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Fixed points and frontiers', a new perspective
SEBASTIAN HUNT AND CHRIS HANKIN

Department of Computing, Imperial College, London

Abstract

Abstract interpretation is the collective name for a family of semantics-based techniques for
compile-time analysis of programs. One of the most costly operations in automating such
analyses is the computation of fixed points. The frontiers algorithm is an elegant method,
invented by Chris Clack and Simon Peyton Jones, which addresses this issue.

In this article we present a new approach to the frontiers algorithm based on the insight that
frontiers represent upper and lower subsets of a function's argument domain. This insight leads
to a new formulation of the frontiers algorithm for higher-order functions, which is
considerably more concise than previous versions.

We go on to argue that for many functions, especially in the higher-order case, finding fixed
points is an intractable problem unless the sizes of the abstract domains are reduced. We show
how the semantic machinery of abstract interpretation allows us to place upper and lower
bounds on the values of fixed points in large lattices by working within smaller ones.

Capsule review

Abstract interpretation is an important and well-studied method for performing compile-time
analysis of functional programs. So far much more attention has been paid to its theoretical
properties than its implementation in practice. A serious problem which must be addressed by
any practical implementation is that of finding fixed points for the abstract functions. This is
simple enough in theory, but a naive algorithm has exponential complexity, so more subtle
techniques are required.

In 1987, Clack and Peyton Jones proposed an algorithm for finding fixed points, based on
a representation of functions called ' frontiers', which offered substantial performance benefits
in typical cases. Their paper was argued quite informally, there was no proof of correctness,
and the method was restricted to first-order functions over flat domains.

Hunt and Hankin have taken this basic idea, worked out the underlying theory, and written
a clear and detailed exposition of the algorithm and its proof of correctness. Further, they have
extended the applicability of the algorithm to structured domains and higher-order functions.

Finally, based on their theoretical foundation, they are able to propose an important new
approximation technique in section 5. A straightforward extension of the frontiers algorithm
to higher-order functions turns out to be unacceptably slow, and section 5 shows how to cut
down the size of the lattice so as to get safe bounds on the required result in acceptable time.

The paper is quite formal, but it will repay careful reading. It is a classic demonstration of
the exciting interplay between theory and practice that characterizes research in functional
programming.
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92 Sebastian Hunt and Chris Hankin

1 Introduction

Abstract interpretation is the collective name for a family of semantics-based
techniques for the compile-time analysis of computer programs. In this article we
restrict our attention to abstract interpretation of typed functional languages using
finite lattices, in the style of Burn, Hankin and Abramsky (1986) and Burn (1987). A
more general introduction to abstract interpretation is given by Abramsky and
Hankin (1987).

Consider a simple typed lambda-calculus with constants:

types: o::= int\bool\a^-a\axG
expressions: e :: = xa | ca | ee | Xx". e.

The expressions are assumed to be well typed.
An interpretation, I, for this language consists of two parts. The first part specifies

a complete partial order (cpo), D'a, for each base type, a, in the language;
interpretations for the compound types are induced in the obvious way:

-Oo,-*^ = [Da,-*••£>„,] ( t n e CP° of continuous functions)

The second part specifies a value, c£e£>£, for each of the language's constants, ca. This
induces an interpretation for all expressions (relative to some environment, p) as
follows:

.ejp =

We will assume that the language has constants, y«,_o)^a, and that for each
interpretation, /, Y'(a^a)_a =fixDi, where

For abstract interpretations we insist that the interpretations of base types (and
hence of all types) are finite lattices.

A much-studied example is the use of abstract interpretation for strictness analysis.
A function/: D -> D' is said to be strict if its result is undefined whenever its argument
is undefined, i.e. if

A * = J-B-.

Mycroft (1981) shows that an abstract interpretation with the domain 2, i.e. ({0,1},
O g l ) , can be used for the strictness analysis of a first-order functional language. This
interpretation is related to the standard interpretation of the language by means of
an abstraction function mapping 1 to 0 and every other value to 1. Strict binary
functions, such as + and —, are given the value kxy.x[]y (since this evaluates to 0
if and only if either argument is 0) while the conditional has the value Xxyz.x fl (y U z).
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Mycroft's interpretation is generalized to a higher-order language in Burn, Hankin
and Abramsky (1986), and an interpretation for lists is introduced in Wadler
(1987).

When a function definition is recursive it is necessary to find the least fixed point
of its associated functional under the abstract interpretation. The sequence/11 in the
above definition of fix is known as the Ascending Kleene Chain (AKC); each element
of this chain is an approximation to the next. To find the least fixed point in an
abstract interpretation it is sufficient to compute successive members of the AKC
until two are found to be equal. When this happens the series has converged and the
least fixed point has been found. This is guaranteed to happen in a finite number of
iterations since the domains are of finite height.

Although finite, the domains can still be very large because of the exponential
growth of a function space in the size of the argument domain. Thus, an efficient
method of representing the value of each approximation is needed. This is the purpose
of frontiers.

The use of frontiers as a compact representation of functions over finite lattices was
first proposed in Clack and Peyton Jones (1985), where an algorithm for establishing
the frontiers of a function is developed. This algorithm is restricted to first-order
functions in function spaces of the form [2"-»2]. In Martin and Hankin (1987) the
algorithm is extended to cope with higher-order functions.

In this article we present a new approach to frontiers based on the insight that they
represent upper and lower subsets of a function's argument domain. This insight leads
to a new formulation of the frontiers algorithm for higher-order functions which is
considerably clearer than previous versions.

We go on to argue that for many functions, especially in the higher-order case,
finding fixed points is an intractable problem unless the sizes of the abstract domains
are reduced. We show how the semantic machinery of abstract interpretation allows
us to place upper and lower bounds on the values of fixed points in large lattices by
working within smaller ones. We discuss the interaction of this approach with the use
of frontiers.

A less technically detailed version of this article (Hunt, 1989) was presented at The
Fourth International Conference on Functional Programming Languages and
Computer Architecture, 1989.

In order that this article should be reasonably self-contained, the mathematical
prerequisites for an understanding of the detailed technical development are briefly
reviewed in appendix A.

2 Notation

In this section we introduce some notation used in the rest of the article.
Given a subset X ^ D, we denote the complement of X with respect to D by

CD{X), or just C(X) when D is clear from the context.
We write 2 for the lattice ({0,1}, e ) with O g i .
The function liftD: D->DX is the obvious injection into a lifted poset.
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94 Sebastian Hunt and Chris Hankin

For a function/: A -»• B and subsets X ^ 4 and F s f i , the set {fa\ asX} is denoted
by/2f, and the set {asA \fae Y} by f^Y.

Given a poset D and subset X ^ D,

(i) the upward closure of X, written f^J, is the set (J {</'e£>|c?E d'}\

(ii) the downward closure of X, written J ,^ , is the set |J {dsD\d ^d).

