CENTRALISER NEAR-RING REPRESENTATIONS

by C. J. MAXSON and K. C. SMITH (Received 7th August 1980)

1. Introduction

Let V be a group, written additively but not necessarily abelian, and let S be a semigroup of endomorphisms of V. The set $C(S; V) = \{f: V \rightarrow V \mid f\sigma = \sigma f \text{ for all } \sigma \in S \text{ and } f(0)=0\}$ forms a zero-symmetric near-ring with identity under the operations of function addition and composition, called the *centraliser near-ring* determined by S and V. Centraliser near-rings are very general, for if N is any zero-symmetric near-ring with 1 then there exists a group V and a semigroup S of endomorphisms of V such that $N \simeq C(S; V)$.

In this paper all near-rings will be finite, zero-symmetric and have an identity element. For definitions and results concerning near-rings see Pilz [11].

The first centraliser near-ring representation result was given by Wielandt [13]. Here he announced the characterisation of finite simple near-rings as centraliser near-rings $C(\mathscr{A}; V)$ where \mathscr{A} is a group of fixed point free automorphisms of the group V. In 1973, Betsch [2] extended Wielandt's work to a class of infinite near-rings. Recently, there have been several investigations into the structure of centraliser near-rings. (See [6], [7], [8] and [9].) In [7] we established the following result.

Theorem 1.1. Let V be a finite group and \mathscr{A} a group of automorphisms of V. Then $C(\mathscr{A}; V)$ is simple if and only if the stabiliser subgroups, $\operatorname{stab}_{\mathscr{A}}(v) \equiv \{\alpha \in \mathscr{A} \mid \alpha v = v\}$, are conjugate for all $v \in V^* \equiv V - \{0\}$.

Our investigations in this paper are concerned with the following representation question. If N is a simple subnear-ring of $C(\{1\}); V)$, when is $N = C(\mathscr{A}; V)$ for some $\mathscr{A} \subseteq \operatorname{Aut} V$? Equivalently, let V be a near-ring module over the simple near-ring N and for $a \in N$ define $\lambda_a: V \to V$ by $\lambda_a v = av$, $v \in V$. Then N is isomorphic to $\overline{N} \equiv \{\lambda_a \mid a \in N\} \subseteq C(\{1\}; V)$, and we interpret a representation of N as a $C(\mathscr{A}; V)$ to mean a representation of \overline{N} .

This centraliser representation problem is the non-linear analogue of the following ring theory problem. Let V be an abelian group and let S be a simple subring of End V. When does there exist a ring R such that $S = \text{End}_R V$? A partial solution to this problem is a consequence of the Noether-Skolem Theorem [4], page 104, in the setting where End V is simple.

We now give a short summary of our results. In the next section we consider the general representation problem giving necessary and sufficient conditions for a centraliser near-ring representation of a simple near-ring N. In Section 3 we apply these

EMS-C

results to near-fields and fields where the representation problem is discussed under various situations.

2. Characterisation Theorems

In this section we give necessary and sufficient conditions on a simple near-ring N, $N \subseteq C(\{1\}; V)$, in order that $N = C(\mathcal{A}; V)$ for some $\mathcal{A} \subseteq \operatorname{Aut} V$.

Lemma 2.1. Let N be a simple subnear-ring of $C(\{1\}; V)$ and let $B = \operatorname{Aut}_N V$. If there exists $v_1, \ldots, v_t \in V$ such that $\{v_1, \ldots, v_t\} \subseteq \theta_B(v_1)$ where $\theta_B(v_1)$ is the orbit of V containing v_1 determined by the action of B on V, and $V = Nv_1 \cup \ldots \cup Nv_t$ (disjoint union) where each Nv_i is a faithful N-simple, N-subgroup of V, then C(B; V) is simple.

Proof. We show first that elements of Nv_i have the same B-stabiliser. Let v be a nonzero element in Nv_i . Since Nv_i is N-simple, $Nv = Nv_i$. If $\alpha \in \operatorname{stab}_B(v)$ then $\alpha(v) = v$ and $\alpha(Nv_i) = Nv_i$. Thus α restricted to Nv_i is an N-automorphism of Nv_i fixing v. Since Nv_i is N-simple α must be the identity map on Nv_i . From this, we conclude that $\operatorname{stab}_B v = \operatorname{stab}_B v_i$ for all $v \in Nv_i$.

