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Iterated Galois towers, their associated martingales,

and the p-adic Mandelbrot set

Rafe Jones

Abstract

We study the Galois tower generated by iterates of a quadratic polynomial f defined over
an arbitrary field. One question of interest is to find the proportion an of elements at
level n that fix at least one root; in the global field case these correspond to unramified
primes in the base field that have a divisor at level n of residue class degree one. We thus
define a stochastic process associated to the tower that encodes root-fixing information at
each level. We develop a uniqueness result for certain permutation groups, and use this
to show that for many f each level of the tower contains a certain central involution. It
follows that the associated stochastic process is a martingale, and convergence theorems
then allow us to establish a criterion for showing that an tends to 0. As an application,
we study the dynamics of the family x2 + c ∈ Fp[x], and this in turn is used to establish
a basic property of the p-adic Mandelbrot set.

1. Introduction

Let L be a field and f ∈ L[x]. Denote by f◦n the nth iterate of f , that is f◦1 = f and f◦n = f ◦f◦n−1

for n � 2. Let Ln(f) be the splitting field over L of f◦n, and letGn(f) = Gal (Ln(f)/L). The profinite
group G(f) = lim←−Gn(f) remains rather mysterious in general, having been studied broadly only by
Odoni [Odo85a]. Even the case of f quadratic remains largely unresolved, although some progress
has been made [Odo85a, Odo85b, Odo88, Sto92]. In this article we use tools from the theory of
stochastic processes to study properties of G(f) that have arithmetic applications.

The construction is as follows. Given any field L and a collection F of separable polynomials
f1, f2, . . . in L[x], denote by L(fn) the splitting field of fn over L, and let G(fn) = Gal (L(fn)/L).
Suppose that L(fn) ⊇ L(fn−1) for all n � 2, and let G(F) = lim←−G(fn). Take P to be the Haar
measure on G(F) with P(G(F)) = 1, and ψn to be the natural projection G(F) → G(fn). We
define random variables on G(F) by setting Xn(g) to be the number of roots of fn fixed by ψn(g).
It follows that

P(Xn > 0) =
1

#G(fn)
·#{g ∈ G(fn) : g fixes at least one root of fn}. (1)

Recall that a stochastic process is simply an infinite collection of random variables defined on a
common probability space. We refer to the random variables in (1) as the Galois process of F and
denote it by GP(F). In the case f ∈ L[x] and F = {f, f◦2, f◦3, . . . }, we write GP(f) instead of
GP(F) and Gn(f) instead of G(f◦n). To state our main result on Galois processes, we require the
following definition.
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Iterated Galois towers

Definition 1.1. A stochastic process X1,X2, . . . taking values in Z is a martingale if for all n � 2
and any ti ∈ Z,

E(Xn | X1 = t1,X2 = t2, . . . ,Xn−1 = tn−1) = tn−1,

provided that P(X1 = t1,X2 = t2, . . . ,Xn−1 = tn−1) > 0.

We also define the adjusted forward orbit of a point l ∈ L under a polynomial f ∈ L[x] with
leading coefficient a to be the set {−af (l)} ∪ {f◦n(l) : n = 2, 3, . . . }.
Theorem 1.2. Let L be a field of characteristic different from 2, take f ∈ L[x] of degree two, and
suppose that the adjusted forward orbit of the unique finite critical point of f contains no squares.
Then GP(f) is a martingale.

Remark. Theorem 1.2 (and also Theorem 1.3) are true as long as, for all n, f◦n is separable and
irreducible and Disc f◦n is not a square. The hypothesis regarding the critical point ensures this
in characteristic different from 2 (see Lemma 4.10) and is easy to check. A version of Theorem 1.2
(allowing the process to begin with Xk for a suitable k � 1) should remain true if one allows
Disc f◦n to be a square for finitely many n and f◦n to be reducible with a number of irreducible
factors bounded independently of n.

To prove Theorem 1.2 we develop a uniqueness result on sets of fibers for certain morphisms
of Gn(f)-sets, where f satisfies the conditions of Theorem 1.2. This uniqueness property is used
to show that for each n a certain involution must lie in the center of Gn(f). The presence of this
involution leads to the proof of Theorem 1.2.

If the hypotheses of Theorem 1.2 are verified, a basic martingale convergence theorem yields

P({g ∈ G(f) : X1(g),X2(g), . . . is eventually constant}) = 1.

Let f satisfy the hypotheses of Theorem 1.2, let Ln(f) be the splitting field of the nth iterate
of f , and let Hn(f) = Gal (Ln(f)/Ln−1(f)). Then Hn(f) ∼= (Z/2Z)m for some 0 � m � 2n−1, and
we call Hn(f) maximal if m = 2n−1. We show that if Hn(f) is maximal, then for any u > 0
and m < n, we have

P(Xn = u | Xn−1 = u, . . . ,Xm = u) � 1
2 ,

provided P(Xn−1 = u, . . . ,Xm = u) > 0. This immediately gives the following theorem.

Theorem 1.3. Let L be a field of characteristic different from 2, take f ∈ L[x] of degree two, and
suppose that the adjusted forward orbit of the unique finite critical point of f contains no squares.
Suppose also that Hn(f) is maximal for infinitely many n. Then GP(f) converges to 0, i.e.

lim
n→∞P(Xn = 0) = 1.

As an application of Theorem 1.3, we establish a basic property of the p-adic Mandelbrot set.
This requires the development of some background. Given a field K and an absolute value | · | on K,
we define the Mandelbrot set of K to be

M(K) = {c ∈ K : 0 has bounded orbit under iteration of x2 + c}, (2)

where we mean bounded with respect to | · |.
We consider a subset of M(K) that is motivated by the well-known case K = C. Recall that

φ ∈ C(z) is said to be hyperbolic if each critical point of φ tends to an attracting cycle under
iteration [McM94]. We therefore define the hyperbolic Mandelbrot set to be

H(K) = {c ∈M(K) : 0 tends to a formally attracting cycle under iteration of x2 + c}, (3)
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where by a formally attracting cycle of f(x) = x2 +c we mean that |f ′| < 1 at all points of the cycle
(see § 2 for more detailed definitions). When the topology on K induced by |·| gives rise to nontrivial
geometry, e.g. K = C and K = Cp, a formally attracting cycle is also geometrically attracting. We
may decompose H(K) into a disjoint union of open components H(K)(i) corresponding to c where 0
tends to a formally attracting i-cycle. In the complex case these components form some of the most
visible features of M(C). For instance,H(C)(1) is the main cardioid, andH(C)(2) is the circle tangent
to the cardioid on the real axis. Conjecturally, H(C) is the interior of M(C); this is the simplest
case of the celebrated conjecture that hyperbolic rational maps are open and dense in the space
of rational maps of given degree [McM94]. Moreover, both sets are Lebesgue measurable and the
measure of H(C) exceeds 1.503 while the measure of M(C) is less than 1.562 (see [FH93]).

We consider the size of H(K) relative to M(K) for K = Cp, the smallest complete, algebraically
closed extension of Qp. The set M(Cp) proves far less topologically interesting than M(C), as M(Cp)
is just the closed unit disk Op in Cp. However, H(Cp) is not so simple. Letting φ : Op → Fp be the
reduction homomorphism, we show H(Cp) = φ−1(H(Fp)) for p �= 2. Note that since Fp admits only
the trivial absolute value, we have

H(Fp) = {c ∈ Fp : 0 is periodic under iteration of x2 + c},
provided that p �= 2. Given C ⊆ Fp, we define its density to be

D(C) = lim
s→1+

∑
α∈C(degα)−1N(α)−s∑
α∈Fp

(degα)−1N(α)−s
, (4)

where degα = [Fp(α) : Fp], and N(α) = pdeg α. In a natural sense, D(H(Fp)) measures the density
of H(Cp). We use Theorem 1.3 to prove the following.