We will also write \Dx and j D x as shorthand for the sets fD{x} and jfl{x} respectively.
We will denote the poset of monotone functions from D to D', ordered pointwise

on D, by [D^D'].
We will be working with a family of finite lattices, JS?, with the following inductive

definition:

m Dxx ... xDne£C if
• [D^D']e£> if D, D

with the usual induced orderings for lifted posets and products. The definition of this
family is motivated by the study of strictness analysis as described in Burn, Hankin
and Abramsky (1986), Burn (1987) and Wadler (1987), but a similar structure has
been used in other abstract interpretations such as binding time analysis (Jones,
Sestoft and Sondergaard, 1985) and escape analysis (Goldberg and Park, 1990).

Throughout this article, we will routinely omit subscripts; for example, writing f
instead of \D, when D is clear from the context.

At a number of places in what follows, we appeal to the concept of duality to avoid
unnecessary duplication of proofs. Essentially, this hinges on the observation that a
finite lattice 'turned upside-down' is still a finite lattice. The concept is formalized in
appendix A.

3 Representation of functions

As was mentioned in the introduction, to find fixed points in an abstract
interpretation, successive members of the AKC are compared until the series has
converged. To compare two functions for equality it is necessary to check that the
functions agree at every point in their domain. A naive approach to performing such
comparisons evaluates both functions at each point in their domain in turn. Even for
a first-order function in an interpretation using only the two-point domain, 2, this
involves 2" tests, where « is the number of arguments. For higher-order functions the
situation is much worse.

A better approach is to use a compact concrete representation for function values
such that equality of functions coincides with equality of their representations.
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3.1. Factoring functions
In this subsection and the next, we introduce our representation for functions. We will
define a mapping, Rep, such that

o f=g

Rep is defined by induction on the structure of the function spaces in SC:

where £>' is not a function space, k > 1 and uncurryt(/)(xx,x2,... xk) =fx1x2... xk

RepD*(/>'1x...xD;)(/)

where n( is the /th projection.

where Lfe[D-+2] is the low factor of/:

_ ( 0 if fix) = 1
Lf^ = \ 1 otherwise

and Hfe[D^D'] is the high factor of/:

1D. if f{x) = 1

rf if Ax)--

Functions in [D -*• D'J and their high and low factors are related by the following
lemma:

Lemma 1
For all posets D, D', functions/ ge[D->D'L],

f^g o {Lt c Lg and Hf c Hg)

Proof
=>: Assume f^g. There are two cases to consider for any xeD:

Ax) + 1 : g(x) =t= 1, since g(x) 3/(^)-

Hence Lf(x) = 1 = L,(x) and lift(H^x)) =Ax) e ?W = W(Hg{x)).

<=: Assume Lr c L9 and Ht c /f̂ . Again, there are two cases to consider for any
xeD:

L/x) = 0: / x = l c j X .

L/x) = 1: L9(x) = 1, since Lf E Lg

so lift(Hj(x))= Ax) and lift(Hg(x)) = g(x)

Hence /(x) E g(x), since //7 e 7/j,.
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Corollary 2
For all posets D, D', functions / , g e [D -> D'J

f=g o Lf=Lg and Hf = Hg D

3.2 Functions in [D -> 2]
To complete the definition of the Rep function, we need to define the 'base' case: the
function spaces [£>->2],

3.2.1 Upper sets as function representations
Perhaps an obvious candidate representation for a function/e [D -> 2] is the set/"1{l}.
To evaluate fx for JC e D we simply check for membership of the representation set;
if xef-^W then fx=\, otherwise fx = 0. The set /^{O} could be used in a
similar manner. Comparison of two functions is straightforward given the following
lemma:

Lemma 3
For all posets D, functions/, ge[D->2], the following are equivalent:

(i)/Eg
(ii) f-^l} s g-l{l}

Proof
Trivial. •

Since {1} is upper and {0} is lower, it follows from the definition of Alexandrav-
continuity that for poset D,fe [D ->• 2],/"1!!} is upper and/'^O} is lower. In fact, there
is a one-to-one correspondence between the upper (and lower) subsets of D and the
elements of [D -> 2], since each fe [D -> 2] is the characteristic function of an upper
subset of D.

Lemma 4
For any poset D, the functions Xg.g'1^} and hZ.%z establish an isomorphism
between [D^2] and &A(D). That is:

and

Proof
Straightforward. •
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Corollary 5
For any poset D, for all/, ge[D->2],

f=g o /-1{l} = r1{l} o f1{0} = g-1{0} D

3.2.2 Frontiers
As a practical representation for functions, upper and lower sets leave something to
be desired. The problem is one of redundancy. For example, it is enough to be told
that X £ 2 x 2 is lower and contains the element (1,1), to conclude that X contains
(1,0), (0,1) and (0,0), since these all approximate (1,1). To keep the whole set would
be a waste of space.

Luckily, for finite posets we can describe the smallest subset of an upper or lower
set which fully determines the whole set. In definition 6 and the following three
lemmas, we introduce two operators, min and max, which can be used to discard
redundant information from upper and lower sets respectively. Since these operators
are idempotent, a single application is sufficient to produce a compact representation
of the set.

Given a poset D, an element dsD and a subset X ^ D,v/e say that d is minimal in
(resp. is maximal in) X if and only if

VxeX.x^d(resp.x 3rf) => x = d

Definition 6
Given a poset D, the operations minD and maxD are defined by:

(i) minD(A') = {xeX\x is minimal in X}
(ii) max^X) = {xeX\x is maximal in X}.

Duality
o(A') = minD.p(A'). •

A subset X c D is said to be irredundant if

V x j e l . ^ c j ; => x = y

Lemma 7.
For every poset D and subset X ^ D, both min(A') and max (A') are irredundant.

Proof
Immediate from definitions. •

Lemma 8
For every poset D and irredundant subset X £ D,

Proof
Immediate from definitions. •

It is immediate from the preceding two lemmas that min and max are idempotent.

4 FPR 1
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Lemma 9
For poset £>, upper and finite subset X ^ D, lower and finite subset Yc.D:

(i) fmin(X) = X
(ii) jmax(T)= Y

Proof
We prove (i) directly, (ii) follows immediately by duality.
£ : Assume xefmin(A'). Then, for some x'emin(A'), x' E x. Thus, for some x' eX,

x' != x since min(A') s X. Hence xeX, since A' is upper.
2 : For any xeX, either xemin(A') or min^—{x}) and there exists an x'e(X—{x})

such that x' ^ x. It is clear that min ({x}) = {x}; the existence of some y e min (X)
such that j c x follows by induction on the size of X, since X is finite. •

Finally, we can define the frontier representation:

Definition 10
For poset D, function fe [D -> 2]:

(i) the minimum-]-frontier for / i s the set F-1D(/)
(ii) the maximum-O-frontier for / i s the set F-0D(/)

/> = F-lDo,(/) •
Now we can complete the definition of the Rep function:

The redundancy (using both frontiers) allows a more-efficient algorithm for
constructing Rep (/), as we shall see below.

