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ABSTRACT

In performing Bayesian analysis of insurance losses, one usually chooses a
parametric conditional loss distribution for each risk and a parametric prior
distribution to describe how the conditional distributions vary across the
risks. Young (1997) applies techniques from nonparametric density
estimation to estimate the prior and uses the estimated model to calculate
the predictive mean of future claims given past claims. A shortcoming of this
method is that, in estimating the prior, one assumes the average claim
amount equals the conditional claim. In this paper, we consider a class of
priors obtained by perturbing the one determined nonparametrically, as in
Young (1997). We thereby reflect the uncertainty in the prior that arises
from the randomness in the claim data. We, then, calculate intervals for the
corresponding predictive means. We illustrate our method with data from
Dannenburg et al. (1996) and compare the intervals of the predictive means
with nonparametric confidence intervals.
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1. INTRODUCTION

Analyzing insurance losses is an important task for actuaries. Accurately
predicting insurance losses aids in creating equitable premiums for policy-
holders - one wishes the premium to be low enough for the insurance
product to be competitive while large enough for the insurance company to
remain solvent. In performing Bayesian analysis of insurance losses, one
usually chooses a parametric conditional loss distribution for each risk and a
parametric prior distribution to describe how the conditional distributions
vary across the risks. A criticism of Bayesian analysis is that the prior
distribution can be difficult to choose and the resulting model might not
represent the loss data very well.

AST1N BULLETIN, Vol. 28. No. 1, 1998, pp. 187-203

https://doi.org/10.2143/AST.28.2.519065 Published online by Cambridge University Press

https://doi.org/10.2143/AST.28.2.519065


188 VIRGINIA R. YOUNG

Young (1997) applies nonparametric density estimation to estimate the
prior from the claim data and uses the estimated model to calculate the
predictive mean of future claims. A shortcoming of this nonparametric
method is that, in estimating the prior, one assumes the average claim
amount of a risk equals the conditional mean of that risk. The method given
by Young (1997), thus, does not reflect the uncertainty in the prior that
arises from the randomness of the claim data.

As in Young (1997), we use a semiparametric mixture model to represent
the insurance losses of a portfolio of risks: We choose a parametric
conditional loss distribution for each risk with unknown conditional mean
that varies across the risks. We apply techniques from nonparametric density
estimation to estimate a prior for the distribution of the conditional means,
7i"o. Semiparametric methods in statistics provide a bridge between
nonparametric and parametric methods. Nonparametric methods do not
yield 'tight' results when one has information about the loss distributions
involved; however, parametric methods do not give reliable results when one
uses the 'wrong' loss distributions.

One reason that a semiparametric method is appropriate for analyzing
insurance losses is that actuaries often have information about the loss
distributions for individual policyholders or homogeneous risk classes -
either through historical claim data or theoretical considerations. Thus,
parametric loss distributions for the risk classes', or the policyholders',
claims are reasonable to use in this case. However, actuaries are not always
able to describe a prior distribution for the conditional means without using
the data, this 'second-level' information is otherwise difficult to specify.
Therefore, we propose estimating the prior nonparametrically.

By using the data to estimate the prior, one should reflect the uncertainty
in the prior vro that arises from the randomness of the claim data. To do this,
we consider a class of priors obtained by locally perturbing TTO based on the
variability of the claim data. Local perturbation priors are recommended by
Wasserman (1990b) to account for uncertainty in a given prior. We calculate
the range of the predictive mean as given by the infimum and supremum of
the predictive means over this set of priors. Such a procedure of calculating a
quantity, like the predictive mean, over a class of priors is part of robust
Bayesian analysis, an important area in Bayesian statistics (Berger, 1994).