Let $\theta_B(w)$ be any *B*-orbit. Since $w \in Nv_j$ for some *j*, then $w = nv_j$ for some $n \in N$. But each v_i belongs to the same *B*-orbit so $\alpha v_j = v_i$ for some $\alpha \in B$. Hence $\alpha w = \alpha nv_j = n\alpha v_j$ $= nv_i$. This means $\theta_B(w) \cap Nv_i \neq \emptyset$ for each *i*. Since all *B*-stabilisers of elements in $\theta_B(w)$ are conjugate and since $\theta_B(w)$ intersects every Nv_i then any two *B*-stabilisers are conjugate which implies that C(B; V) is simple.

This leads to the main characterisation result.

Theorem 2.1. Let N be a simple subnear-ring of $C(\{1\}; V)$, and let $B = \operatorname{Aut}_N V$. Then the following are equivalent.

- (1) $N = C(\mathcal{A}; V)$ for some $\mathcal{A} \subseteq \operatorname{Aut} V$.
- (2) N = C(B; V).
- (3) i. $V = Nv_1 \cup ... \cup Nv_t$ where each Nv_i is a faithful N-simple N-subgroup of V and each $v_i \in \theta_B(v_1)$.
 - ii. Let $S_1 = \operatorname{stab}_B(v_1)$, then Fix $S_1 \equiv \{v \in V \mid \alpha v = v \text{ for all } \alpha \in S_1\}$ is a subset of Nv_1 .

Part 3ii may be replaced by 3ii': Fix S_1 is N-simple.

Proof. If part (1) is true then $\mathscr{A} \subseteq B$ and so $C(B; V) \subseteq C(\mathscr{A}; V)$. But by definition of B, $N \subseteq C(B; V)$ and hence (1) implies (2).

If (2) is true then N = C(B; V) and N is simple. Select a nonzero $v \in V$ then $Nv = \{w \in V | \operatorname{stab}_B w = \operatorname{stab}_B v\} \cup \{0\}$. Because N = C(B; V) then N acts transitively on the nonzero elements of Nv (see [7]). Hence Nv is N-simple. Moreover there exist elements v_1, \ldots, v_t all in $\theta_B(v_1)$ such that $V = Nv_1 \cup \ldots \cup Nv_t$ and $Nv_1 = \operatorname{Fix} S_1$ (see [7]).

Assume (3) is true. Then Lemma 2.1 implies C(B; V) is simple. Hence Fix $S_1 = C(B; V)v_1$. We have $Nv_1 \subseteq C(B; V)v_1 = \text{Fix } S_1$, and by (3)ii (or (3)ii'), $Nv_1 = C(B; V)v_1$. But $C(B; V)v_1$ is the set of all possible images of v_1 under functions in C(B; V) and Nv_1

146

is the set of all possible images of v_1 under functions from N, and by assumption v_1, \ldots, v_t belong to the same B-orbit. So N = C(B; V) as desired. Since (2) implies (1) is obvious, the proof is complete.

In the following theorem we establish the existence of near-rings $C(\{1\}; V)$ which contain simple subnear-rings that are not centraliser representable on V.

Theorem 2.2. Let N be a simple near-ring. Then there exists an N-module V such that N has no representation as a centraliser near-ring on V.

Proof. It is shown in [5] that if V is a group and \mathscr{A} a group of automorphisms of V then $C(\mathscr{A}; V)$ is a simple ring if and only if $C(\mathscr{A}; V)$ is a field. Hence a simple ring which is not a field has no centraliser representation. If N is a field then Theorem 3.2 at the end of this paper applies. So we may assume N is a simple nonring.

From [2] we have the representation $N = C(\mathscr{A}; W)$ where \mathscr{A} is a group of automorphisms acting fixed point free on W. Let V = W + W, and for each $f \in N$ extend f to all of V by defining $f({}_{y}^{x}) = (f_{f(y)}^{(x)})$. In this way V is an N-module and we may regard N as a subnear-ring of $C(\{1\}; V)$. We will show that N has no centraliser representation on V.