Theorem 11 (The representation theorem)
For all D, D'eSe, for all / , g e [D -* D']

f=g o
Proof
Straightforward induction on the type of/and g, using the fact that uncurry is an
isomorphism and that pairing is surjective, together with corollaries 2 and 5. •

Although presented differently, the above definition of a frontier is equivalent to
that originally given in Clack and Peyton Jones (1985).

3.2.3 Using the frontier representations
We need to be able to implement a number of operations using the frontier
representations of a function. Firstly, we need to be able to talk about an argument
value's position relative to a frontier:

Definition 12
Given a poset D, an element de D and a subset X c D, we say that

(i) d is above X if x £ D d for some xeX.
(ii) d is below X if d EDJC for some xeX.
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Duality
d is above X in D if and only if d is below X in £>op. D

Clearly, x is above X if and only if x e f X, and x is below X if and only if x e \X.
We have already seen that using the set/"1!!} as a representation for/, to evaluate

an application^), we must determine whether or not X6/"X{1}. Frontiers can be used
to evaluate function applications by making use of the following:

Lemma 13
For poset D, upper and finite set X £ D, lower and finite set Y £ D, de D,

(i) deX o d is above min (X)
(ii) de Y o d is below max(Y).

Proof
(i) By lemma 9, we have that fmin (X) — X, since X is upper and finite. Hence,

deXif and only if dejmin(X).
(ii) Similarly, by lemma 9, jmax (Y) = Y, since Y is lower and finite. •

In higher-order abstract interpretation we may have to evaluate meets and joins of
functions. The next lemma establishes the basis of an algorithm for this:

Lemma 14
For all posets D, functions f,ge[Z)->2], the following identities hold:

(0
(U)

(Hi)
(iv)

Proof
We only prove the first of these. The others can be proved in similar fashion. For any
xeD,

i/Ug)(x) = l
fx=\ or gx = 1

Since closure operators are expensive to evaluate, we want to eliminate their use
wherever possible. The next three lemmas give a formal basis for the elimination.
Lemma 16 is a technical result which is required in the proof of lemma 17; the reader
who is interested only in key results rather than technical detail may omit it.

Lemma 15
For all posets D, subsets X £ D:

(i) min(t;O = min (X)
(ii) max0lJO = max(A')

Proof
We prove (i) directly, (ii) follows by duality.
£ : assume xemin(tA'), i.e. xe\X and x is minimal in \X. Then, 3x'eX.x' E X ,

4-2
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since x e f X. Now suppose, for some x'eX (hence x' e f X), that x' c x. But then
x' = x, since x is minimal in *\X. Hence 3x'eX.x' E x and Vx'eX.x' !=x=> x'
= x. Hence xemin(A').

2 :assume xemin(A'), i.e. xeX and x is minimal in X. Certainly, xe^X, since
x s l . Suppose, for some x'e fX, that x' g: x. Then, for some x"eX, x" C J : ' C X

But then x" = x, since x is minimal in X. Hence x' = x and so xemin(tAr).
Hence x is minimal in \X. •

Lemma 16
Let Z) be a finite poset and {^(}js/ a family of subsets of D:

(i) min((J ^,) = min(|J min(^f))
iel iel

(ii) max (U At) = max (|J max (At))
lei (el

Proof

(i)
iel

t) lemma 15

= min(Ufmin(ty4,)) lemma 9

= min(Utmin(^44)) lemma 15
iel

jmin^j)) lemma 15
iel

(ii) immediate from (i) by duality. •

The frontiers for the meets and joins of functions can be calculated using the
following result:

Lemma 17
For finite lattice D, subsets X, Y^D:

(i) min
(ii) max(iXf) iY) = max({xny\xeX, yeY})
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Proof
(i)

= min((J
yeY

= min((J |J{^e£»|J3x and i/gj})
xeX yeY

= min(|J |J min({^6£)|^3x and rfg^})) lemma 16
xeXyeY

= min( | J LJ{

(ii) immediate from (i) by duality.

4 An algorithm for finding frontiers

In this section we present an algorithm for finding the frontiers of functions in
function spaces of the form [A -»• 2], where A is a finite lattice. We begin with an
algorithm to find the inverse image of an upper set under a monotone function. This
is then adapted to give an algorithm which finds frontiers.

X:=A;
Y:=A;
while (X n 7 ) 4 = 0

choose x from X (] Y;
if fxsO

then Y:= YnCtfx)
e\seX:=X0C(ix)

endwhile
Fig. 1. Finding the inverse image of an upper set.

4.1 Finding the inverse image of an upper set
For finite posets A and B, fig. 1 shows an algorithm for determining the inverse image
of an upper set, O c B, under a monotone function, fe[A ->/?].

The algorithm conducts a search of A to find both the inverse image of O under/
(the final value of X) and its complement (the final value of Y). At each iteration, the
set X n Y is the remaining search space.

It is easy to show that the while loop of this algorithm has the following invariant
and variant:

(Inv) X=>tx0 and Y^C{f~xO)
(Var) \X(]Y\

The initial assignments clearly establish Inv.
On termination (X(]Y) = 0 , which together with Inv implies that X=f'lO and

Y = C{f-XG).
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4.2 A frontiers algorithm
We now consider how to implement the algorithm of fig. 1 using frontiers to represent
the upper and lower sets.

As a first attempt we can simply use the operations max and min at each step of the
algorithm to make the sets X and Y irredundant. Lemma 9 can be used to show that
the resulting algorithm (fig. 2) calculates min (J^O) and max (CfJ^O)).

For fe [A -> 2], the new algorithm can be used to calculate F-l(/) and F-0 (/) by
choosing 0 = {1}. On termination, X is then F-l(/) and Y is F-0(/).

We must now show how to avoid the use of the closure operations f and \, (since
their use rather defeats the purpose of working with frontiers).

X:= min (A);

choose x from f X n I Y;
if fx eO

then r:=max(|ynC(tx))
else X:=mintfXr\C(lx))

endwhile
Fig. 2. A naive frontiers algorithm.

4.2.1 Avoiding the use of \ and \
For any poset D, subsets X, Y ^ D,

This observation motivates the following:

Definition 18

For subsets X,Y^A, edges (A', Y) is the set

{xeX\x is below Y}\J{ye Y\y is above X} •

We can then replace the test of the while loop by the test

Furthermore, since edges (X, Y) £ (f X (1 \ Y), we can replace the first command in the
body of the while loop by

choose x from edges {X, Y)

The question of which element is chosen from the set edges (X, Y) can have a
significant impact on the efficiency of the algorithm. We refer the reader to Clack and
Peyton Jones (1985) and Martin (1989) for a discussion of this point.