In Section 2, we briefly review Young (1997) and set the notation for this
paper. In Section 3, we describe how local perturbation priors can be defined
via the Dempster-Shafer theory of belief functions, (Dempster, 1967, 1968)
and (Shafer, 1979). By relying on the Dempster-Shafer theory, calculating
the range of the conditional expectations is simplified, (Wasserman, 1990a,
b) and (Walley, 1991). We illustrate the computations with an analytically
tractable example. Finally, in Section 4, we apply our method to data from
Dannenburg et al. (1996) and compare the intervals of the conditional
expectations with nonparametric confidence intervals.
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2. NOTATION AND KERNEL DENSITY ESTIMATION OF THE PRIOR

2.1. Notation and Assumptions

Assume that the underlying claim of risk / per unit of exposure is a
conditional random variable Y\6j,i= 1, 2, ..., / , with probability density
function/(y | #,). For each of the /risks, one observes the average claims per
unit of exposure x, = (xn, x,2, ..., xiT,), with an associated exposure vector
Wj = (WJ\, w,2, •••, WjTj), i = 1, 2, ..., / . Thus, the observed average claim xit

is the arithmetic average of wit claims, each of which is an independent
realization of the conditional random variable Y\9t. For example, if a risk is
a class of homogeneous policies, then xit may be the average claim per policy
in the t'h policy period of the ith risk class, and wit may be the number of
policies in the /'* class during the tth policy period.

Assume that the parameter 9 is the conditional mean, is[F|6>] = 9.
Assume that parameters, other than the conditional mean, are fixed across
the risks. The loss distribution of a given risk is, therefore, characterized by
its conditional mean, although that mean is generally unknown. Denote the
probability density function of 9 by n(9), also called the structure function
(Biihlmann, 1967, 1970). The structure function characterizes how the
conditional mean 9 varies from risk to risk. Note that our model is a special
case of the one given by Biihlmann and Straub (1970).

The goal of credibility theory is to estimate the conditional mean is[F|6>]
of a risk, given that the risk's claim experience is x and exposure is w. As in
Young (1997), set the credibility formula equal to the predictive mean
is[F|x], given the weighted sample average x, weighted by the exposure w.
Also restrict attention to parametric conditional distributions for which
E[ Y\9] = 6, ' the sample mean is a sufficient statistic for 9, and the functional
form of f(y\9) is closed under averaging. 2 Families of densities that satisfy
these properties are (1) the normal, with mean 9 and fixed variance a2, (2) the

ct
gamma, with mean 9 = — and fixed shape parameter a, and (3) the inverse

P 83

gaussian, with mean 9 and fixed A = Var[X\9\

2.2. Kernel Density Estimation

Young (1997) uses kernel density estimation (Silverman, 1986) to estimate
the probability density TT(0). A kernel K acts as a weight function and

/ •oo

satisfies the condition / K(t)dt = 1. If one were to observe directly the
J -oo

1 Thus, the predictive mean equals the posterior mean; that is, i?[K|£] = £[0|x].
2 That is, if X is an average of w claims that follow the distribution given by f(y\0), then the density of

X has the same functional form as f(y\ff).
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conditional means 9\, #2, ..., 0j, then the kernel density estimate of ir(6) with
kernel K would be given by

1 /a n \

(2.1)
hi

in which hi is a positive parameter called the window width, or bandwidth.
Assume that the kernel is symmetric.

Because one observes only data x,- and w,- and not the true conditional
means 0t, one might use the sample mean 3c,- to estimate 6t consistently,
i — I, 2, ..., I, (Serfling, 1980). In the expression in (2.1), one might wish to
weight the terms in the sum according to the relative number of claims for
the i'h risk so that the expectation of 6 is the sample mean

x = , ' = —l—r , in which wt = V ^ i wit. Young, therefore,
/ • i / * 1 Wit / ; 1 Wj

proposes the following kernel density estimator for n(6)

in which w,ot = YJ\=\ W'-
One problem with using the sample mean x, to estimate #, is that for small

sample sizes, the sample mean might not give a good estimate of #,. One can
measure the strength of the estimate by the standard error of x,, se(xj):

se(Xi) = ,,
(T{ - \)wt

In practice, we propose using the standard error of x,, / = 1, ..., /, to perturb
TTO and thereby create a class of local perturbation priors (Wasserman,
1990b). This class of priors accounts for the randomness inherent in using
the sample mean 3c,- to estimate #,. We define local perturbation priors in the
next section after giving a summary of the Dempster-Shafer theory of belief
functions.