Assume first that N is not a near-field. Then under the action of \mathscr{A} , W has at least two nonzero orbits. Let $w_1, w_2 \in W$ be nonzero elements belonging to different orbits. We have, as sets, $N\binom{w_1}{0} = \binom{Nw_1}{0}$ and $N\binom{w_1}{w_2} = N\binom{w_1}{0} + N\binom{0}{w_2} = \binom{Nw_1}{0} + \binom{0}{Nw_2} = \binom{Nw_1}{Nw_2}$. The cardinality $|\binom{Nw_1}{Nw_2}|$ of $N\binom{w_1}{w_2}$ is greater than the cardinality $|\binom{Nw_1}{0}|$ of $N\binom{w_1}{w_1}$, so N cannot be centraliser representable on V since part (3)i of Theorem 2.1 implies that |Nv| = |Nw| for nonzero v, $w \in V$.

or

$$f B(x) = B f(x);$$
$$f(\alpha_1 x + \alpha_2 y) = \alpha_1 f(x) + \alpha_2 f(y)$$

$$= f(\alpha_1 x + \alpha_2 y)$$

for every $x, y \in W$. But since α_1, α_2 are invertible this implies f acts linearly on W and $C(\mathscr{A}; W)$ is a field. Hence one of α_1, α_2 must be 0. Similarly for α_3, α_4 and B has the desired form.

It remains to show that $N \neq C(\operatorname{Aut}_N V; V)$. This is done by showing the latter is not simple. Let $\overline{\mathcal{A}} = \operatorname{Aut}_N V$ and let w be a nonzero element of W. Then $\operatorname{stab}_{\overline{\mathcal{A}}} {\binom{w}{0}} = \{ \begin{pmatrix} 1 & 0 \\ 0 & \beta \end{pmatrix} | \beta \in \mathcal{A} \}$ and $\operatorname{stab}_{\mathcal{A}} {\binom{w}{w}} = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \}$. Since these two stabiliser subgroups are not conjugates in $\overline{\mathcal{A}}$, $C(\overline{\mathcal{A}}; V)$ is not simple.

Turning now to near-fields N in $C(\{1\}; V)$, the characterisations as to when N is a centraliser near-ring on V appear tighter. We again fix some notation. As above let B

= Aut_N V and let $S_0 = \operatorname{stab}_B(v_0)$ for fixed nonzero v_0 in V. Also let Fix $S_0 = \{v \in V | \alpha v = v \text{ for each } \alpha \in S_0\}$ and $\mathcal{N}_0 = \operatorname{normaliser}$ of S_0 in B.

Corollary 2.1. Let N be a near-field in $C(\{1\}, V)$. The following are equivalent.

- (1) $N = C(\mathcal{A}; V)$ for some $\mathcal{A} \subseteq \operatorname{Aut} V$.
- (2) N = C(B; V).
- (3) B is transitive on V and Fix $S_0 \subseteq Nv_0$.
- (4) B is transitive on V and Fix S_0 is N-simple.
- (5) B is transitive on V and \mathcal{N}_0/S_0 is isomorphic to N^{*}.

Proof. That (1) is equivalent to (2) is clear. Assume N = C(B; V). Since N is a near-field, B is transitive on V (see [7]), and Fix $S_0 \subseteq Nv_0$ from Theorem 2.1. So (2) implies (3).

To show (3) implies (4), we note that the transitivity of B implies that C(B; V) is a near-field and so Fix $S_0 = C(B; V)v_0$. But then Fix $S_0 = Nv_0$. If H is a nonzero N-subgroup of Fix S_0 then for some $n \in N$, $nv_0 = h \in H$. But then $v_0 = n^{-1}h$ is in H and so $H = Nv_0 = \text{Fix } S_0$. Hence Fix S_0 is N-simple.

Assume (4) is true. Then by Theorem 2.1 N = C(B; V), and from [7] Theorem 3, $N \cong C(\mathcal{N}_0/S_0; \text{ Fix } S_0)$ where \mathcal{N}_0/S_0 acts fixed point free on Fix S_0 . But also $N \cong C(N^*; N)$ and by the isomorphism result of Ramakotaiah [12], $\mathcal{N}_0/S_0 \cong N^*$. So (4) implies (5).

If (5) holds then $N \subseteq C(B; V)$ with C(B; V) a near-field. If K = C(B; V) then $K^* \cong \mathcal{N}_0/S_0$ and thus $|N^*| \leq |K^*| \leq |\mathcal{N}_0/S_0| = |N^*|$. So N = K as desired.