Theorem 1.4. For p �= 2, D(H(Fp)) = 0.

In the case p = 2, it is trivial to show H(Fp) = Fp, as all points are critical. We remark that
there is another notion of density given by δ(C) = limk→∞(#C ∩ Fpk/pk). When δ(C) exists, then
so does D(C) and the two are equal; however, there are sets C for which D(C) exists and δ(C) does
not. It is a consequence of Conjecture 6.7 that δ(H(Fp)) = 0 for p �= 2, and this can be proven
unconditionally if p ≡ 3 (mod 4) (see the discussion following Conjecture 6.7).

To prove Theorem 1.4, we put fc = x2 + c and f−◦n
c (0) = {b ∈ Fp : f◦nc (b) = 0}, and introduce

sets
In = {c ∈ Fp : f−◦n

c (0) ∩ Fp(c) �= ∅}. (5)
We show that In ⊇ In+1 for all n � 1 and H(Fp) =

⋂
n�1 In. It follows that if D(In) exists for all

n and limn→∞D(In) = 0, then D(H(Fp)) = 0. We then use the Tchebotarev density theorem for
function fields to show the following.

Theorem 1.5. Set L = Fp(t) (p �= 2), f = x2 + t ∈ L[x], and let Ln(f) be the splitting field over L
of f◦n, the nth iterate of f . Put Gn(f) = Gal (Ln(f)/L), and let In be as in (5). Then

D(In) =
1

#Gn(f)
·#{g ∈ Gn(f) : g fixes at least one root of f◦n}.

We end with an analysis of the Galois groups of iterates of f = x2 + t over L = k(t), where k
is a field of characteristic different from 2 and t is transcendental over k (cf. [Odo88, Sto92]). We
prove that Gn(f) is maximal when n is squarefree, and Theorem 1.3 applies to show Theorem 1.4.

The layout of the article follows the order in which the original work was done. In §§ 2 and 3 we
give background on dynamics and Cp and prove Theorem 1.5. In § 4 we introduce Galois processes
and prove Theorem 1.2. In § 5 we prove Theorem 1.3 and discuss the behavior of GP(f) when Gn(f)
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is maximal for all n. In § 6 we analyze the Galois groups of iterates of x2 + t and obtain the proof
of Theorem 1.4.

2. Background on dynamics and Cp

Let K be a field and | · | an absolute value on K. Let R ∈ K(x). We recall that an n-cycle of R is a
collection of distinct points c1, . . . , cn such that R(ci) = ci+1 for 1 � i � n− 1 and R(cn) = c1. We
refer to any point c in a cycle as periodic under R, and if c is contained in an n-cycle we say that c
has period n. A cycle c1, . . . , cn is formally attracting if |(R◦n)′(ci)| < 1 for any i (equivalently, for
all i). We use this terminology rather than the more geometrically suggestive ‘attracting’ since we
wish to work with fields where there is no nontrivial topology. We say that a point b ∈ K tends to
the cycle c1, . . . , cn under iteration of R if given ε > 0, there exists M such that m � M implies
that |R◦nm+i(b)− ci| < ε for i = 1, 2, . . . , n, up to a relabeling of the ci.

Let c ∈ K and put fc = x2 + c. Recall from (2) and (3) the definitions of the Mandelbrot set and
hyperbolic Mandelbrot set of K. We consider the case K = Cp, where Cp is the smallest complete,
algebraically closed extension of Qp. We use two principal properties of Cp; see [Rob00] for details.
First, there is a natural (non-archimedean) absolute value | · | on Cp that extends the p-adic absolute
value on Qp. Second, let Op = {c ∈ Cp : |c| � 1} and mp = {c ∈ Cp : |c| < 1}, and note that Op is a
subring of Cp and mp its unique maximal ideal. Moreover, the quotient Op/mp is isomorphic to Fp,
the algebraic closure of the finite field with p elements. Denote the natural quotient homomorphism
Op → Fp by φ. We call φ the reduction homomorphism.

Proposition 2.1. Let K be a field and | · | a non-archimedean absolute value on K. Then M(K) =
{c ∈ K : |c| � 1}. In particular, M(Cp) = Op for all primes p.

Proof. Let fc = x2 + c, and suppose |c| > 1. A consequence of the strong triangle inequality
is that if |x| �= |y|, then |x + y| = max{|x|, |y|}. Using this, one easily shows by induction that
|f◦nc (0)| = |c|2n−1

, whence c �∈M(K). On the other hand, if |c| � 1, it follows immediately from the
strong triangle inequality that |f◦nc (0)| � 1 for all n, showing c ∈M(K).

When p = 2 and K = Cp, all cycles of fc contained in Op are attracting. Since fc has good
reduction, it follows that cycles of fφ(c) lift to cycles of fc (contained in Op) and also that if
b ≡ a mod mp and a is in an attracting cycle, then b tends to this cycle [Riv01, Proposition 4.32].
The orbit of 0 under fφ(c) is finite and thus is periodic after a certain point, implying that 0 tends
to an attracting cycle in Cp. Hence, H(Cp) = Op, and clearly also H(Fp) = Fp. For the remainder
of this article we assume that p �= 2.

We wish to give a characterization of H(Cp) via the reduction homomorphism. First we make a
few remarks on H(K) when K = Fp. Since F

∗
p consists of roots of unity, the only absolute value K

admits is trivial: |c| = 1 for all c ∈ K∗. Under the trivial absolute value, c ∈ K tends to a formally
attracting cycle if and only if c is, in fact, contained in a formally attracting cycle. For general K,
we easily derive from the chain rule that c1, . . . , cn is a formally attracting cycle of R ∈ K(x) if and
only if

n∏
i=1

|R′(ci)| < 1. (6)

In the case K = Fp, it follows that a cycle is formally attracting if and only if it contains a critical
point. These observations show that

H(Fp) = {c ∈ Fp : 0 is periodic under iteration of x2 + c}.
1111
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We now give the promised characterization of H(Cp). This is a consequence of [Riv01, Proposi-
tion 4.32], but in our case the following more direct argument suffices.

Proposition 2.2. Let φ : Op → Fp be the reduction homomorphism. Then H(Cp) = φ−1(H(Fp)).

Proof. Suppose first that c ∈ H(Cp), so that 0 tends to the formally attracting cycle c1, . . . , cn
under iteration of fc = x2 + c. Since p �= 2, it follows from (6) that we must have |ci| < 1 for some
i, whence φ(ci) = 0. Since the forward orbit of 0 has points arbitrarily close to ci in Cp, we have
that 0 is periodic under iteration of x2 + φ(c), whence φ(c) ∈ H(Fp).

Now suppose that 0 is periodic of period n under x2+φ(c). Then f◦nφ(c) fixes 0, whence |f◦nc (0)| � 1.
Note that f◦nc is a polynomial in x2 with coefficients in Op, and since |f◦nc (0)| � 1, it follows by
induction that |f◦inc (0)| � |f◦nc (0)| for all i � 1. Now since f◦nc is a polynomial in x2, we have
(f◦nc (x) − x)′(0) = −1, so we can apply Hensel’s lemma to obtain a fixed point d of f◦nc with
|d| < 1. Consider g(x, y) = (f◦nc (x) − f◦nc (y))/(x − y), which is a polynomial with coefficients
in Op and without a constant term, since g is divisible by x + y. Thus, for |a|, |b| < 1 we have
|g(a, b)| � max{|a|, |b|}. Taking m � 1, a = f

◦(m−1)n
c (0), and b = f

◦(m−1)n
c (d) = d, we have

|f◦mnc (0) − d| � |f◦(m−1)n
c (0)− d| ·max{|f◦(m−1)n

c (0)|, |d|}.
Repeating this m − 2 times, it follows that |f◦mnc (0) − d| < |d| · ∏m−1

i=1 max{|f◦inc (0)|, |d|}. By
the remark at the beginning of this paragraph, the right-hand side of this expression is at most
|d| · (max{|f◦nc (0)|, |d|})m−1 . Thus, f◦mnc (0) tends to d as m grows. Now d is a fixed point of f◦nc
and thus belongs to a cycle of fc; moreover, this cycle is attracting since f◦nc being a polynomial in
x2 implies |(f◦nc )′(d)| � |d| < 1. Given ε > 0, the continuity of fc allows us to choose δ > 0 such
that |x − d| < δ implies |f◦ic (x) − f◦ic (d)| < ε for all i with 1 � i � n. Thus, for m large enough,
|f◦mn+i
c (0)− f◦ic (d)| < ε for all i with 1 � i � n. Therefore, the orbit of 0 under fc converges to the

attracting cycle containing d, proving that c ∈ H(Cp).