It remains to calculate the sets for the assignments within the while loop. We will
concentrate on the case that fe [D ->• 2] and O = {1}.

Let us consider the first assignment:
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Fig. 3 Fig. 4

This assignment is executed when we know that/(;t) = 1. Recall that j F i s a superset
all those points, x, such that/(x) 4= 1, and that at this stage j Y also contains x (fig.
3). By monotonicity, all of the elements above x (i.e. fx) will also map to 1; thus C(fx)
is the set of points that the value f[x) tells us nothing about. Intersecting C(fx) with
4Y gives a set which is strictly smaller than j F while still being a superset of/"1!!},
and the outer application of max gives the new approximation to the maximum-0-
frontier being searched for (fig. 4).

To optimize this procedure, we will find the minimal points which are not below x.
We can then define an operation to ' remove' just those points from the (approximate)
maximum-O-frontier, Y, without having to calculate \Y. The second assignment is
dual to the first and concerns the case when f[x) = 0. For this case we need the
maximal points which are not above x:

Definition 19
For a poset D, the operations succsD and predsD are defined as follows, for xeD:

(i) succso(x) = minD(CD(jox))
(ii) predsD(x) = maxD(CD(tD x))

Duality
predsD(x) = succsD.P(x) •

The names succs and preds may seem a little strange in light of their definitions. The
reason for this is that in Martin and Hankin (1987) the corresponding functions were
(incorrectly) defined to return the immediate successors/predecessors of a point in a
lattice. Note that for chains the definitions are equivalent. The mistake was spotted
by Chris Martin and is corrected in his thesis (Martin, 1989).

Using succs and preds, we can avoid the use of the first closure operator on the
right-hand-sides of the two assignments:

Theorem 20
For finite lattice D, subset F £ D and element xeD:

(i) min (f Y (] C(.[xJ) = min {y U z \ y e Y, z e succs (x)}
(ii) max(|Y(1 C(fx)) = max{y[]z\y^Y,zepreds(x)}

Proof
By lemma 9 C(\x) = fmin (C(jx)) and C(fx) = jmax (C(fx)), since C(\x) upper and
C(fx) lower. Then the result is immediate by lemma 17. •
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while edges (X, Y) = 0
choose x from edges {X, Y);
if fxeO

then Y: = 7fimaipreds(x)
else X:= Xomtnsuccs(x)

endwhile
Fig. 5. The final frontiers algorithm.

Remark
There is some room for optimization in the application of theorem 20. For example,
if we partition Y into Yt and Y2, where

and Yt= {yeY\yt=x}

then it can be shown that

min (f 7 n C( jx)) = min (Y1 U ( t Y2 f] C(|x)))

allowing us to reduce the number of joins to be calculated. •

To make use of lemma 9 and theorem 20, we define the operations Dmin and omax,
for X,YCA, by

in Y = min({x []y\xeX,ye Y})

and

Xr\max Y = max({x Uy\xeX,ye Y}).

Lastly, we note that when A is a lattice

= {J.^} and max (/I) = {T^}

The final version of the algorithm is shown in fig. 5.
Before we show how to implement the operations preds and succs for lattices in i?,

we must address the question of how the elements of the frontier sets are to be
represented.

4.2.2 Representing frontier elements
In section 3 we showed how a function in any of the function spaces in S£ can be
factored into a collection of functions in spaces of the form [D->2]. Such functions
can then be represented by frontiers, which are just sets of elements of D. However,
we have not yet addressed the question of how these elements should themselves be
represented. Clearly, when D is 2, the answer is straightforward enough. It is also
clear how elements of prdduct spaces and lifted lattices may be represented, given
representations for elements of their component lattices. Thus the problem is again
one of representing functions.

We will assume that the functions which occur as elements of frontiers are
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themselves represented by factorization and the use of frontiers. We shall see that, as
in Martin and Hankin (1987), both the minimum-1-frontier and the maximum-0-
frontier are needed by the implementation of preds and succs.

4.2.3 Implementing preds and succs
We need to calculate succs (x) and preds (x), xeA, for each AeSC. We consider each
of the cases in the definition of JS? in turn. The detailed proofs of the lemmas can be
found in appendix B.

(i) A = 2.
This case is simple since

succs (1) = min(CUl)) = min(0) = 0
succs (0) = min(CUO)) = min({l}) = {1}

Similarly,

preds (0) = 0 and preds (1) = {0}

(ii) A =D1x...xDn.

Let S((y) = ( lD l , . . . . -LiW.J'. -LDj+1,.... -Lo>
Let Pt(y) = (TDi,..., T^.y, TD|+i>.... TDJ.

Lemma 21
For xt e Dt, 1 ^ / < n:

n

(i) succs (*!,..., x j = U {S^d) | de succs (*,)}

(ii) preds(x1; ...,xn) = \J{Pt(d)\depTeds(x()} Q

(iii) ^ = Z)±.

succs (/i/«(rf)) = {/j/i(ar) | d e succs (d)}
preds(l) = 0

preds (///*(</)) = {////(d7) | if e preds (d)} d * 1 0

(iv) A = [D^ ...^•Dlc-+D'],k > 1, where £>' is not a function space.
We assume eachfeA to be represented by its uncurried version, uncurryj.^. Then,
since uncurry4 is an isomorphism:

uncurryt(predsil(/)) = predsOiX x C ^ c ,

Similarly for
(v) A = [D-*D'1x...xD'n\.
We assume each/£v4 to be represented by the tuple (fv ...,/„), where/( = n,of.
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Then, since the m a p / i - > ( / i , . . . , /„) is an isomorphism from [D^-D^x ...x D'n] to

[D^D'l]x...x[D^D'n],

{(hu ...,hn)\hepredsA(f)} = preds[0^D;]x...x[O-,D;](/i, • •-,/„)

(vi) A = [£>-* 2].
Given the minimum-1-frontier and maximum-O-frontier for fe [D -> 2], we show

how to calculate preds ( /) and succs ( / ) and the frontiers for the elements of these
sets.

Lemma 22
For finite poset D, function fe [£>->• 2]:

(i) succs[B^2](/) = min[D^2](C[D^2)(|[D^2]/)) = (xtJxeF-0D

(ii) preds[D^2](/) = max[fl^2](C1D^2](t[C_2]/)) = {xCUx)|x6F-lo(/)} •

Note that to evaluate succs (/) we need the maximum-O-frontier of/, whereas for
preds (/) we need the minimum-1-frontier. Thus, in general we need both
frontiers of a function. We can adapt lemma 22 to give both kinds of frontier for
each member of succs (/) and preds (/).

