concern about a human

pandemic strain of influenza A. Our model is not in-

tended to model the pandemic data. It is difficult to

assess such a model without the data. However, the

model with a stochastic regime-switching component,

where specification of parameters is set by the opinion

of experts, could be a reasonable choice.
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Standard

deviation P value
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