We discussed in § 1 the decomposition of H(K) into a disjoint union of open components H(K)(i)

corresponding to c where 0 tends to a formally attracting i-cycle. In the case K = Cp, these
components are unions of open disks with radius 1. For instance, fc has a formally attracting fixed
point if and only if fc(x) − x = x2 − x + c has a root in mp. A quick exercise in Newton polygons
shows that this happens if and only if c ∈ mp, i.e. φ(c) = 0 where φ is the reduction homomorphism.
Thus, H(Cp)(1) = φ−1(0). A similar analysis shows that fc has a formally attracting two-cycle if
and only if φ(c) = −1.

3. Applying the Tchebotarev density theorem

In order to prove Theorem 1.4, our overall strategy is to give an upper bound for D(H(Fp)) and show
that this upper bound is zero. In this section we prove Theorem 1.5, which uses the Tchebotarev
density theorem for function fields to give a practical method for computing the upper bound.

Let fc = x2 + c, and note that for c ∈ Fp, the forward orbit {f◦nc (0) : n = 1, 2, . . . } of 0 is
contained in Fp(c). Clearly 0 is periodic if and only if its backward orbit has points in common with
its forward orbit. We thus let f−◦n

c (0) = {b ∈ Fp : f◦nc (b) = 0}, and consider the sets

In = {c ∈ Fp : f−◦n
c (0) ∩ Fp(c) �= ∅}.

as defined in (5). These sets are useful because they furnish successively better ‘approximations’ of
H(Fp), as we now show.

Proposition 3.1. For each n � 1, we have In ⊇ In+1. Moreover, H(Fp) =
⋂
n�1 In.
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Proof. Let c ∈ In+1, and take b ∈ Fp(c) such that f◦n+1
c (b) = 0. Then f◦nc (fc(b)) = 0 and fc(b) ∈

Fp(c), whence c ∈ In. To show the second statement, let c ∈ H(Fp), let f◦mc (0) = 0, and take n � 1.
Write n = im− j for some 0 < j � m, and note that

f◦nc (f◦jc (0)) = f◦imc (0) = 0.

Clearly f◦jc (0) ∈ Fp(c), showing that f−◦n
c (0) ∩ Fp(c) �= ∅. Since n was arbitrary, this shows c ∈⋂

n�1 In. Now suppose c ∈ ⋂
n�1 In, and for each n, let bn ∈ f−◦n

c (0)∩Fp(c). The finiteness of Fp(c)
implies we must have bn1 = bn2 for some n1 < n2. Therefore,

f◦n2−n1
c (0) = f◦n2−n1

c (f◦n1
c (bn1)) = f◦n2

c (bn1) = f◦n2
c (bn2) = 0.

Hence, c ∈ H(Fp).

Recall the definition of the density of C ⊆ Fp given in (4). The following proposition gives a
method for showing D(H(Fp)) = 0 using only information about D(In).
Proposition 3.2. Suppose that D(In) exists for all n and limn→∞D(In) = 0. Then D(H(Fp))
exists and equals zero.

Proof. Given C ⊆ Fp, define

aC(s) =
∑

α∈C(degα)−1N(α)−s∑
α∈Fp

(degα)−1N(α)−s
.

Since H(Fp) ⊆ In for all n, we have aH(Fp)(s) � aIn(s) for s > 1. Taking lim sups and using the
assumption that D(In) exists gives

lim sup
s→1+

aH(Fp)(s) � lim sup
s→1+

aIn(s) = lim
s→1+

aIn(s) = D(In).

Since limn→∞D(In) = 0 and aH(Fp)(s) � 0 for s > 1, it follows that lim sups→1+ aH(Fp)(s) = 0.
Therefore, lims→1+ aH(Fp)(s) = 0, proving that D(H(Fp)) = 0.

We now wish to use the Tchebotarev density theorem for function fields to prove Theorem 1.5,
which shows that D(In) exists and gives a method for computing it. To do this, we must relate
D(In) to the density of a set of primes in Fp[t].

Let P be the collection of primes in Fp[t]. By the density of a set S of primes of Fp[t], we mean

D(S) = lim
s→1+

∑
p∈S Np−s∑
p∈P Np−s

, (7)

where Np = pdeg p. Recall from (5) the definition of In, and note that f−◦n
c (0) ∩ Fp(c) �= ∅ is

equivalent to the factorization of f◦nc (x) over Fp(c) having a linear factor. This, in turn, is equivalent
to f◦nt (x) having a linear factor modulo (πc), where πc ∈ Fp[t] is the minimal polynomial of c. Hence,

In = {c ∈ Fp : f◦nt has a linear factor mod (πc)}. (8)

Since membership in In depends only on properties of πc, it follows that In is invariant under the
action of Gal (Fp/Fp). The following proposition relates the density of Galois-invariant subsets of
Fp to the density of related sets of primes in Fp[t].

Proposition 3.3. Suppose that C ⊆ Fp is invariant under the action of Gal (Fp/Fp), and let B ⊆ P
be given by {(πc) : c ∈ C}, where πc is the minimal polynomial of c. Suppose also that D(B) exists.
Then D(C) exists and equals D(B).
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Proof. Consider the map ψ : Fp → P that takes c to (πc). The Galois invariance of C is equivalent
to C being the full inverse image of B under ψ. We thus have∑

c∈C
(deg c)−1N(c)−s =

∑
p∈B

∑
c∈ψ−1(p)

(deg c)−1N(c)−s, (9)

where we recall N(c) = pdeg c. Now for any c ∈ ψ−1(p) we have deg c = degπc = deg p. Thus
N(c) = Np. Hence, the inner sum in the right-hand side of (9) is repeated addition of the
same quantity, and the right-hand side becomes

∑
p∈BNp−s. Applying the same reasoning to∑

c∈Fp
(deg c)−1N(c)−s gives

∑
c∈C(deg c)−1N(c)−s∑
c∈Fp

(deg c)−1N(c)−s
=

∑
p∈BNp−s∑
p∈P Np−s

.

Taking limits as s→ 1+ and using the existence of D(B) completes the proof.

We now define the following set of primes in Fp[t]:

In = {p ∈ P : f◦nt mod p has at least one linear factor}. (10)

The following corollary follows immediately from Proposition 3.3 and equation (8).

Corollary 3.4. For all n � 1, D(In) = D(In).

We now give a version of a standard result that allows us to apply the Tchebotarev density
theorem to compute D(In).

Proposition 3.5. Let R = Fp[t], L = Fp(t), and f ∈ L[x]. Let Ln(f) be the splitting field of f◦n

over L, and let Gn(f) = Gal (Ln(f)/L). There exists a finite set S of primes in R (including the
ramified primes) such that if p is not in S and (p, Ln(f)/L) ⊂ Gn(f) is the Artin conjugacy class
of p, then the following holds. If f1f2 · · · fr is the factorization into irreducibles of f◦n mod p, then
any element of (p, Ln(f)/L) acts on the roots of f◦n as a product σ1 · · · σr of disjoint cycles, with
σi having length deg fi.