Frontiers for the members of succs (/) are given by:

{F-l(g)|gesuccs(/)}
= {F-l(x,J|xeF-0(/)}
= {min(^){l}|x6F-0
= {min(fx)|x£F-0(/)}

and:
{F-0(£)|gesuccs(/)}

= {F-0(x,J|xeF-0(/)}

= {max(C(t*))|xeF-0(/)}
= {preds(x)|x6F-0(/)}

Similarly, frontiers for the members of preds (/) are given by:

{F-l (g) | g e preds (/)} = {succs (x) | x e F-l (/)}

and:
{F-0 (g)\ge preds (/)} = {{x} | x £ F-l (/)}

(vii) 4̂ = [D^D'J.
For fe[D^ 2], D'e^C, the fea^? and greatest embeddings o f /a re defined to be

lembD.(f)6[D->DL], where
| 1 if /x = 0

W » ' ( / ) W = ( | l / / ( i o , ) otherwise

and gewZ?D-(/)e[D^Z)^], where

I ± if /x = 0

g e ^ D ,co(x) = j / z / r ( T c ) otherwise
respectively.
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For fe[D->-£>'], the least and greatest liftings of/are defined to be llift(J)e[D^-
D'±], where

1 if fx = LD.
o t h e r w i s e

and glift(f)e[D^D'L], where

glift(f)(x) = lift(Jlx))

respectively.

Lemma 23
For a l l / e^ = [D^D'J, succs(/) = m i n ^ U S2), where

5*! = {lembD{h) \ h e succs (Lf)}
S2 = {//i/r(A) | h e succs (#,)} •

Lemma 24
For all/e/1 = [D^-D'J, preds(/) = m a x ^ u P2), where

Proof
Similar to that for lemma 23 (see appendix B). •

4.2.4 Changing the initial values in the frontiers algorithm
It was pointed out in the original presentation of the frontiers algorithm (Clack and
Peyton Jones, 1985), that the frontier sets for one approximation to a function can
be used to reduce the size of the search space when finding the frontier sets of the next
approximation.

In terms of our presentation, we can explain this by reference to lemma 3. If/( and
fi+1 are successive approximations to the value of /e [/*->• 2], then /, e / m and so
yj"x{0} S/T+xiO}. Recalling the loop invariant (Inv), this allows us to initialize Y to
F-0(/<) rather than {T^} when calculating the frontiers for/j+1.

In the same way, if we were given the set F-l(g) for some function g 3 / , we could
initialize X to F-l(g) rather than {1^} when establishing the frontiers for each of
the/,.

4.3 Comparison with previous formulations of the frontiers algorithm
Despite substantial differences in presentation, the algorithm described above is
essentially a generalization of the algorithm for first-order functions described in
Clack and Peyton Jones (1985). For example, when D is of the form 2", theorem 20
corresponds exactly to the 'shine down' operation.

The fact that frontiers represent upper sets and lower sets is a new insight which has
allowed us to present the extension to the higher-order case in a manner which is more
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straightforward than previous formulations. The ideas behind this insight stem
directly from the approach taken in Martin and Hankin (1987) and Martin (1989). Of
particular importance was Martin's realization (1989) that the correct generalization
of succs(x) to non-chain domains should be in terms of the set {yeD\y £$x} rather
than {yeD\y]x} (as was suggested in Martin and Hankin, 1987).

One significant difference between our algorithm and the above mentioned
versions, is that we do not need to take any special measures, such as those taken in
Peyton Jones and Clack (1987) and Martin and Hankin (1987), to ensure that a
function is evaluated at most once at each point in its argument lattice.

5 Frontiers are not enough

In this section we argue that despite the benefits gained from the use of frontiers it
will often be necessary to reduce the size of the abstract domains before attempting
to find the fixed point of a function. We provide a method of doing this without
having to change the original abstract interpretation. In general this will entail settling
for imprecise but safe approximations to the actual fixed point of a function.

5.1 A problem of complexity
For many of the functions which arise in abstract interpretation, establishing the
graph of a function, using any method, will be intractable. To see why this is so,
consider the familiar function:

foldr :{a^§^$)^ list a^§^$
foldrj\]b=b
foldr f\a :as)b= fa (foldrfas b)

Suppose we wish to analyse programs using foldr for strictness in the style of Burn,
Hankin and Abramsky (1986) using Wadler's domains for lists (1987). When foldr is
used at simple types (e.g. a = p = int) this is straightforward. However, in many quite
ordinary programs, foldr is used at more complex types. For example, in the
definition of the catenate function

cat: list(list char) -* list char
call = foldr append I [ ]

foldr is used at a type instance with a = p = list char.
The interpretation used for char is 2. This induces interpretations of (2±)± (written

4) for list char and (4X)X (written 6) for list(list char). The abstract function for foldr
at this type would thus be an element of [[4 ->4 -̂ -4] ->-6->4 -» 4].

Even taking monotonicity into account, it is not hard to show that the argument
domain alone for (an uncurried version of) this function contains of the order of 106

elements. Clearly, if we have to evaluate any one of the approximations to foldr at a
significant proportion of these elements to establish its value, the operation of finding
a fixed point will be too costly to be considered in any practical compiler. (The use of
a polymorphic function in this example raises the question of whether it is necessary
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to calculate the values of polymorphic functions at their higher type instances. A
detailed discussion of this topic is beyond the scope of this article (see Abramsky,
1986; Hughes, 1988). We could just as well have used a monomorphic example to
illustrate the underlying complexity problem.)

The kinds of function which are 'well behaved' with respect to the frontiers
algorithm are described in Peyton Jones and Clack (1987); because the frontiers
algorithm searches the argument lattice from the top and bottom, working towards
the middle, well-behaved functions are those which have frontiers whose elements are
either very low down or very high up the argument lattice. For such functions the
frontier sets are small and the frontiers algorithm will find them with little effort. On
the other hand, badly behaved functions have frontier sets consisting of elements
from the middle of the lattice and in the worst case the frontiers algorithm will
evaluate the function at every point in the lattice before finding the frontier sets.

Experience with an implementation of a strictness analyser employing the frontiers
algorithm suggests that higher-order functions are often badly behaved (as is certainly
the case for foldr). One reason for this may be that many higher-order functions apply
some of their arguments to others and thus behave as more or less exotic variants of
the apply function. The problem with apply is that the value of {apply fx) will be high
up in the result lattice if either f or x are high in their respective lattices.

5.2 Reducing the size of a lattice
Our solution to the complexity problem cited above is to work in a smaller lattice to
establish bounds on the required fixed point. We use maps, reminiscent of the abs and
cone maps used in abstract interpretation (see, for example, Burn, Hankin and
Abramsky, 1986), to move between larger and smaller lattices. First we must
formalize the notion of one lattice being smaller than another.