3. LOCAL PERTURBATION PRIORS

Local perturbation priors can be defined readily by using the Dempster-
Shafer theory of belief functions. One can also use that theory and results of
Wasserman (1990a,b) and Walley (1991) to calculate intervals of conditional
expectations. Therefore, we first summarize Dempster-Shafer's theory, then
show how local perturbation priors are denned using this theory, and finally
show how to calculate conditional expectations.
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3.1. Dempster-Shafer Theory of Belief Functions

Belief functions are set functions that are numerical representations of
uncertainty, as in the uncertainty surrounding a prior distribution in
Bayesian credibility theory. The theory of belief functions began when
Dempster (1967, 1968) defined upper and lower probabilities and used them
to illustrate a new method of statistical inference. Shafer (1979) continued
the work of Dempster and developed the theory in more detail. More
recently, statisticians have been applying Dempster-Shafer's theory to robust
Bayesian analysis; see, for example, Berger (1994), Wasserman (1990b), and
the references therein.

Let (9 ,5(9)) be a measurable space, and let (ft, B(Q),fi) be a probability
space. 9 is the space of interest; in the credibility context in this paper, 9 is
the set of positive real numbers, the set of possible values of the conditional
mean. The sets 9 and ft are both complete, separable metric spaces, and
5(9) and 5(ft) are the Borel subsets of 9 and ft, respectively.

Let F be a mapping from ft to the nonempty, closed subsets of 9 . Define
a belief function, Bel, and a plausibility function, PI, on 5(9) by

Bel(A) = fi({u> e ft : T{u>) C A}) and Pl(A) = (j,({u € ft : r(w) n A + </>}).

Loosely speaking, Bel(A) is the probability that the subset T(UJ) is contained
in A, and PI (A) is the probability that T(ui) intersects A. Bel and PI are
related by the relationship Bel (A) = 1 - Pl(Ac). Note that
Bel{4>) = Pl{4>) = 0, Bel(Q) = P/(9) = 1, and Bel(A) < Pl(A) with equality
if and only if Bel is a probability measure. The four-tuple (ft,5(ft),//,T) is
called the source for Bel.

A probability measure P on (9 ,5(9)) is said to be compatible with Bel
and PI if, for every A e 5(9) , one has Bel(A) < P(A) < Pl{A). Let IL>/ be
the set of all probability measures compatible with Bel and PI. x It can be
shown that IiBei is nonempty and that for each A e 5(9) ,

Bel(A) = inf P(A), (3.1)

and

Pl(A) = sup P(A), (3.2)

(Shafer, 1979). Thus, Bel and PI may be thought of as the lower and upper
bounds, respectively, of a class of probability measures. For this reason, Bel
and PI are also called lower and upper probabilities, respectively. The class
TlBei of probability measures compatible with Bel and PI is useful in robust
Bayesian analysis.

is also called the core of Bel (Denneberg, 1994).
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Walley (1991) provides a behavioral interpretation for upper and lower
probabilities. For example, let At = {9 : 9 > 1} be the subset of risks with
conditional mean larger than t. In this case, P_(At) is the supremum buying
price for the gamble that pays $1 if a risk chosen at random has conditional
mean 9 larger than t. Conversely, P(At) is the infimum selling price for the
gamble that pays $1 if a randomly chosen risk has 6 larger than /. Note
that P(At) is also 1 minus the supremum betting rate at which one will bet
that a randomly chosen risk has 9 less than or equal to t; that is,
P(At) = 1 — P(Ac

t), as previously observed. To avoid sure loss in this setting,
one has that P(A) < P(A), for all A <E 5(0), which follows from (3.1) and (3.2).

Wasserman (1990b) defines a class of local perturbations of a given prior
7T0 on (Q,B(Q)) as follows. Let (e,5(G),7ro,r) be the source, for which
r : 6 -» B(Q) is a function such that 9 € F(6>). The set T(0) represents one's
uncertainty about the probability of 9. The class of local perturbation priors
of TTO is defined to be the class lift,/ generated by such a multi-valued
mapping F.

Example 3.1: Suppose X\0 ~ C/(0,20), and that the base prior for 9 is given by

^ , 1000 <9< 2000.