Proof. Let β be a root of f◦n, set Lβ = L(β), and let Rβ be the integral closure of R in Lβ.
A standard result in algebraic number theory [Nar04, Theorem 4.12, p. 177] states that for all
primes p not contained in a finite set S′, we have

pRβ = P1P2 · · ·Pr, (11)

where Pi is a prime in Rβ with residue class degree d(Pi/p) = deg fi. Another standard result
(see [Nar04, Lemma 7.13, p. 391] for a proof easily adapted to the function field case) states that if
p is in addition unramified, then (11) implies that any element of (p, Ln(f)/L) acts on the roots of
f◦n as a product σ1 · · · σr of disjoint cycles, with σi having length d(Pi/p).

Using the notation of Proposition 3.5, let f = ft = x2 + t and let Un be the set of primes in R
that are unramified in Ln(ft). Note that conjugacy preserves the lengths of the cycles in the disjoint
cycle decomposition, so if one element of (p, Ln(ft)/L) fixes a root of f◦nt , then all do. Put

Jn = {p ∈ Un : each σ ∈ (p, Ln(ft)/L) fixes at least one root of f◦nt }. (12)

It follows immediately from Proposition 3.5 and (10) that D(Jn) = D(In). To compute D(Jn), we
use the Tchebotarev density theorem, which we now state.

Theorem 3.6 (Tchebotarev). Let L/K be a Galois extension of function fields, and denote by UK
the set of primes of K unramified in L. For p ∈ UK , let (p, L/K) be the Artin conjugacy class of p.
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Fix a conjugacy class C of G = Gal (L/K). Then for all k � 1,

D({p ∈ UK : (p, L/K) = C}) =
#C
#G

.

For a proof, see [Ros02, ch. 9].

Proof of Theorem 1.5. Recall the definition of Jn from (12). Using Propositions 3.2, 3.3, and
D(In) = D(Jn), it suffices to find D(Jn). Let C denote the collection of conjugacy classes of Gn(f)
each of whose elements fixes at least one root of f◦nt . Using Theorem 3.6, we have

D(Jn) =
∑
C∈C

#C
#Gn(f)

=
1

#Gn(f)

∑
C∈C

#C =
1

#Gn(f)
#

{ ⋃
C∈C

C

}
.

Since g fixes a root of f◦nt if and only if every element of its conjugacy class does the same,⋃
C∈CC = {g ∈ Gn(f) : g fixes at least one root of f◦nt }.

Example 3.7. Consider the case n = 2. Label the roots of f◦2t = (x2 + t)2 + t as follows:√
−t+

√−t←→ 1, −
√
−t+√−t←→ 2√

−t−√−t←→ 3, −
√
−t−√−t←→ 4.

We show (Corollary 6.6) that under this labeling G2(f) is a subgroup of S4 of order 8 that contains
{e, (1 2), (3 4), (1 2)(3 4)} as well as four elements that interchange the sets {1, 2} and {3, 4} and
therefore have no fixed points. Hence, D(I2) = 3/8. In fact, we know more. Let k be large, choose
c ∈ Fpk at random, and let ic = #{f−◦2

c (0) ∩ Fp(c)}. Then ic = 2 with probability 1
4 and ic = 4

with probability 1
8 .

Remark. There is a second version of Theorem 3.6 that gives the stronger conclusion #{p ∈
UK : deg p = k and (p, L/K) = C} = (pk/k)(#C/#G + O(p−k/2)) (see [Ros02, Theorem 9.13B]).
With this conclusion, one can replace D(In) by δ(In) (see § 1) in Theorem 1.5, and thus also in
Theorem 1.4. However, this stronger version of Theorem 3.6 requires the hypothesis that L/K be
geometric, i.e. that if k is the field of constants in K, then k̄ ∩L = k. Determining the geometricity
of the fields generated by roots of f◦nt appears to be a difficult problem. Indeed, the most natural
approach may be to first prove Conjecture 6.7 (see the discussion following the conjecture).

4. Galois processes and Galois martingales

Let L be a field of characteristic different from 2, and for f ∈ L[x], let L(f) denote the splitting of f
over L. By a tower of polynomials over L we mean a sequence f1, f2, . . . such that L(fn) ⊇ L(fn−1)
for n � 2. We call the tower separable if fn is separable over L for all n � 1.

Let F = f1, f2, . . . be a separable tower of polynomials, and put L∞ =
⋃∞
n=1 L(fn). Denote

GalL(fn)/L by G(fn), and let

G(F) = GalL∞/L ∼= lim←−G(fn).

Let P be the Haar measure on the compact group G(F), normalized so that P(G(F)) = 1. Letting
B be the Borel sigma algebra, the triple (G(F),P,B) is then a probability space. Denote by ψn the
natural projection G(F)→ G(fn), and define random variables Xn on G(F) as follows:

Xn(g) = number of roots of fn fixed by ψn(g).

The data (G(F),P,B, {Xn}n�1) by definition give a stochastic process, which we call the Galois
process of the tower F , and denote by GP(F). Intuitively, this process resembles a random walk

1115

https://doi.org/10.1112/S0010437X07002667 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002667


R. Jones

through successively higher levels of the group G(F). Positions at each level are assigned a value
based on the number of roots of fn left fixed. Note that it follows from basic properties of Haar
measure that

P (X1 = t1, . . . ,Xn = tn) =
1

#G(fn)
#{g ∈ G(fn) : g fixes ti roots of fi for i = 1, 2, . . . , n}. (13)

Example 4.1. Let L = Q, f1 = x2+x+1, and f2 = x3−2. Clearly L(f2) ⊇ L(f1). Define a separable
tower F by setting fn = f2 for all n � 3. Then G(F) ∼= G(f2), which is the full symmetric group on
the roots of f2. Since the Haar measure P is invariant under multiplication by an element of G(F),
it follows that P(ψ−1

n (g)) = 1/#G(fn) for all g ∈ G(fn). Thus,

P(X2 = i) =




1
6 if i = 3
1
2 if i = 1
1
3 if i = 0.

One easily sees that the kernel of the quotient map G(f2)→ G(f1) is isomorphic to the alternating
group A3. Thus, if g ∈ A3, X1(g) = 2, while if g ∈ G(f2) \A3, then X1(g) = 0. Because G(f2) \ A3

is composed entirely of transpositions, we have P(X2 = 1 | X1 = 0) = 1. Therefore, GP(F) is not
a martingale (see Definition 1.1).

Consider the case where f ∈ L(x) has the property that all iterates f◦n are separable over L
and F = f, f◦2, f◦3, . . . . This is the case of greatest interest to us. In this situation we write GP(f)
instead of GP(F) and Gn(f) instead of G(f◦n). We now develop preparatory material for proving
Theorem 1.2. Recall that a G-set is a set T on which G acts, and a map φ : T → T ′ is a morphism
of G-sets if φ(σ(t)) = σ(φ(t)) for all σ ∈ G and t ∈ T . We define the following notion that we use
throughout.

Definition 4.2. Let G be a group and T a G-set. By a fiber system1 on T , we mean the collection
of fibers of a surjective morphism φ : T → T ′ of G-sets.

Note that a fiber system on T gives a partition of T , and the sets belonging to this partition are
permuted by G; indeed, these properties characterize fiber systems. By way of illustration, we offer
the following.

Proposition–Definition 4.3. Let L be a field and f ∈ L[x] a polynomial with all iterates sep-
arable. Let Rn denote the roots of f◦n and Rn−1 the roots of f◦n−1. Then f : Rn → Rn−1 is a
surjective morphism of Gn(f)-sets. It defines a fiber system on Rn that we call the fundamental
fiber system.

Proof. We need only check that f(σ(β)) = σ(f(β)) for any σ ∈ Gn(f) and β ∈ Rn. This clearly
holds since σ ∈ Gal (L(f◦n)/L).

For instance, let L = k(t), f(x) = x2 + t, and n = 2, and use the labelings of Example 3.7.
Then the fundamental fiber system on R2 is {{1, 2}, {3, 4}}. Note that the fundamental fiber system
consists of sets each containing deg f elements.