Definition 25
The abstraction ordering, =̂  , on members of j£? is as follows:

D1x...xDn^D'1x...xD'n if D, ̂  D't, 1 < i sj n
DX^D'X if D^D'

[A^B)^[A'^B'] if A^A' and B^B'

If A =̂  B, we say that A is an abstraction of B. •

We next define two families of abstraction and concretization maps relating
elements of members of if: the ' safe' maps, which give overestimates of values, thus
allowing us to derive upper bounds on fixed points, and their 'live' counterparts,
which give underestimates and allow us to derive lower bounds.

The concepts of safety and liveness are borrowed from the abstract interpretation
literature (e.g. Mycroft, 1981). Strictness analysis is a good example of a safe analysis;
the overestimation means that we sometimes fail to infer that a function is strict when
it is strict (1 is used to represent possible termination). Mycroft's termination analysis
is a good example of a live analysis; the underestimation means that we sometimes
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fail to infer that a function terminates when it does (0 is used to represent possible
non-termination).

Definition 26
For each D, D' e Z£', such that D' =̂  D, the safe abstraction and concretization maps

Abss
D D.e[D^D'] and Concs

D. D e [£>' -> D]

are defined by:
(0 ifx = l D

AOSD.IX - I i otherwise

LD ifx = 0
= 1

i f x = 1
x =

( 1 i fx= 1
^OIM-ciDx \Concs

DDd if x = lift d, for some
"= AbsB B, o/oConc^. ^

o

For £> = [£>! x ... x Z)J and D' = [D[ x ... x £>;],

cs (x v ^ = (x' x' \ whprp x' = Ahs5 >x 1 <C i 5C n

Concs
D. ^Xi,. . . , x j = (x;,..., x'J where x\ = Conc!

D; D( xt, 1 < i ^ «. Q

Definition 27
The definitions of the //ve abstraction and concretization maps are given by
substituting Abs' for Abss and Cone' for Cone" everywhere in definition 26, except for
the base case for Abs', which is

2 | 0 otherwise •

The following lemma states the exact adjointness property (Mycroft, 1981) of the
Abs and Cone maps.

Lemma 28
For all A, A's<£ such that A' =̂  A:

(0
(ii)

Proof
Straightforward induction on A'. •

Corollary 29
For all D,D'&<£ such that D' ^D:

(i) ConCo- o and Conc/D, D are injective.
(ii) Abs5, D- and Abŝ , D. are onto,

(iii) AbSo D. and Abs'D D, are strict.
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Lemma 30
For all lattices A, A'eSC such that A' ̂  A,

(i) fix,,. =
( i i ) R x A , = ^ ^ j t l l ^ j A

Proof
(i) Let D = [A^A] and D' = [A'^A'].
A routine induction on / suffices to show that for all i, for all fe D',

Abs^,((Conc^D/)<±J =fLA,

Then, for any fe[A' -> A'],

(Abs
[ [ / 4 _

\jAbss
A A.((Concs

D. nf)*!^, since Abs ÎJ4, monotone, A finite
i-0

(ii) The proof for (i) goes through identically, substituting Abs' for Abs" and Cone'
for Cone8. •

Theorem 31
For all lattices A, A'e& such that A' ̂  A, for all fe[A^ A].

(i) Conc^Cfix^Abs^,,^,,/)) 3 fix,/
(ii) Conc^tfix^Abs^,,^,,,/)) Efix,/

Proof
(i) Conc'.^ofix^oAbs^^^,^^^.,

]jM^i!., lemma 30
V ^ ^ ^ ^ ^ ^ ^ j ^ , ^ , , , , def. 26

3 fix^ lemma 28
(ii) C o n c ^ o f i x ^ . o A b s ^ , ^ . ^

= Conc|,.ii,o(Abs|[il^il]^il,i[[il^il.]^i,1flxil)oAl»s{il^il]i[il^i41 lemma 30
= Conc|1.>i4oAbs|tii4.ofixi4oConc[i4^/1.]iM^il,oAbs[i4^i4]i[il^i4-] def. 26
E flx^. D lemma 28

Theorem 31 tells us that we can find safe and live approximations to the value of
a function defined as the fixed point of a functional over some member of £C, by
abstracting the functional to a smaller member of <£ and finding the fixed point there.

5.3. Applying Cone to a frontier
Given a functional Ge[A^>-A], we obtain upper and lower bounds on the value of
fix^ G by evaluating

A(AbsA ^.oGoConcV J )
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and

^ J).
(Note that this is not an abstract interpretation of a term in some language, but the
application of an abstraction map to the denotation of a term under such an
interpretation.) In general, this will involve applying Cone maps to the frontier
representations of functional values. We can evaluate such applications using the
following result:

Lemma 32
For D, D'ey such that D' ̂  D, for/e[£»'^2],

(/oAbs^r^O} = j{Conc*D, Dx\xer{0}}

Proof
^ : assume ye(JoAbs^, oO'HO}, i.e. yeD and/(AbSc Dy) = 0.

Then (Conci, ̂ Abs*,, D,;;)) e {Concs
D, Dx\x ef^O})-

By lemma 28, y E Conc^,D(Abs8
D D,y).

Hence >>e|{Concs
fl,.Dx\xe/'HO}}.

3 : assume y e j{ConCo- c x | x e/^^O}}.
Then ^ c ConCo o x , for some xef~l{0}.
Thus^Abs^,,,-;;) c/(Abs^D,(Concs

D,Dx)) = / x (by lemma 28).
Hence y e (Jo Abs^, ^^{O}, since /3c = 0. D

From this it is easy to show that

F-0(Conc^._2L lD_2]f) = {Concs
D, Dx\xe F-0(f)}

since the Cone maps are injective. To obtain ¥-l(Concs
lD._^2] lD_^2:f) we must calculate

the minimum-1-frontier for the complement of (the downward closure of) this set. This
can be done using theorem 20 and DeMorgan's laws.

A dual result holds for the live Cone maps.
The extension to representations of functions from other domains is straight-

forward.

5.4 Using the upper and lower bounds
How can we make use of the ability to place upper and lower bounds on the value
of a function? Here we outline a possible approach to using Abs and Cone in strictness
analysis.

Suppose the function f is defined as Y(F) in a functional language. Abstract
interpretation gives us a function F e [A ->• A], where A e 5£, which safely approximates
the standard interpretation of F. We wish to evaluate/= fix,, F but the lattice A may
be too large for this to be practical. In this case we choose a smaller lattice, A' e S£.

First we use Abs^ A, and Conc^,, A to give us a lower bound on / , call th is / 6 . Using
/!(, we can place an upper limit on the degree of strictness which our abstract
interpretation would determine if time and space allowed. If we find that even/,6 does
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not imply that f is strict in ways in which we are interested, there is no need to proceed
any further.