Define F on [1000, 2000] by T(9) = [9 - d:0 + d], for some fixed
d < 1000, 9 e [1000, 2000]. Then, the lower probability, or belief, of an
interval [a, b] is

b-c

TTO{9)d0, if a + d <b-d,
a+c

else;

else;

Also, the upper probability, or plausibility, of an interval [a, b) is

/

b+d
TTO(9)d0

-d

_ min(6 + d, 2000) - max(a - d, 2000)
~ 1000 •

In the credibility context of this paper, one might set
T(9) = [9 - c se{0), 9 + c se(0)], in which c is a positive constant, and se is
a function determined by the standard errors se{xt) from (2.3). For example,
one might define se by setting 0t equal to x, and by interpolating a
polynomial through the /pairs (0,-, se(0i)) = (xh se{xt)).
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3.2. Conditional Expectations

To apply robust Bayesian analysis to the credibility context of this paper,
one calculates a range of predictive means (or posterior means of 6, in this
case) over the collection of local perturbation priors of vro, given x.
Specifically, one determines the lower conditional expectation

; 9d(P-x(9)), (3-3)

and the upper conditional expectation

E[6\x} = sup [e d(P-x(9)), (3.4)
Pen J

in which Px is the posterior measure of P given x. '
To simplify the formulas for these conditional expectations, we first

introduce some notation. Denote the likelihood f{x\9) of 6 given x by L{6).
By Walley (1991, Chapter 8), the lower conditional expectation i[[0|x] is the
unique solution a to the equation

E[{9 - a)L{6)} = 0, (3.5)

in which E[Z(9)} = inf f Z\8) d{P'(9)) is the lower (unconditional)

expectation of a function Z.of 9. Similarly, the upper conditional expectation

E[9\x\ is the unique solution (3 to the equation

E[{9-P)L{9)\=0, (3.6)

in which E[Z(9)] = sup / Z{8) d(P(9)) is the upper (unconditional)
Pen J

expectation of Z. Thus, one can express conditional expectations in terms
of unconditional ones.

Upper and lower (unconditional) expectations of a function Z of 6 can be
calculated by (Wasserman, 1990a, b)

E[Z{9)} = f mi Z(8*)no(9) d6, (3.7)

and

E[Z(9)\ = f sup Z(8*)TTO(9) dd. (3.8)

In general, the lower conditional expectation of a function Z of 9 is given by
E[Z(6)\x\ = inf JZ(8) d(P£(0)). Similarly for the upper conditional expectation - simply replace
the inf with a sup.
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Recall that T(9) is a union of closed intervals; therefore, if Z is continuous,
then Z(9*) attains its inf or sup on T(9). If Z is a positive function of 9, then
it might be easier in some cases to calculate the expectations using the
following formulas

poo

E[Z{9)} = P{9: Z{9) > t} dO, (3.9)
Jo

and

r°° -
E[Z(9)}= P{9: Z{9) > t} dO, (3.10)

Jo
(Young, 1998). In the following example, we use the formulas in (3.9) and
(3.10) to calculate expectations; however, we use (3.7) and (3.8) in the
example in Section 4.

Example 3.1 (continued): Continue Example 3.1 by calculating the (prior)
lower and upper expectations of 9, and then calculating the posterior lower
and upper expectations of 9, given a single observation x.

/•2000

E[9\ = I P{9:9> t}dt
Jo

,1000 ,2000-rf 2 0 0 ( ) _ ( , + d) ,2000
= / \dt+ -A- J-dt+ Odt

Jo Jo 1UUU Jxm-d
,2

= 1500 -d +
2000 '

and

r-2000/•ZUUU

E\9] = E{9:9> t}dt
Jo

- [m°+d \dt /200° 2 0 0 ° - ( ' -
Jo Ju

= 1500

mo+d IOOO
 dt

d2

2000

It is straightforward to check that one obtains the same expectations by
using (3.7) and (3.8).

Next, use (3.5) to calculate the lower expectation of 9 given x:

,2000 ,p _ x j
0 = E[(9 - a)L{9)] - / inf —^- 7 7 ^ dB.