The proof of Theorem 1.2 makes crucial use of a uniqueness result on fiber systems for G-sets
when G is a certain kind of permutation group. Specifically, let f be quadratic with separable and
irreducible iterates, and suppose that Gn(f) contains at least one odd permutation. We wish to
show that the fundamental fiber system is the only fiber system on Rn (considered as a Gn(f)-
set) that consists of two-element sets. The next few definitions and lemmas build up to this result
(Corollary 4.9).

1Some authors use the terminology ‘block system’.
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Let T be a set and S a partition of T . Denote by Perm(T,S) the set of all permutations of T
that act as permutations on S. Thus, if a group G acts on T and S is a fiber system for G, then
G ⊆ Perm(T,S).

Definition 4.4. Let T be a set and S a partition of T . A permutation associated to S is a
permutation σ ∈ Perm(T,S) whose orbits are precisely the subsets belonging to S. In the case where
S is composed entirely of two-element sets, we denote by σS the unique permutation associated
to S.

Proposition 4.5. Let T be a set, S a partition of T , and σ a permutation associated to S. Then
τστ−1 is a permutation associated to S for each τ ∈ Perm(T,S). In particular, if S is composed
of two-element subsets, then

σS ∈ Z(Perm(T,S)),

the center of Perm(T,S).

Proof. Let τ ∈ Perm(T,S), and S ∈ S with #S = k. Then τστ−1 must map S to itself. Note
that σ acts on S as a k-cycle since by definition S is an orbit of σ. Since conjugation preserves
cycle decomposition type and both σ and τστ−1 permute S, it follows that τστ−1 acts on S as a
k-cycle. Therefore, S is an orbit of τστ−1.

Lemma 4.6. Let G be a group acting on a set T . Suppose that S = {S1, S2, . . . , Sm} is a fiber
system for G with #Si = 2j for 1 � i � m. Then G is isomorphic to a subgroup of the wreath
product Sym(2j) � Sym(S) = Sym(2j)S � Sym(S) and if g �→ ((δ1, . . . , δm), σ) then the signature
of the action of g on T is

∏m
i=1 sgn δi.

Proof. Since S is a fiber system for G, we have G ⊆ Perm(T,S). It therefore suffices to prove the
lemma for Perm(T,S). Each τ ∈ Perm(T,S) induces a permutation τ ′ on S. Fix an ordering of
the elements in each Si, and suppose that τ(Si) = Sk. Say Si = {s1, . . . , s2j} and Sk = {t1, . . . , t2j}.
Then tn �→ τ(sn) is a permutation of Sk, which we denote by δi. The map Perm(T,S)→ Sym(2j) �
Sym(S) : τ �→ ((δ1, . . . , δm), τ ′) is readily seen to be an isomorphism.

Suppose that τ ∈ Perm(T,S) satisfies δi = id for i = 1, . . . ,m, and let C = (Si1 · · ·Sil) be a
cycle of τ ′ and Σ = Si1 ∪ · · · ∪ Sil . Consider the action of τ on Σ. Since C is an l-cycle, the orbit
of any s ∈ Σ must have length at least l, but clearly τ l(s) = s for all s. Thus, τ acts on Σ as a
product of 2j l-cycles, whence this action is even. The same holds for all cycles of τ ′, implying that
the signature of τ is 1.

If τ ∈ Perm(T,S) satisfies τ ′ = id, then τ has the same cycle structure as the product δ1 · · · δm ∈
Sym(2jm). Thus, the signature of τ is

∏m
i=1 sgn δi. Since any ((δ1, . . . , δm), σ) ∈ Sym(2j) � Sym(S)

admits the decomposition ((δ1, . . . , δm), id) · ((id, . . . , id), σ), the lemma is proved.

Theorem 4.7. Let T be a set with 2m elements, and let

S = {S1, . . . , Sm} and U = {U1, . . . , Um}
be partitions of T with #Si = #Ui = 2 for all i. Let σS and σU be the permutations associated
to S and U, respectively, and suppose that σU ∈ Perm(T,S). If σS �= σU, then any subgroup of
Perm(T,S) ∩ Perm(T,U) that acts transitively on T is alternating, i.e. composed entirely of even
permutations.

Proof. Let G � Perm(T,S) ∩ Perm(T,U) act transitively on T . From Proposition 4.5, we have
that G centralizes H = 〈σU, σS〉 in Sym(T ) and also σS commutes with σU (the latter since σU ∈
Perm(T,S)). Hence, H has order 4, because σS �= σU. Note that by definition σU and σS have no
fixed points in T , so that if an orbit of the action of H on T has fewer than four elements, then
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we must have σU(t) = σS(t) for some t ∈ T . However, G centralizes H and acts transitively on T ,
implying σU(t) = σS(t) for all t ∈ T , which contradicts σS �= σU.

Since G centralizes H, it follows immediately that the set V = {Vi} of orbits of the action of H
on T is a fiber system for G. From Lemma 4.6 we have that G injects into Sym(4) � Sym(V ). Let
g ∈ G and fix {ti} such that Vi = {ti, σU(ti), σS(ti), σUσS(i)} for each i. Suppose g(Vi) = Vj, and
let δi be as in the proof of Lemma 4.6. Again since G centralizes H, one easily verifies that δi is the
identity if g(ti) = tj and is the product of two transpositions otherwise. Hence, the signature of δi
is 1, and it follows from Lemma 4.6 that sgn g = 1.

If the group G has nontrivial center, we have another source of nontrivial fiber systems.

Proposition–Definition 4.8. Let G be a group acting on a set T , suppose that σ ∈ Z(G), and
let S be the partition of T given by the orbits of σ. Then S is a fiber system for T and σ is a
permutation associated to S. We call S a central fiber system.

Proof. Let S ∈ S and τ ∈ G. Write S = {σn(s) : n � 1}, and note that τ(S) = {τσn(s) :
n � 1} = {σn(τ(s)) : n � 1}, which is again an element of S. Thus, S is a G-set, and indeed is
the fiber system associated to the natural morphism T → S of G-sets. Clearly σ is a permutation
associated to S.

A salient feature of central fiber systems is that at least one associated permutation must lie in the
group G. This is not necessarily the case for the fundamental fiber system defined in Proposition–
Definition 4.3. This feature of central fiber systems is precisely what we need to establish our
uniqueness result on fiber systems consisting of two-element sets. In the process, we show that the
central involution σC associated to the fundamental fiber system must lie in Gn(f). This provides
a vital step in the proof of Theorem 1.2.

Corollary 4.9. Let L be a field, f ∈ L[x] a quadratic polynomial with f◦n separable and irre-
ducible over L, and suppose that Disc f◦n is not a square in L. Then there is a unique fiber system
of two-element sets on Rn, the set of roots of f◦n (considered as a Gn(f)-set). In particular, if
C is the fundamental fiber system defined in Proposition–Definition 4.3, then the permutation σC
associated to C is contained in Gn(f).

Proof. The splitting field L(f◦n) of f◦n is obtained from L(f◦n−1) by adjoining roots of f(x) − α
for each root α of f◦n−1. Since deg f = 2, it follows that Gal (L(f◦n)/L(f◦n−1)) is an elementary
abelian 2-group. Hence, Gn(f) is a 2-group, and therefore has nontrivial center. Since Z(Gn(f)) is
again a 2-group, there must be δ ∈ Z(Gn(f)) of order two. Suppose that δ fixes r ∈ Rn. Since δ
belongs to the center of Gn(f), this gives δσ(r) = σ(r) for all σ ∈ Gn(f). The irreducibility of f◦n

implies that Gn(f) acts transitively on Rn, whence δ is the identity, a contradiction. Therefore, δ has
no fixed points, implying that the associated central fiber system D (see Proposition–Definition 4.8)
consists of two-element sets.