If $N \subseteq C(\{1\}; V)$ is a near-field and if $\operatorname{Aut}_N V$ is transitive on V then $C(\operatorname{Aut}_N V; V)$ is a near-field containing N. The following example shows that N need not equal $C(\operatorname{Aut}_N V; V)$.

Example 2.2. Let N = D(5, 2, 3) be a Dickson near-field of order 5^6 with centre of order 5^2 . Then the field $N_1 = D(5, 3, 1)$ is a subnear-field of N of order 5^3 (see Dancs-Grove [3]). Let $V = \langle N, + \rangle$, the additive group of N (or of the Galois field $GF(5^6)$). The field N_1 acts on V by left multiplication so we may regard N_1 (and N) as subnear-rings of $C(\{1\}, V)$. Since $\operatorname{Aut}_{N_1} V$ contains $\{\rho_n: V \to V | \rho_n(v) = vn, n \in N, v \in V\}$, $\operatorname{Aut}_{N_1} V$ is transitive on V. We have $N_1 \subseteq C(\operatorname{Aut}_{N_1} V; V) \subseteq C(\operatorname{Aut}_N V; V) = N$ and since N_1 is a maximal subnear-field of N (Dancs-Grove [3]) then either $N_1 = C(\operatorname{Aut}_{N_1} V; V)$ or $N = C(\operatorname{Aut}_{N_1} V; V)$. We will show that the latter is true.

If $N_1 = C(\operatorname{Aut}_{N_1} V; V)$ then $\operatorname{Aut}_{N_1} V$ is not fixed point free on V since $|\operatorname{Aut}_{N_1} V| > |N_1|$. Thus there exists a $\Phi \in \operatorname{Aut}_{N_1} V$ such that $\Phi \neq 1$ and $\Phi(1) = 1$. We will show this is impossible.

Using the notation of Pilz [11], page 244, let g be a generator of the multiplicative cyclic group $GF(5^6)^*$ used in the construction of N. Let H be the subgroup of $GF(5^6)^*$ of index 3 generated by g^3 and let σ be the Galois automorphism of $GF(5^6)$ defined by $x \to x^{5^2}$. The cosets of H in $GF(5^6)^*$ are H, Hg, Hg^2 and the multiplication in N is defined in terms of the multiplication in $GF(5^6)$ by $a \circ b = a^{\sigma^i}b$ if $b \in Hg^i$ and $a \circ 0 = 0$.

148

If $\Phi \in \operatorname{Aut}_{N_1} V$ is as described above we will show that Φ is $GF(5^3)$ -linear on V as a vector space over $GF(5^3)$ and that $\Phi(Hg^i) = Hg^i$, i = 0, 1, 2.

Since V has dimension 2 over $GF(5^3)$ and since $g^3 \notin GF(5^3)$ then $\{1, g^3\}$ forms a basis for V. So every element in V has the form $\alpha 1 + \beta g^3$, $\alpha, \beta \in GF(5^3)$. But $\alpha 1 + \beta g^3 = \alpha \circ 1$ $+\beta \circ g^3$, $\alpha, \beta \in N_1$ since $\{1, g^3\} \subseteq H$. If $\delta \in N_1$ then

$$\delta \circ \Phi(\alpha \circ 1 + \beta \circ g^3) = \delta \circ (\alpha + \beta \circ \Phi(g^3)) = \delta^{\sigma^i}(\alpha + \beta \circ \Phi(g^3)) = \delta^{\sigma^i}(\alpha + \delta^{\sigma^i}(\beta \circ \Phi g^3))$$

where $\alpha + \beta \circ \Phi(g^3) \in Hg^i$. On the other hand

$$\begin{split} \delta \circ \Phi(\alpha \circ 1 + \beta \circ g^3) &= \Phi(\delta \circ (\alpha \circ 1 + \beta \circ g^3)) = \Phi(\delta^{\sigma'}(\alpha \circ 1 + \beta \circ g^3)) \\ &= \Phi(\delta^{\sigma'}\alpha 1 + \delta^{\sigma'}(\beta \circ g^3)) = \delta^{\sigma'}\alpha + \Phi(\delta^{\sigma'}\beta g^3) \\ &= \delta^{\sigma'}\alpha + \Phi((\delta^{\sigma'}\beta) \circ g^3) = \delta^{\sigma'}\alpha + \delta^{\sigma'}\beta \circ \Phi(g^3) \end{split}$$