7max(f,iooo) S'er(8)\ 9* J 1000
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If x < 2000 + Id, then

-L*(j,moo) V lOOoilOOO ]xm>^\ B-d)\m '

from which it follows that

min(4000 - x, 2000)
min(2000 + 2d-x, Id) ^2000 - </

1000 V 1000

Similarly, if x > 2000 + Id, then

4000 - x
„, , 4 0 0 0 - 2 ^
2 m

E[6\x] =

Finally, use (3.6) to calculate the upper expectation of 6 given x:

,2000 ,

0 - E[[9 - 0)L{6)] = I sup
</max(f,1000) 0*er(e) V

If x < 4000 - 2rf, then

r2000-rf / /9 \ i /-2000 / a \ j/•2000-rf / /? \ 1 Z"2000 / 0 \
0 = Llx(f,,ooo) V1 ~ ^ T ^ J Tooo^ + Jmo+d V ~ 2000JTJ Jmo+d V 2000J Tooo

from which it follows that

min(4000 - x, 2000)

^ '

- E[0\x] =
d , / 4000

2 1 ( -21n
1000 \m&x(x + 2d, 2000+ 2

Similarly, if x > 4000 - Id, then £[6»|x] = 2000.
In Figure 3.1, we graph the base posterior expectation,

4000 - max(x, 2000) , . , , ,
, along with the lower and upper expecta-

2 In
/ 4000 \
Vmax(x, 2000)/

tions of 9 given x, for d = 100 and d = 500. Note that the intervals for
d = 500 are much wider than those for d = 100, as expected.
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2000 -

1500 -

1000 2000 3000

" Upper expectation with d = 500
Upper expectation with d = 100
Base expectation
Lower expectation with d = 100

' Lower expectation with d = 500

FIGURE 3.1: Lower, Upper, and Base Conditional Expectations

4000

In general, it is difficult to calculate the lower and upper conditional
expectations via equations (3.5) and (3.6). To calculate the lower conditional
expectation, Walley (1991, Chapter 8) suggests using the following
algorithm:
1. Let QO be an initial estimate of is[0|x]. For example, one might set ao

equal to the Buhlmann-Straub credibility estimate minus c standard
errors, if T(6) = [6 — c se{6), 9 + c se(6)], as in the example in Section 4.

The sequence {«„} converges to li[0|3c]. Similarly, one can calculate
recursively.

If i?[0|jc] — i?[#|x] is small, then one says that the credibility estimate

i?[#|3c] = / 6no(6\x)d0 is a robust estimate of the conditional expectation

E[Y\O\.
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4. ILLUSTRATIVE EXAMPLE

In this section, we apply our robust Bayesian method to data from
Dannenburg et al. (1996, Section 2.4) and calculate a credibility estimate of
future claims Y given x and corresponding lower and upper conditional
expectations. Consider an insurance portfolio of nine fleets of cars, i = 1,2,
..., 9, which have been observed for ten years, t = 1, 2,..., 10. For the i'h fleet
in year t, xit is the average insurance claim over wu cars. See Table 2.1 in
Dannenburg et al. (1996, p. 35) for a list of the data. In Table 4.1, we give the
average for each fleet 3c,-, together with the standard error of 3c,-, and exposure
wi ( = car years).

Fleet

Average

Std Error

Exposure

/

509.3

16.29

526

2

178

34

250

Average Claims

3

2 300.5

74 134.5

60

TABLE 4.1

for Each Fleet over

4

359.9

64.30

138

5

653.9

59.93

174

the Ten

6

176.9

103.0

40

Years

7

441.1

32.63

158

8

506.4

84.27

128

9

795.3

237.7

36

Assume that the conditional density of the underlying individual claim Y\0 is
given by a normal density with mean 6 and known variance a2; that is,

f(y\o) =

Given that a risk's claim experience is x = (JCI, ..., xj) with exposure
w = (w\, ..., wj), the likelihood of 8 is, up to a constant multiple,

w(B - xf
L(6) = exp -

in which w = X]/=i wj an<^ x — — . Note that the variance a1 is the

expected process variance, so we estimate it by s2 given by (Dannenburg et

al., 1996)

2
S =

1

9(10 -

Two commonly used symmetric kernels are (1) the Gaussian kernel, G,

G(t) = —=e~<i: , -oo < t < oo,
/2
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and (2) the Epanechnikov kernel, Epa,

Epa(t) = < -y/5 < t< VI
4 V~5
0, else.

In this example, we use the Epanechnikov kernel because its domain is
bounded, and one can, therefore, easily restrict the support of no{9) to lie in
the nonnegative real numbers.