Let S be another fiber system for Gn(f) consisting of two element sets. Note that δ ∈ Gn(f) ⊆
Perm(T,S). Finally, since Disc f◦n is not a square in L, basic Galois theory tells us Gn(f) cannot
be alternating. We then apply Theorem 4.7 to get S = D. In particular, C = D, implying that
σC = δ ∈ Gn(f).

Recall from § 1 that the adjusted forward orbit of a point l under f ∈ L[x] with leading coefficient
a is {−af (l)} ∪ {f◦n(l) : n = 2, 3, . . . }.
Lemma 4.10. Let L be a field of characteristic different from 2, f ∈ L[x] quadratic, and γ ∈ L the
unique finite critical point of f . Suppose that the adjusted forward orbit of γ contains no squares
in L. Then for all n, f◦n is separable and irreducible and Disc f◦n is not a square in L.
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Proof. We first show that Disc f◦n is not a square; this implies that f◦n is separable. Let f(x) =
ax 2 + bx + c. For n = 1 we note that −4af (γ) = Disc f , so that the fact that −af (γ) is not a square
implies that Disc f is not a square. For n � 2, it follows from [Odo85a, Lemma 3.1, part iv] that
Disc f◦n = 22n

(Disc f◦n−1)2 Res(f ′, f◦n), where Res(f ′, f◦n) denotes the resultant of f ′ and f◦n.
From the definition of resultant (see [Odo85a, p. 393]), Res(f ′, f◦n) = f◦n(γ). Thus, Disc f◦n is not
a square.

To show that f◦n is irreducible, first note that the case n = 1 is covered by the previous
paragraph. For n � 2 we use Capelli’s lemma [Odo85a, p. 387], which implies that f◦n is irreducible
if and only if for any root α of f◦n−1, we have f(x) − α irreducible over L(α). This is equivalent
to b2 − 4ac + 4aα not being a square in L(α), which must hold if NL(α)/L(b2 − 4ac + 4aα) is not a
square in L. However,

NL(α)/L(b2 − 4ac + 4aα) = (−4a)2
n−1

∏
α root of f◦n−1

(
− b

2

4a
+ c

)
− α

= (4a)2
n−1

f◦n−1(−b2/4a+ c) = (4a)2
n−1

f◦n−1(f(γ)).

Thus, f◦n(γ) not a square in L implies f◦n is irreducible.

Proof of Theorem 1.2. We must show that

E(Xn | X1 = t1, . . . ,Xn−1 = tn−1) = tn−1, (14)

where t1, . . . , tn−1 are integers with P(X1 = t1, . . . ,Xn−1 = tn−1) > 0. By definition, the left-hand
side of (14) is ∑

k

k · P(X1 = t1, . . . ,Xn−1 = tn−1,Xn = k)
P(X1 = t1, . . . ,Xn−1 = tn−1)

. (15)

Put

S = {g ∈ Gn(f) : g fixes ti roots of f◦i for 1 � i � n− 1}
Sk = {g ∈ S : g fixes k roots of f◦n}.

From the basic property of GP(f) given in (13), the expression in (15) is equal to
∑
k

k · #Sk
#S

.

This, in turn, may be rewritten as

1
#S

∑
g∈S

(number of roots of f◦n fixed by g). (16)

Note that if h ∈ Hn(f) def= Gal (L(f◦n)/L(f◦n−1)), then h fixes the roots of f◦i for 1 � i � n−1.
Thus, S is invariant under multiplication by Hn(f), whence S is a union of cosets of Hn(f). Recall
from Proposition–Definition 4.3 the fundamental fiber system C for Gn(f) defined by the morphism
f : Rn → Rn−1 of Gn(f)-sets. Let σC be the permutation associated to C. From Corollary 4.9 and
Lemma 4.10 we have σC ∈ Gn(f), and thus σC ∈ Hn(f).

Now take g0Hn(f) ⊆ S. Note that the group {e, σC} acts by right multiplication on the set
g0Hn(f), dividing it into two-element orbits. We analyze the number of roots of f◦n fixed by the
elements of such an orbit. Let g ∈ g0Hn(f), let α be a root of f◦n−1, and note that if g(α) �= α,
then neither g nor gσC have any fixed points in f−1(α). On the other hand, if g(α) = α, then
g(f−1(α)) = f−1(α). Since by definition σC exchanges the elements of f−1(α), we have that g fixes
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the elements of f−1(α) if and only if gσC exchanges them. It follows that

#{roots of f◦n fixed by g}+ #{roots of f◦n fixed by gσC} = 2 ·#{roots of f◦n−1 fixed by g}.
By the definition of S, all g ∈ g0Hn(f) fix tn−1 elements of f◦n−1. Therefore, we have∑

g∈g0Hn(f)

#{roots of f◦n fixed by g} = tn−1 ·#Hn(f).

Since S is a union of cosets of Hn(f), the expression in (16) equals tn−1.

Martingales are important chiefly because they often converge in the following sense.

Definition 4.11. Let X1,X2, . . . be a stochastic process defined on the probability space (Ω,F ,P).
The process converges if

P
(
ω ∈ Ω : lim

n→∞Xn(ω) exists
)

= 1.

We give one simple martingale convergence theorem (see, e.g., [GS01, § 12.3] for a proof).

Theorem 4.12. Let M = (X1,X2, . . . ) be a martingale whose random variables take nonnegative
real values. Then M converges.

Since the random variables in GP(f) take nonnegative integer values, we immediately have the
following.

Corollary 4.13. Let L be a field and f ∈ L[x] a quadratic polynomial satisfying the hypotheses
of Theorem 1.2. Then

P({g ∈ G(f) : X1(g),X2(g), . . . is eventually constant}) = 1.

5. Quadratic Galois processes under maximality assumptions

In this section, let L be a field and f ∈ L[x] a quadratic polynomial with all iterates separable
over L. Throughout the section, all quantities are assumed chosen so that conditional probabilities
are defined.

Let L(f◦n) be the splitting field of the nth iterate of f , and let Hn(f) = Gal (L(f◦n)/L(f◦n−1)).

Proposition–Definition 5.1. For each n � 1, Hn(f) ∼= (Z/2Z)m for some 0 � m � 2n−1. We
call Hn(f) maximal if m = 2n−1.

Proof. Let Rn−1 denote the set of roots of f◦n−1. Over L(f◦n−1), f◦n factors as
∏
α∈Rn−1

f(x)−α.
Since #Rn−1 = 2n−1, the extension L(f◦n)/L(f◦n−1) is the compositum of at most 2n−1 quadratic
extensions.

The next result gives, for n with Hn(f) maximal, an explicit expression of the probability
distribution of Xn given past behavior. However, the lemma does not hold for all possible past
behaviors: we must assume that the value of Xn−1 is known.

Lemma 5.2. Let L be a field, f ∈ L[x] a quadratic polynomial with all iterates separable over L,
Hn(f) = Gal (L(f◦n)/L(f◦n−1)), and (Ω,F ,P, (Xn)n�0) = GP(f). Suppose that Hn(f) is maximal,
and let m1 < m2 < · · · < mk, be positive integers with mk = n − 1. Then for any positive integers
t1, . . . , tk we have

P(Xn = u | Xm1 = t1, . . . ,Xmk
= tk) =




(
tk
w

)
1

2tk
if u = 2w for some 0 � w � tk

0 otherwise.

(17)
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Proof. To prove the lemma, we must compute

P(Xm1 = t1, . . . ,Xmk
= tk,Xn = u)

P(Xm1 = t1, . . . ,Xmk
= tk)

. (18)

Note that by our standing assumption that all quantities are chosen so that conditional probabilities
are defined, t1, . . . , tk are such that the denominator of (18) is nonzero. Put

T = {g ∈ Gn(f) : g fixes ti roots of f◦mi for 1 � i � k}
Tu = {g ∈ T : g fixes u roots of f◦n}.