where $\alpha \circ 1 + \beta \circ g^3 \in Hg^j$. Comparing the two results and using the fact that $\Phi(g^3) \notin N_1$ we conclude that if $\alpha \neq 0$ then $\delta^{\sigma^i} = \delta^{\sigma^j}$, and so $\sigma^i = \sigma^j$. This means Φ preserves Hg, Hg^2 and thus *H*. If $a \in N_1$, $v \in V$ then since Φ preserves cosets $\Phi(a \circ v) = \Phi(a^{\sigma^i}v)$ while $a \circ \Phi(v) = a^{\sigma^i} \Phi(v)$. So $a^{\sigma^i} \Phi(v) = \Phi(a^{\sigma^i}v)$ for all $a \in GF(5^3)$. Hence Φ is $GF(5^3)$ -linear on *V*.

To finish the example it suffices to show that the two dimensional vector space V (the additive group of $GF(F^6)$) over $GF(5^3)$ has no nontrivial one-to-one $GF(5^3)$ -linear maps Φ which preserve the cosets of H in $GF(5^3)^*$ and fix 1. This is done in the following lemma due to Martin R. Pettet.

Lemma 2.2. (M. R. Pettet) Let H be the subgroup of $GF(5^6)^*$ of index 3. If $\Phi:GF(5^6) \rightarrow GF(5^6)$ is a $GF(5^3)$ -linear group automorphism which preserves the cosets of H in $GF(5^6)^*$ and such that $\Phi(1)=1$, then $\Phi=1$.

Proof. Assume such a Φ exists with $\Phi \neq 1$. Then there exists such a Φ whose order is a prime p, i.e. $\Phi^p = 1$. Since $GF(5^3)^* \subseteq H$, $H \cup \{0\}$ is the union of 42 one dimensional $GF(5^3)$ -subspaces, one of which is $GF(5^3)$. Since Φ leaves $GF(5^3)$ fixed it permutes the other 41 subspaces in H. If Φ does not leave another subspace fixed then, since 41 is a prime, Φ permutes the 41 subspaces cyclically which means that p=41. But p=41 is impossible since 41 does not divide the order of $GL(V/GF(5^3))$, i.e. there is no $GF(5^3)$ automorphism of V of order 41. So Φ leaves $GF(5^3)$ and at least one other subspace in $H \cup \{0\}$ invariant. Hence Φ has two linearly independent eigenvectors, say $\{1, \alpha\}$ and the matrix of Φ with respect to this basis for V is $\binom{1}{0}c$, $c \in GF(5^3)^*$. Since $\Phi^p = 1$ then $c^p = 1$ and so p divides $|GF(5^3)^*| = 2^2.31$, hence p=2 or p=31. If p=31 then there would be 42 -31=11 fixed subspaces in $H \cup \{0\}$ resulting in too many distinct eigenvectors. Thus p=2 and the matrix of Φ is $\binom{1}{0} \binom{0}{-1}$.

Since Φ preserves the cosets of H this means that $a+b\alpha \equiv a-b\alpha \mod H$ for every $a, b \in GF(5^3)$, not both zero. The above is clearly true if b=0 so if $b\neq 0$ we have $(a+\alpha)(a-\alpha)^{-1} \in H$ for every $a \in GF(5^3)$. The map $a \rightarrow (a+\alpha)(a-\alpha)^{-1}$ from $GF(5^3)$ into H is one-to-one. Since there are 125 such elements $(a+\alpha)(a-\alpha)^{-1}$ in H and 42 $GF(5^3)$ -subspaces

in $H \cup \{0\}$ there is at least one subspace containing three elements of the form $(a+\alpha)(a-\alpha)^{-1}$, say $(a+\alpha)(a-\alpha)^{-1}$, $(b+\alpha)(b-\alpha)^{-1}$, $(c+\alpha)(c-\alpha)^{-1}$ where

$$(a+\alpha)(a-\alpha)^{-1} = f_1(b+\alpha)(b-\alpha)^{-1} = f_2(c+\alpha)(c-\alpha)^{-1},$$

a, b, c, f_1 , $f_2 \in GF(5^3)$, all distinct and $f_1 \neq 1 \neq f_2$. From the above we have