There are many techniques for choosing the window width h,; see, for
example, Silverman (1986, Section 3.4). We use a (modified) fixed window
width selected by reference to a standard distribution (Silverman, 1986,
Section 3.4.2). The window width h that minimizes the mean integrated
squared error is given by

•, - 2 / 5 r f >> 1/5 ( , ^ - 1 / 5

t2K{t)dt\ I I K(tfdt\ I I n"{9)d9\ r"1/5. (4.1)

To approximate this optimal window width h, assume that n(9) is say,
normal, with mean 0 and standard deviation r. In that case, the term

n"(9)d9 equals -7T~1/2r~5. Estimate the standard deviation r by an estimate
8

of the standard deviation of the hypothetical means (Dannenburg et al., 1996)

161.85,
tot Z—/i=l i

in which s2 « (833.73)2.
The bandwidth h is (l)~2/5(0.268)1/5(0.212)"1/5(161.85)(9)-1/5 « 109.4,

as given by (4.1). Truncate this bandwidth h for a given risk if, by otherwise
using it, the prior density would have a negative support. Specifically, if

h > -—L, then set the bandwidth hi equal to —f=, to guarantee that the support
v5 y5

of the estimated density of 9 be contained in the nonnegative real numbers.
See Figure 4.1 for a graph of the prior density no, given by (2.2). One can
also vary the window width with the weight wt for each risk, / = 1, 2, ..., / ,
for example, ht <x

https://doi.org/10.2143/AST.28.2.519065 Published online by Cambridge University Press

https://doi.org/10.2143/AST.28.2.519065


ROBUST BAYESIAN CREDIBILITY USING SEMIPARAMETRIC MODELS 199

0.003

0.002 —

0.001 —

0
0 500

FIGURE 4.1: Base Prior Density irn

1000

See Table 4.2a for a list of the posterior expectations of 8 given the
experience of the nine fleets, in which TTO is the prior density. Also in Table
4.2a are the lower and upper conditional expectations, (3.3) and (3.4),
respectively, using c — 1 and 2 in the definition of the multivalued mapping
F, given by T(6) = [9 — c se(0), 9 + cse(6)]. To create se, we linearly
interpolated the nine ordered pairs (xh se(xj)). See the Appendix for more
details concerning the calculation of the entries in Table 4.2a. In Table 4.2b
are the differences between the lower conditional expectations and the base
conditional expectation, as well between the upper and base conditional
expectations.

TABLE 4.2a

Posterior Expectations for the Nine Auto Fleets using Local Perturbation Priors

Fleet

Lower, c = 1

Lower, c = 1

Expectation

Upper, c = 1

Upper, c = 2

1

453

473

509

561

580

2

76

128

187

273

308

3

226

270

329

418

479

4

278

316

372

456

519

5

500

558

631

688

725

6

85

170

246

371

419

7

357

395

447

503

540

8

433

457

504

557

589

9

479

537

661

785

841
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TABLE 4.2b

Distance From Base Expectation to Lower and Upper Conditional Expectations
using Local Perturbation Priors

Fleet

Lower, c = 2

Lower, c=\

Upper, c = 1

Upper, c = 2

Exposure

1

-56

-36

52

71

526

2

-111

-59

86

121

250

3

-103

-59

89

150

60

4

-94

-56

84

147

138

5

-131

-73

57

94

174

6

-161

-76

125

173

40

7

-90

-52

26

93

158

8

-71

-47

53

85

128

9

-182

-124

124

180

36

Note in Table 4.2b, that although fleet 8 has much lower exposure than fleet 2,
fleet 8 has a tighter interval for its conditional expectations than does fleet 2.
This occurs because the sample average of fleet 8 is closer to the center of the
prior density, as seen in Figure 4.1. This phenomenon is also observed when
one compares fleets 5 and 7 and fleets 4 and 8, two fleets with nearly equal
exposure, as well as fleets 7 and 8, to some extent. Thus, the intervals for the
conditional expectations of a fleet, a measure of the robustness of the base
expectation given in Table 4.2a, depends on the fleet's exposure and on the
location of its sample mean relative to the other sample means.