From (13), we see that we must compute #Tu/#T . Since the denominator of (18) is nonzero,
#T �= 0 as well. As in the proof of Theorem 1.2, note that T is invariant under multiplication by
Hn(f), whence it is a union of cosets of Hn(f). Let Rn be the set of roots of f◦n, and recall from
Proposition–Definition 4.3 that the sets f−1(α), where α is a root of f◦n−1, form a partition of Rn.

Consider a coset g0Hn(f) ⊂ T . By the maximality of Hn(f), there exists hα ∈ Hn(f) that
exchanges the elements of f−1(α) and fixes the elements of f−1(α′) for all α′ �= α. Let Q be the set
of roots of f◦n−1 fixed by g0, and put M = f−1(Q) ⊆ Rn. Since g0 ∈ T , g0 fixes tk roots of f◦n−1,
whence #M = 2tk.

Now let J be the subgroup of Hn(f) that fixes each element of M . The maximality of Hn(f)
shows

#J = 2(2n−1−tk). (19)

Take h ∈ Hn(f). Since h fixes all roots of f◦n−1, we have g0h(f−1(α)) = f−1(g0(α)) for all α. Thus,
g0h cannot fix any element of Rn −M . On the other hand, elements of J fix all members of M , so
it follows that every element of a set of the form g0hJ has the same number of fixed points in Rn.

Since M =
⋃
α∈Q f

−1(α), we can write any h ∈ Hn(f) as

j
∏
α∈Q

(hα)eα ,

where j ∈ J and eα = 0 or 1 for each α. Thus, any coset g0hJ may be written uniquely as
g0J

∏
α∈Q(hα)eα . Moreover, all elements of this coset have exactly

2tk −
∑
α∈Q

2eα (20)

fixed points in Rn (recall #Q = tk). The number of ways (20) can equal u is precisely
(tk
w

)
if u = 2w

for some 0 � w � tk and zero otherwise. Note that from (19) and the maximality of Hn(f) we have
#J/#Hn(f) = 2−tk . Hence, the proportion of elements of g0Hn(f) contained in Tu is

(tk
w

)
2−tk . The

lemma now follows from the fact that T is a union of cosets of Hn(f).

Note that Lemma 5.2 remains valid if the ti are allowed to be 0. Indeed it is easy to see directly
that Xm = 0 implies Xn = 0 for all n > m, and in the case tk = 0, the lemma gives P (Xn = 0) = 1.

We give two consequences of Lemma 5.2. The first requires the Markov property, which a stochas-
tic process X1,X2, . . . satisfies if

P(Xn = u | Xm1 = t1, . . . ,Xmk
= tk) = P(Xn = u | Xmk

= tk) (21)

for n, any m1 < · · · < mk < n and any u, ti. Such a stochastic process is called a Markov chain.
Lemma 5.2 shows that, for n with Hn(f) maximal, GP(f) obeys a restricted version of the Markov
property at stage n (since mk = n − 1 is required). However, if Hn(f) is maximal for all n, it is a
straightforward exercise to show that GP(f) is a Markov chain.
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The second consequence of Lemma 5.2 is that when Hn is maximal and for any m < n and
1 � w � 2m−1, we have

P(Xn = 2w | Xm = 2w, . . . ,Xn−1 = 2w) =
(

2w
w

)
1
4w
. (22)

We now give an upper bound for the right-hand side of (22).

Lemma 5.3. Suppose that Hn(f) is maximal. Then for any m < n and u > 0 we have

P(Xn = u | Xm = u, . . . ,Xn−1 = u) � 1
2 .

Proof. First note that if u is not of the form 2w for some 1 � w � 2m−1, then P (Xn = u) = 0 from
Lemma 5.2 and we are done. Thus, we assume that u is of this form. From (22) we need only show
that

cw
def=

(
2w
w

)
1
4w

� 1
2

for all w � 1. Note that

cw+1

cw
=

1
4

(2w + 2)(2w + 1)
(w + 1)2

=
4w2 + 6w + 2
4w2 + 8w + 4

.

The right-hand side of this equation is less than 1 for w � 1. Since c1 = 1
2 , the lemma follows.

Proof of Theorem 1.3. By Theorem 1.2, GP(f) is a martingale, and thus is eventually constant
with probability 1 (see Corollary 4.13). Therefore, it remains only to show that for any m � 0 and
u > 0,

P
( ∞⋂
i=m

Xi = u

)
= 0.

Clearly

P
( ∞⋂
i=m

Xi = u

)
� lim

j→∞
P

( j⋂
i=m

Xi = u

)
,

and note that the sequence on the right-hand side is decreasing. Let Ci = {Xi = u}, and suppose
P(Cj−1 ∩ · · · ∩Cm) �= 0 (otherwise we are done). We have

P
( j⋂
i=m

Ci

)
= P(Cm)P(Cm+1 | Cm) · · ·P(Cj | Cm ∩ · · · ∩ Cj−1). (23)

By Lemma 5.3, if Hn(f) is maximal, then

P(Cn | Cm ∩ · · · ∩ Cn−1) � 1
2 .

Let S = {n ∈ N : Hn(f) maximal}. Then (23) yields

P
( j⋂
i=m

Xi = u

)
�

(
1
2

)#(S∩{m,...,j})
.

The infinitude of S now gives

lim
j→∞

P
( j⋂
i=m

Xi = u

)
= 0.

Note that it follows from Theorem 1.3 that limm→∞ P({Xm > 0}) = 0.
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We close this section with an examination of GP(f) under the assumption thatHn(f) is maximal
for all n. This situation arises rather frequently, for example when L = Q and f = x2 + a for many
values of a (see [Sto92]). It appears likely that Hn(f) is maximal for all n also in the case that
concerns us, namely L = k(t), char k �= 2, and f = x2 + t; see Conjecture 6.7. The following
definition is adapted from [Har63]. Statements about conditional probabilities apply only when the
conditional probabilities are well-defined, and the sum of zero random variables is taken to be zero
with probability 1.

Definition 5.4. A Markov chain X1,X2, . . . is time-homogeneous if P(Xn = u | Xn−1 = t) depends
only on u and t. By a branching process we mean a time-homogenous Markov chain X1,X2, . . . taking
nonnegative integer values such that the random variable (Xn | Xn−1 = t) has the same distribution
as the sum of t independent copies of X1.

Proposition 5.5. Suppose that Hn(f) is maximal for all n. Then GP(f) is a branching process
with P(X1 = 0) = 1

2 and P(X1 = 2) = 1
2 .

Proof. This is clear from Lemma 5.2 and the discussion of the Markov property immediately
following.

It is interesting to note that Odoni observes in [Odo85a, p. 398] that branching processes share
many properties with iterated wreath products. This observation is a forerunner of Proposition 5.5,
since it follows from [Odo88, Lemma 1.1] that Hn(f) maximal for all n implies Gn(f) is the n-fold
iterated wreath product of Z/2Z.

Branching processes are very well-understood; see [Hai02, § 7.1] for a readable introduction
and [Har63] for a detailed account. Here we merely state some results of interest in our case.

Proposition 5.6. Let X1,X2, . . . be the branching process of Proposition 5.5. Let an = P(Xn = 0)
and bn = P(Xn > 0) = 1− an. Then:

(i) an is given by the evaluation at z = 0 of the nth iterate of 1
2 + 1

2z
2;

(ii) as n→∞, we have

bn =
2
n

{
1− log n

n
− α

n
+O((log n)2/n2)

}

for some constant α. In particular, bn ↓ 0.

Proof. For part (i), see [Hai02, Theorem 7.2]. A proof of a much more general theorem than part (ii)
can be found in [Har63, p. 21]. For a simpler, direct proof of part (ii) see [Odo85b, p. 5].