$$(f_1 - 1)\alpha^2 = (f_1 + 1)(a - b)\alpha + (f_1 - 1)ab$$

and

$$(f_2 - 1)\alpha^2 = (f_2 + 1)(a - c)\alpha + (f_2 - 1)ac$$

This gives two quadratic polynomials over $GF(5^3)$ having α as a root. Since $\alpha \notin GF(5^3)$ these two polynomials give rise to the same minimal polynomial. From this we have ab = ac, so b = c or a = 0. The latter is impossible since the polynomials are irreducible. But b = c is also impossible since $(b + \alpha)(b - \alpha)^{-1} \neq (c + \alpha)(c - \alpha)^{-1}$. This contradiction shows $\Phi = 1$ as desired.

3. Specialised actions and further examples

We now apply the characterisation theorem of the previous section to obtain results on specified actions of a near-ring N on an N-module V. Recall that when N is a nearfield, V is a near-vector space over N if $V = V_1 \oplus \cdots \oplus V_t$ where each V_i is an Nsubmodule of V and $V_i \cong N$ (see [1]).

Theorem 3.1. Let N be a near-field and V a near-vector space over N. Then $N = C(\mathcal{A}; V)$ for some $\mathcal{A} \subseteq \operatorname{Aut} V$.

Proof. From the results of Beidleman [1] it is easy to see that $\operatorname{Aut}_N V$ is transitive on V. Also if $v_1 \in V_1$, then for $S_1 = \operatorname{stab}(v_1)$ we have $\operatorname{Fix} S_1 = V_1 = Nv_1$. Thus by Theorem 2.1, $N = C(\mathscr{A}; V)$ as desired.

Corollary 3.1. Let F be a field, $F \subseteq C(\{1\}, V)$. If F acts linearly on V then $F = C(\mathscr{A}; V)$ for some $\mathscr{A} \subseteq \text{Aut } V$.

Proof. If F acts linearly on V then V is a vector space over F and the theorem applies.

Corollary 3.2. Let F be a field and let V be a monogenic near-ring module over F. Then $F = C(\mathscr{A}; V)$ for some $\mathscr{A} \subseteq \operatorname{Aut} V$.

Proof. Let $V = Fv_0$. Then for $h \in F$, $w, u \in V$ we have $w = fv_0$, $u = gv_0$ for some $f, g \in F$ and $h(w+u) = h(fv_0 + gv_0) = h(f+g)v_0 = (hf+hg)v_0 = hw + hu$. Thus F acts linearly on V and Corollary 3.1 applies.

Corollary 3.3. Let F be a field acting on V. Then $F \subseteq C(B; V)$ where $B = \operatorname{Aut}_F V$. If B is a p-group acting transitively on V then F = C(B; V).

Proof. From Passman [10], page 34, either B is a cyclic group or else $|V| = 3^2$. If B is cyclic, then from Maxson and Smith [6], B acts fixed point free on V and C(B; V) is a field. Since V is C(B; V)-monogenic, C(B; V) acts linearly on V and thus so does F. Hence F = C(B; V).

Suppose $|V| = 3^2$, and let $v_0 \in V^*$. If $S = \operatorname{stab} v_0$, we have Fix $S = C(B; V)v_0$ and since $|\operatorname{Fix} S|$ divides $|V^*| = 3^2 - 1$ then $|\operatorname{Fix} S| = 3^l - 1$ where l = 1 or 2. If l = 1 then |C(B; V)| = 3 and C(B; V) = GF(3) acts linearly on V. If l = 2, V is C(B; V)-monogenic and again F acts linearly on V so F = C(B; V) as desired.

From the above corollaries it is natural to conjecture that for a field F acting on V, $F = C(\mathcal{A}; V)$ implies V is a vector space over F. This is false, however, as the next example, due to S. Gagola, provides a field acting non-linearly on V but $F = C(\mathcal{A}; V)$.