For comparison, we also include the Buhlmann-Straub credibility
estimates in Table 4.3, along with the estimates ±1 and ±2 standard errors,
(Dannenburg et al., 1996) or (Frees et al., 1998). Note that the standard error
of a fleet's credibility estimate, a measure of the confidence one has in the
estimate, varies inversely with the fleet's exposure and is not related to the
location of its sample mean. In other words, the width of the Buhlmann-
Straub confidence intervals accounts only for the exposure of the fleet, while
ignoring the 'likelihood' of observing the given sample mean. On the other
hand, the intervals of the conditional expectations for the local perturbation
priors depend on both the exposure and the location of the sample mean.
They implicitly treat 'unusual' sample means, observations in the tails of the
distribution, as being less reliable.

TABLE 4.3

Credibility Estimates for the Nine Auto Fleets using the Buhlmann-Straub Model

Fleet

Lower, -2 se

Lower, -1 se

Cred est

Upper, + 1 se

Upper, +2 se

Std Error

/

434

470

506

541

577

36

2

102

152

203

253

304

51

3

158

250

341

433

524

91

4

240

306

372

438

503

66

5

506

565

625

684

744

60

6

69

174

279

384

489

105

7

316

378

440

502

564

62

8

358

426

494

562

630

68

9

425

533

642

750

859

109
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5. SUMMARY AND CONCLUSIONS

We have presented a method for calculating robust Bayesian confidence
intervals for the predictive mean of future insurance claims given the sample
mean of past insurance claims. We showed how our method can be framed
in the context of the Dempster-Shafer theory of belief functions. Within this
framework, one can calculate robust Bayesian intervals numerically by using
an iterative algorithm given by Walley (1991). We demonstrated our
procedure with insurance claim data from Dannenburg et al. (1996). We
showed that robust Bayesian intervals account for both the randomness of
the data and for the location of the sample mean relative to the other sample
means, while (classical) nonparametric confidence intervals account for the
former but not the latter.

Berger (1994, p. 8) eloquently argues for robust Bayesian methods:
'Rightly or wrongly, the majority of the statistical world resists use of
Bayesian methods. The most often vocalized reason is fear of using a
subjective prior ... Robust Bayesian methods, which can operate with a wide
class of prior distributions, ... seems to be an effective way to eliminate this
fear.'
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APPENDIX

Recall that the lower conditional expectation E_[8\x] is the unique solution a
to the equation (3.5)

E[(8 - a)L(8)) = 0,

(Walley, 1991, Chapter 8). Walley (1991, p. 550) gives an algorithm for
calculating is[0|.x], and we describe it at the end of section 3. To apply this
algorithm in our example in Section 4, we must be able to calculate
E[(8 - a)L{0)}, E[L(8)], and E[L(8)], for any positive real number a and for
the likelihood function L and perturbation function T given in Section 4.

We use equations (3.7) and (3.8) to calculate these expectations.
Specifically,

E[(9 - a)L(0)] = f inf (0* - a)L(8*)no(8)dd.
J O'er(6)

The function (0* - a)L{6*) reaches its infimum at either the endpoints 1(8)
or u(8) of T(8) n R+ or at the critical points 8+ or 8- (depending on whether
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t h e cr i t ica l p o i n t s lie in r ( 0 ) n R + ) , in w h i c h 1(9) =0-c se(0) if 0 > c se(0),

0 else; u(0) = 9 + c se(6); and 0± = - a + x) ± \j(a- x)2 + 4 — . Thus,

inf (9*-a)L(9*) = l
'•er(6»)

rmn[(l(e)-a)L(l(0)),(6_-a)L(0_),(e+-a)L(9+),
(u(9)-a)L(u(0))},

Similarly,

in which

if l(9)<9_<u(0)<9¥,
mm[(l(9)~a)L(l(9))Xu(9)-a)L(u(9))l

\U(9)<u(9)<9.<9+.

£•[£(0)] = / sup L(9*)iro(9)d9,

Also,

in which

if x < /(0) < u(9),
sup L(0*) = <( L(x), if /(0) < x < M(0),

"*"""" ^(«(0)), if/(0) <"(0) < x

inf L(9*)iro(9)d9,
er(e)

E[L(9)} = f inf
J e>er(e)

C L(M(0)), if x < /(0) < u(9),

inf L(0*) = <̂  min[L(/(0)), L(u(9))], if /(0) < x < u(9),
( L(/(0)), if 1(9) < u(9) < x.

One calculates the ingredients for the algorithm for £[0|x] similarly.
Specifically, replace min with max in calculating sup (0* - a)L(9*).
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