6. The Galois groups of iterates of x2 + t

In this section we use the same notation as in § 5, only with the following specializations: let k be
a field with char k �= 2, let t be transcendental over k, let L = k(t), and let f(x) = x2 + t. We also
put A = k[t]. As f is fixed throughout this section, we write Gn, Hn, and Ln in place of Gn(f),
Hn(f) and L(f◦n), respectively. Our goal is an in-depth examination of Hn, along the lines of that
found for the characteristic 0 case in [Odo88, Sto92]. At the end of the section we apply our results
to give a proof of Theorem 1.4.

Let {pn : n = 1, 2, 3} be the adjusted forward orbit of the critical point 0, i.e. p1 = −t and
pn = f◦n(0) for n � 2. Note that pn is a square in Ln for all n; this is clear for n = 1, and follows
for n � 2 because pn is the product of the roots of f◦n, which occur in an even number of ± pairs.
We define a related sequence Φn:

Φn =
∏
d|n

(pd)µ(n/d) ∈ L. (24)
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We show that pn and Φn have much to do with the maximality of Hn. First we establish some
divisibility properties of these sequences.

Lemma 6.1. Let q ∈ A be irreducible, let vq be the valuation corresponding to q, and suppose that
vq(pn) = e � 1. Then for all m � 1, we have vq(pmn) = e.

Proof. Induction on m. The case m = 1 is trivial. Suppose inductively that vq(p(m−1)n) = e. Note
that pmn = f◦(m−1)n(pn), and also f◦(m−1)n is a polynomial in x2. Thus, we can write

f◦(m−1)n(x) = x2g(x) + f◦(m−1)n(0) = x2g(x) + p(m−1)n,

for some g ∈ L[x]. Hence, putting x = pn we have

pmn = p2
ng(pn) + p(m−1)n.

Now vq[(pn)2(g(pn))] � 2e, and by our inductive hypothesis vq(p(m−1)n) = e. Since e � 1, the first
summand vanishes to higher order at q than the second, so we conclude vq(pmn ) = e.

Proposition 6.2. For each n, Φn is a polynomial, and the Φn are pairwise relatively prime.

Proof. Let q ∈ A be irreducible, and let m = min{n � 1 : q | pn}. By Lemma 6.1, we have vq(pn) = e
if m | n and one easily sees vq(pn) = 0 otherwise. Thus,

vq(Φn) =
∑
d|n

vq(pd) · µ(n/d) = e ·
∑
dm|n

µ(n/dm),

and this last expression is e if n = m and 0 otherwise. Hence, Φn is a polynomial and, moreover,
vq(Φn) > 0 for only one n. Thus, the Φn are pairwise relatively prime.

Proposition 6.3. For each n, Disc f◦n = a2pn for some a ∈ A.

Proof. See the proof of Lemma 4.10, first paragraph.

Our main result in this section has to do with the maximality of Hn (see Proposition–
Definition 5.1). We first give two preparatory results.

Lemma 6.4. Let n � 1. Then Hn is maximal if and only if pn is not a square in Ln−1.

Proof. Identical to the argument in [Sto92, Lemma 1.6].

Theorem 6.5. Let n � 1. Then Hn is maximal if and only if Φn is not a square in L.

Proof. The case n = 1 is clear, so we take n � 2. Suppose that Φn is a square in L, and note that
it follows from (24) that

pn =
∏
d|n

Φd. (25)

Now pm is a square in Lm for all m � 1, and a quick induction allows one to deduce that Φm is
also a square in Lm for all m � 1. Thus, from (25) we have that pn is a square in Ln−1, whence by
Lemma 6.4 Hn is not maximal.

Now suppose that Φn is not a square in L. We claim the squarefree part of Φn has positive degree.
To see this, note that pn is monic and of even degree for n � 2 while p1 has odd degree and leading
coefficient −1. Thus, from (24) we have that Φn is monic and of even degree if µ(n) = 0 and has
leading coefficient −1 and of odd degree otherwise. If µ(n) = 0, then Φn is a monic non-square in
L and thus its squarefree part has positive degree. If µ(n) �= 0, then Φn has odd degree and thus
its squarefree part has positive degree as well.

Now let q ∈ A be an irreducible dividing the squarefree part of Φn. Since Φn is relatively prime
to Φm for m < n, q cannot divide Disc f◦n−1 by Proposition 6.3 and (25). Now a prime p ⊂ A
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not dividing (Disc f◦n−1) cannot be ramified in L(α), where α is a root of f◦n−1. From [Nar04,
Corollary 2, p. 157] it follows that p is unramified in Ln−1. Therefore, (q) is unramified in Ln−1.
Thus, the squarefree part of pn has an irreducible factor unramified in Ln−1, whence pn cannot be
a square in Ln−1. By Lemma 6.4, Hn is therefore maximal.

Remark. Recall L = k(t), and let F be the prime subfield of k. Since Φn ∈ F [t], the roots of Φn

in k̄ must lie in F̄ , whence all factors of Φn in k[t] must have coefficients in F̄ . Thus, if Φn is a
square in k[t], then, in fact, it is a square in F̄ [t], and since F is perfect it follows that Φn must be
a square in F [t]. To show the last assertion, note that if Φn is not a square in F [t], then the squarefree
part of Φn has positive degree (using the same argument as in the proof of Theorem 6.5), and thus
is divisible by an irreducible polynomial in F [t]. Since F is perfect, this irreducible polynomial is
separable, and thus cannot become a square in F̄ [t], showing that Φn is not a square in F̄ [t]. We have
now shown that Φn is a square in L if and only if it is a square in F [t], so that only the characteristic
of L is relevant in this matter. In particular, if Φn is not a square in L, then Hn remains maximal if
we replace L by k̄(t). Therefore, if Φn is not a square for all n � m, then [Ln : k(t)] = [k̄Ln : k̄(t)],
whence Ln/L is geometric.

Corollary 6.6. If n is squarefree, then Hn is maximal.

Proof. From (24), n squarefree implies deg Φn odd. The corollary now follows from Theorem 6.5.

Proof of Theorem 1.4. Let k = Fp with p �= 2, L = k(t), and f(x) = x2 + t. By Proposition 3.2 it
is enough to show limn→∞D(In) = 0. Let X1,X2, . . . be the Galois process of f , and note that by
Theorem 1.5 and (13) we have P (Xn > 0) = D(In). From Lemma 6.1 and the fact that vt(p1) = 1,
we have vt(pn) = 1 for all n. Hence, the adjusted forward critical orbit of f contains no squares.
Finally, by Corollary 6.6 we have Hn(f) maximal for infinitely many n. Theorem 1.3 then applies
to show limn→∞ P(Xn = 0) = 1, which implies limn→∞ P(Xn > 0) = 0.

We close with a conjecture.

Conjecture 6.7. Let char k �= 2, L = k(t), and f(x) = x2 + t. Then Hn is maximal for all n � 1.

Thanks to Propositions 5.5 and 5.6, Conjecture 6.7 would give a simpler proof of Theorem 1.4.
It would also give near-complete information about GP(f) and provide very precise estimates for
D(In) for large n (see part (ii) of Proposition 5.6). Moreover, if Conjecture 6.7 is true, then it follows
from the remark just before Corollary 6.6 that Ln/L is geometric for all n. Thus, the strong form of
the Tchebotarev density theorem for function fields [Ros02, Theorem 9.13B] applies to show that
δ(H(Fp)) = 0 for p �= 2 (see the discussion in the remark at the end of § 3).

One approach to proving Conjecture 6.7 is to use Theorem 6.5 and show that Φn is not a square
in L for all n � 1. In the characteristic zero case, one can show that Φn is separable for all n by
reducing mod 2. In the case char k ≡ 3 mod 4, one can show that Φn is not a square for all
n by adapting the argument in [Sto92, §§ 2 and 3] (see [Jon05, § 3.5] for details). The remaining
cases are still open, although calculations for several small primes p ≡ 1 mod 4 have shown that Φn

is not a square for n � 2000.
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