On the other hand, if the lower bound shows that f may be strict in such ways, we
can go on to calculate an upper bound, say / f u s i n g Abŝ  A. and Conĉ . A. lffvb

confirms that f is strict, our job is done.
In the remaining case,/^6 and/u6 'disagree' concerning the strictness off. We must

then decide whether to cut our losses and accept that we are unable to confirm that
f is strict, or try to calculate improved upper and lower bounds by repeating the
process using a new lattice, A", such that A' =̂  A" =< A. In choosing A" we would have
to be sure that we did not run into the complexity problem we are trying to avoid in
the first place. This would not be entirely dependent on the absolute size of A", since
Conĉ ,- „-(/«,) and Conĉ , A-{fub) place lower and upper bounds on the values of
fix^Abs^ A-F) and fixA-(Abss

A A.F). The lower bound allows us to start the fixed point
iterations at a point above LA. and, as was shown in section 4.2.4, the frontiers
algorithm can use both upper and lower bounds as a means of reducing the search
space when establishing the frontier of each approximation. One possibility this raises
is that the work done in the smaller domains might achieve in a few ' big steps' what
would take many 'little steps' in the original domain.

Further experimentation is needed to determine whether the use of Abs and Cone
to render an abstract interpretation tractable should be an iterative process of
refinement, as is suggested above, or whether we should choose a reasonably sized
domain and stick with it.

6 Conclusions

We have provided a new approach to the use of frontiers in abstract interpretation
which has allowed a concise and clear re-formulation of the frontiers algorithm. In
addition we have addressed a serious complexity problem arising in practical
applications of abstract interpretation. The latter work needs further development in
the following areas:

• Heuristics are required to be used in a compiler to estimate the size of a lattice
and choose a smaller one where necessary.

• Experimental evidence must be gathered to assess the costs and benefits of
attempting to refine the approximations to a fixed point by increasing the sizes
of the abstract domains.

Appendices

A Prerequisites
In this appendix we introduce some notation and basic definitions and facts which are
central to the technical development of the article. Most of the following material is
standard (see, for example, Gierz et al. 1980; Vickers, 1989).

A.I Notation and terminology
A poset is a pair (D, ED) where ?=D is a partial order on the set D.
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Given posets D and £>', a function/: D-+D' is said to be order-embedding (with
respect to c c and cfl.) if and only if

Vx,yeD.fx ^Dfy if and only if x t=Dy

It is easy to verify that a function which is order-embedding must be both monotone
and one-to-one.

A function u; D -> D' is an isomorphism if and only if u is both order-embedding
and onto.

By lattice, we mean a poset in which all finite subsets have a meet and a join. Given
a lattice D, the empty meet, written T D, is the greatest (top) element and the empty
join, written _LO, is the least (bottom) element. A complete lattice is a lattice in which
all subsets have a meet and a join. Note that every finite lattice is complete.

A.2 The Alexandrov and Scott topologies
A topology on a set X is a collection, Q(X), of subsets of X, closed under finite
intersections and arbitrary unions. The members of £1{X) are known as the open sets
of the topology. The closed sets of the topology are the members of T(X) = {CX(A)
| A e Q (X)}. r(X) is closed under finite unions and arbitrary intersections. A topology
may be defined either in terms of its open sets or in terms of its closed sets. (Note that
it is possible for a set to be both open and closed, in particular 0 and Xare both open
and closed sets of all topologies on X.) Cl(X) and T(X) form complete lattices,
ordered by £ .

Definition A.I
Given topologies H(A') and Cl(Y), a function /:X^ Y is said to be continuous if

or, equivalently, if

A.2.1 The Alexandrov topology
Given a poset D and a subset X £ D:

(i) X is upper if and only if VWe D,
(ii) X is lower if and only if VdeD, xeX.d c x =>deX.

The upper and lower sets are the open sets C1A(D) and closed sets TA(D) respectively
of the Alexandrov topology on D. It is easy to see that for posets D, D', a function
f:D->D' is Alexandrov-continuous if and only if/is monotone.

When D' is a lattice then so is [D -> D'], with binary meets and joins given by
= XxeD.fx[]gx and fug =

A.2.2 The Scott topology
Given a poset D, a subset A s D is said to be directed if and only if every finite subset
of A has an upper bound in A.
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The Scott topology on a poset D may be defined as follows: a subset A £ D is Scott-
closed if and only if A is

(i) lower
(ii) closed under the joins of directed sets, i.e. for every directed subset S £ A, if

U S exists then uSeA

Given posets D, D', we will denote the poset of Scott-continuous functions from D
to D', ordered pointwise on D, by [Z)-s-cZ)'].

In computing, discussions of continuity often occur in the context of epos, and a
function / between epos D and D' is sometimes said to be continuous if and only if
for every chain {xn} £ D,

«» = IIC/W)
For the co-algebraic epos this notion of continuity is equivalent to Scott-continuity.

A .3 Finite posets
In this article we have been concerned mainly with finite posets, for which the Scott
and Alexandrov topologies coincide, i.e. for finite poset D and subset X <=, D;

(i) X is Scott-open if and only if X is upper
(ii) X is Scott-closed if and only if X is lower.

As a consequence, for finite posets [D->CD'] = [D-+D'].
Given a poset D, for any subset X £ D, the set fA" (resp. [X) is upper (resp. lower)

and hence, for finite D, Scott-open (resp. Scott-closed).

A.4 Duality
The opposite of a poset D is the poset £>op = (D, E^1), i.e. D with the ordering
reversed. Note that (Z)op)op = D.

For any set D, function / : D -> 2, we define the negation of/ to be /Z»^2 , where

A
_ f 0 if/* = 1
= \ 1 if/x = 0

Note t h a t / = /
For poset D, upper set A £ D, the characteristic function of A, xA e [D-* 2] is

defined by

1 if.xe.4

Let Z) and Z>' be posets. The following dualities hold;

• for all A £ Z), when the join of /4 exists in D, it is equal to the meet of X in DOf

• £> is a lattice if and only if Z)op is a lattice
• for all fe[D->D'], / i s order-embedding with respect to £Dand Eo. if and only

if/ is order-embedding with respect to E D°, and £ D-v
• for all A £ A fD̂  = jD^/4
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• for all A £ D, A is upper in D if and only if A is lower in D"v

• [D -> £>']o p = [Z>op -> Z>'op]
• (£» x Z>')op = Z)op x Z) 'o p

• for all f.D^l, fe [D -> 2] if and only if fe [D°v -> 2]
• for all/, ge[£>^2] , /c [ D ^ 2 ] g i f and only if f g ^ ^ /

• for all upper subsets, A ^ D, %CiA) = %A

B Technical results required for the construction of succs and preds

In this appendix we provide proofs for the lemmas stated in subsection 4.2.3. First we
need two new lemmas (recall that a function / is said to be order-embedding when

Lemma A.2
Given posets D and D', function/: D^D', and subset X £ D, if/is order-embedding
then

(i) m\nD{fX) =
(ii) maxB.(/30 =

Proof
We prove (i) directly, (ii) follows by duality.
£ : assume yemin(fX), i.e. y = f(x) for some xeX, and J{x) is minimal in fX.