Example 3.1. Let $V = GF(p^4)$, where p is a prime different from 3 and let σ be the Galois automorphism $x \to x^p$ of $GF(p^4)$. For $a \in GF(p^4)^*$ and i = 0, 1, 2, 3 define the maps $T_{a,\sigma^i} : V \to V$ by $T_{a,\sigma^i} v = av^{\sigma^i}$. It is easy to verify that $\mathscr{F} = \{T_{a,\sigma^i} | a \in GF(p^4)^*, i = 0, 1, 2, 3\}$ is a group of automorphisms of V. Let

$$\mathscr{A} = \{T_{a,\sigma^i} | \text{ if } a \text{ is a square in } GF(p^4)^*$$

then i=0, 2 while if a is not a square then i=1, 3,

a subgroup of \mathscr{F} . Since \mathscr{A} is a transitive automorphism group then $C(\mathscr{A}; V)$ is a nearfield. Also $S \equiv \operatorname{stab}(1) = \{T_{1,\sigma^i} | i=0,2\}$ and Fix $S = GF(p^2) \subset V = GF(p^4)$. If N(S) is the normaliser of S in \mathscr{A} then it is easy to verify that $N(S)/S \cong GF(p^2)^*$. Thus $C(\mathscr{A}; V) \cong GF(p^2)$.

We now show that the field $C(\mathscr{A}; V)$ does not act linearly on V. Suppose $f \in C(\mathscr{A}; V)$. Then $fT_{a,\sigma^i} = T_{a,\sigma^i}f$ implies $f(a) = af(1)^{\sigma^i}$. If a is a square then f(a) = af(1), while if a is not a square then $f(a) = af(1)^{\sigma}$. Thus f is completely determined by its action on 1. Since $1 \in Fix S$ we have $f(1) \in Fix S$. Now suppose $f \in C(\mathscr{A}; V)$ acts linearly on V. Suppose $b \in V$ is not a square. Consider 1 + b. If 1 + b is a square then f(1+b)=(1+b)f(1)=f(1)+bf(1), while $f(1)+f(b)=f(1)+bf(1)^{\sigma}$. Comparing the two results gives $f(1)^{\sigma} = f(1)$, or $f(1) \in GF(p)$. If 1+b is not a square then $f(1+b)=(1+b)f(1)^{\sigma} = f(1)^{\sigma}$ $+ bf(1)^{\sigma}$, while $f(1)+f(b)=f(1)+bf(1)^{\sigma}$. Again $f(1) \in GF(p)$. Hence $f \in C(\mathscr{A}; V)$ is linear on V if and only if $f(1) \in GF(p)$. Therefore the field $C(\mathscr{A}; V)$ does not act linearly on V.

We conclude by defining a class of actions of a field F on a vector space V that cannot give rise to centraliser near-rings. But first a lemma from linear algebra.

Lemma 3.1. (S. Gagola) Let V be a finite dimensional vector space over a finite field F, and let W, Y be proper subspaces of V. If F = GF(2), assume one of W and Y is not a maximal subspace. Then there is a basis B of V such that $B \subseteq V - (W \cup Y)$.

Proof. If F = GF(2) we may assume one of W and Y is maximal, while if $F \neq GF(2)$ we may assume that W and Y are both maximal. If W = Y (or if $Y \subset W$ in the case F = GF(2)) let $v \in V - (W \cup Y)$ and let w_1, \ldots, w_{n-1} be a basis for W. Then $B = \{v, v + w_1, \ldots, v + w_{n-1}\}$ is a basis for V contained in $V - (W \cup Y)$ as desired.

If $W \neq Y$, then dim $V + \dim(W \cap Y) = \dim W + \dim Y$. If $F \neq GF(2)$ then $n + \dim(W \cap Y) = 2(n-1)$ or dim $(W \cap Y) = n-2$. Let w_1, \ldots, w_{n-2} be a basis for $W \cap Y$. Select $w_{n-1} \in W$, $y \in Y$ such that $\{w_1, \ldots, w_{n-2}, w_{n-1}\}$ is a basis for W and $\{w_1, \ldots, w_{n-2}, y\}$ is a basis for Y. Let $v = w_{n-1} + y$, an element of $V - (W \cap Y)$. Let $a \in F^*$, $a \neq 1$, then $B = \{v + w_1, \ldots, v + w_{n-2}, w_{n-1} + y\}$ is a basis for V of the desired type.

If F = GF(2) then we may assume dim W = n-1, dim Y = n-2 and $Y \notin W$. Let $\{w_1, \ldots, w_{n-2}\}$ be a basis for $W \cap Y$, $\{w_1, \ldots, w_{n-2}, w_{n-1}\}$ be a basis for W, and $\{w_1, \ldots, w_{n-3}, y\}$ be a basis for Y. If $v = w_{n-1} + y$, then $B = \{v + w_1, \ldots, v + w_{n-3}, v + w_{n-2}, w_{n-2} + y, w_{n-2} + y\}$ is a basis of the desired type.

As an application of this lemma, let V be a vector space over the field F and suppose the function $f: V \to V$ is linear off a proper subspace W of V, i.e. $f(v_1 + v_2) = f(v_1) + f(v_2)$ whenever $v_1, v_2 \in V - W$. If $f\alpha = \alpha f$ for some $\alpha \in \text{Aut } V$ let $Y = \overline{\alpha}^1 W$. From the above lemma there is a basis B for V outside of $W \cup Y$, say $B = \{v_1, \dots, v_n\}$. Let $\beta \in \text{Aut } V$ be such that $\beta(x) = f(x)$ for each $x \in V - W$. For $i = 1, 2, \dots, n$ we have

$$\alpha\beta(v_i) = \alpha f(v_i) = f\alpha(v_i) = \beta\alpha(v_i)$$

since $\alpha(v_i) \notin W \cup Y$. This means $\alpha \beta = \beta \alpha$.

To fix the setting for the next theorem let V be a vector space over a nonprime field F with scalar multiplication given by (a, v) = av, $a \in F$, $v \in V$. Let W be a nonzero proper subspace of V and let σ be an automorphism of F, $\sigma \neq 1$. We define another action $*: F \times V \rightarrow V$ by

$$a * v = \begin{cases} av, v \in W \\ a^{\sigma}v, v \in W. \end{cases}$$

This gives rise to a subfield \overline{F} of $C(\{1\}; V)$ where $\overline{F} = \{f_a: V \to V \mid f_a v = a * v\}$. Each $f_a \in \overline{F}$ is linear off W and by the above remarks each $\alpha \in \operatorname{Aut}_F V$ commutes with the linear maps $\{\lambda_a: V \to V \mid \lambda_a v = av, a \in F, v \in V\}$. So each $\alpha \in \operatorname{Aut}_F V$ is F-linear, meaning $C(\operatorname{Aut}_F V; V)$ contains $\{\lambda_a \mid a \in F\}$. This establishes the following theorem.

Theorem 3.2. Let F, \overline{F} , and V be as in the above discussion. Then $\overline{F} \neq C(\mathscr{A}; V)$ for any $\mathscr{A} \subseteq \operatorname{Aut} V$.

REFERENCES

1. J. C. BEIDLEMAN, On Near-rings and Near-ring Modules (Doctoral Dissertation, Penn. State Univ., 1964).

2. G. BETSCH, Primitive near-rings, Math. Z. 130 (1973), 351-361.

3. S. DANCS-GROVE, Locally finite near-fields, Abh. Math. Sem. Univ. Hamburg 48 (1979), 89-107.

4. I. HERSTEIN, Noncommutative Rings (Carus Monograph 15 MAA, John Wiley and Sons, N.Y., 1965).

5. C. MAXSON, M. PETTET and K. SMITH, On semisimple rings that are centralizer near-rings, *Pacific J. Math.* (to appear).

6. C. MAXSON and K. SMITH, The centralizer of a group automorphism, J. Alg. 54 (1978), 27-34.

7. C. MAXSON and K. SMITH, The centralizer of a set of group automorphisms, Comm. in Alg. 8 (1980), 211-230.

8. C. MAXSON and K. SMITH, Centralizer near-rings that are endomorphism rings, Proc. Amer. Math. Soc. 80 (1980), 189–195.

9. J. MELDRUM and A. OSWALD, Near-rings of mappings, Proc. Royal Soc. Edinburgh 83A (1978), 213–223.

10. D. PASSMAN, Permutation Groups (W. A. Benjamin, N.Y., 1968).

11. G. Pilz, Near-rings (North-Holland, New York, 1977).

12. D. RAMAKOTAIAH, Isomorphisms of near-rings of transformations, J. London Math. Soc. (2) 9 (1974), 272-278.

13. H. WIELANDT, Über Bereiche aus Gruppenabbildungen, Deutsche Mathematik 3 (1938), 9-10.

DEPARTMENT OF MATHEMATICS TEXAS A & M UNIVERSITY COLLEGE STATION TEXAS 77843 U.S.A.