Suppose x' E= x for some x'eX. Theny(x') E/(x), since/is monotone. Hence
A*') =flx)> since x ' e ^ a n d ^ x ) is minimal in/5f. But then x' = x, since/is one-
to-one. Hence xemin(A'). Hence je/(min(A')).

2 : assume yef(min(X)), i.e. y =f[x) for some xeX such that x is minimal
in X. Suppose f{x') E/(x), for some x' e X. Then x' c x, since / is order-
embedding. But then x' = x, since x is minimal in X, and soy(x') = J{x). Hence
yemin{fX). •

Lemma A3
For (x15 ...,xn)eD1 x ... x Dn, for each i, 1 ̂  / ^ n:

(i) min({(rfls...,dn)eD1 x ... x Dn\dt <£xt}) = {S{(d)\ desuccs(x()}
(ii) max ({(rf1(..., dn) £ ̂  x ... x Dn \dt ^xt}) = {Pt{d) \ de preds (x()}

Proof
We prove (i) directly, (ii) follows by duality.
It is straightforward to verify that for X} £ Dp 1 ̂  j < n:

O l x . . . x D n ( i n) O i ( A r
1 ) x . . . x

Then, for each i, 1 ̂  / < n:

min ({(rflf..., </„) e D, x ... x Dn \ dl e C(\xt)})

= min (Z)j x ... x D(_t x C( jxs) x Di+1 x ... x £>n)
= min (Z)x) x ... x min (!>,_!) x min (C(|x()) x min (Di+1) x ... x min (Z)n))
= {lD i}x. . .x{l0 ( i}xmin(Caxj))x{lD ( + i}x. . .{l0 n}
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We can now restate and prove lemmas 21 and 22

Lemma 21
For xi e Dt, 1 < / < n:

n

(i) succs(x1,. . . ,xn)=\J {St(d) | desuccs(*,

(ii) preds to,..., x j =
i-l

Proof
We prove (i) directly, (ii) follows by duality.

succs (*!,...,*„)
= min({(rf1;...,rfB)e A | (rf15...,dn) ^(xu ...,*„)

/ n \

= min[\Jmin({(d1,...,dn)eA\dtcxi})\ lemma 16

/ n \

= min I |J {St(d) \ de succs (JC,)} I lemma A.3

n
It is straightforward to verify that the set \J {S((d) | de succs (xt)} is irredundant. The

i-i

required result then follows immediately by lemma 8. •

Lemma 22
For finite poset D, function fe [D -*• 2]:

(i) succs[D_2](/) = min[D_2](C[D-2](j[D_2]/)) = {xtx\xe¥-0D(f}}
(ii) preds[D,2](/) = max[D_2](C[C_2](t|D_2]/)) = {xC(ix)\xeF-lD(f)}

Proof
(i) For ge[D^2] it is straightforward to verify that g c / if and only if

Then:

= min ({g e [D -> 2] | F-0(/) n r x { 1} * 0})

6[£>^2]t V

= min( |J
xef-O(f)

= min( U
ieF-O(/)
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= min( U {
zeF-O(/)

= min( (J
zeF-O(

= min( U min(txfI)) lemma 16
Z6F-<>(/)

= min( |J min({x,J)) lemma 15

= min( (J (xtj)
xeF-O(/)

That the set {%]x \ x e F-0(/)} is irredundant follows from the irredundancy of
F-0(/). The required result then follows immediately by lemma 8.

(ii) follows by duality. •
Before providing the proof for lemma 23 we require the following two additional

lemmas:

Lemma A.4
For any he[D-+2], D'eSf:

(i) min{{ge[D-D'±]|Lg = h}) = {lembD{h)}
(ii) max(fee[/)-Z>i]|L, = h}) = {gembD{h)}

Proof
(i) Let X={ge[D^D'1]\Lg = h}.

We will show that lembD(h)eXand that V/e*.lembD{h) c /
First, let A' = Z,r, where/= lembD(h). Then there are two cases to consider for
any x e D:
hx = Q:lembD{h)(x) = 1, hence h'x = 0.
hx = \: lembD(h)(x) = (liftD. 1D) 4= 1 , hence h'x = \.
Thus h' = h and so lembD{h)eX.
Secondly, assume feX. Then, again, there are two cases to consider for any
xeD:
fx = 1: then L/x) = 0. Thus hx = 0, hence lembD{h){x) = 1 =fx.
fx 4= 1 : then L/x) = 1. Thus hx = 1, hence lembD.(h)(x) = {liftD,LD) c /x .
Hence lembD{h) c /

(ii) Similar. •

Lemma A.5
For any

(i) min
(iO max ({g e [£» -* D'J

(i) Let Jr=
We will show that llift{h) e X and that VfsX.llift{h) e / .
First, let /z' = Hf where/= //(/i(/i). Then there are two cases to consider for any
xeD:
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hx = 1D.: then llift{h)(x) = 1. Thus h'x = 1D. = hx.
hx* ±D,: then llift(h)(x) = liftD.(hx) * 1 . Thus h'x = hx.
Thus h' = h and so Uift(h)eX.
Secondly, assume / e X. Then there are three cases to consider for any x e D:
fx = 1: then H^x) = 1D. = hx. Thus ////jf(/i) (x) = ±=fx.
fx = liftjy LD.\ then HJ^x) = l o . = hx. Thus //i//(A)(JC) = 1 e/x.
/v = lifted,d4= 1D.: then 7//X) = d=hx. Thus //(/it(A)W = ////D.^ = /x .
Hence llift(h) cf.

(ii) Similar. D

Finally, we can restate and prove:

Lemma 23
For attfeA = [D->D'X], succs(/) = m i n ^ U S2), where:

x = {lembD(h) \ h e succs (Z,,)}
6 succs (

Proof
We note that lembD, and ////if are order-embedding,

succs (/)

= min ({g e A | Lg $
= min({geA\Lg$
= min (min ({g e A \

Lf or Hg
Lf}U{ge

Ls % Lf})

^ Hf}) lemma 1
A\H,4H,})
U m i n d g e ^ l ^ ^ Hf })) lemma 16

Now

= mm({geA\ \J

= min( (J {geA\Lg = h})
heCULf)

= min( (J min ({g sA \ Lg = h})) lemma 16
heCULf)

= min ({lembD.(h) \ h e C(lLf)}) lemma A.4
= {lembD(h)\hemm(C(lLf))} lemma A.2

Similarly, using lemma A.5, it can be shown that min({geA\Hg ^ Hf}) = S2. •
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