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Dietary supplements of n-3 fatty acids have long been used to influence chronic inflammatory
disorders. Recent studies with an immune-enhancing diet partly based on n-3 fatty acids report
beneficial effects in patients with acute hyper-inflammatory diseases, such as the sepsis syndrome
or adult respiratory distress syndrome (ARDS). The possible suppression of exaggerated
leucocyte activity, the improvement of microcirculatory events, as well as the opportunity to
administer intravenous lipids enriched in n-3 fatty acids signal the possibility of a combination of
parenteral caloric support and pharmacological intervention. Using parenteral administration of
fish oil-based lipids, a new rapid and highly effective anti-inflammatory agent may allow the
option to alter the immune status in hyper-inflammatory diseases such as sepsis and ARDS.
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Introduction

Recent advances have shown that supply of selective
additives to nutritional regimens can influence inflammatory
and immunological processes of diseases. n-3 Lipids are
capable of modulating lipid-mediator synthesis, cytokine
release, leucocyte activity, and endothelial cell activation.
This review deals with the molecular mechanisms and
cellular functions in hyper-inflammatory diseases, such as
sepsis and adult respiratory distress syndrome (ARDS). It
emphasizes the potential benefit of n-3 lipids in enteral and
parenteral nutrition, heralding the possibility to combine
nutrition and pharmacological intervention. The dilemma of
adequate timing of anti-inflammatory n-3 lipids in sepsis as
a disease with alternating hyper- and hypoactive inflamma-
tory phases will be discussed.

Pathophysiological aspects of sepsis

Sepsis and septic shock continue to be associated with
high mortality rates ranging between 30 and 60 %, despite
major advances in critical care medicine (Friedman et al.
1998; Wheeler & Bernard, 1999; Bone et al. 1997). Sepsis
thus represents the major cause of death in critical care
units worldwide. It is defined as the presence of two or
more criteria of systemic inflammation: leukocytosis or
leukopenia, tachycardia, tachypnea, and fever or hypothermia

(Bone et al. 1992). With the onset of an organ system failure,
sepsis is judged as severe, and hypotension or use of
vasopressor agents signal the beginning of septic shock.

In healthy individuals a tightly regulated, potent and
complex immunological cascade is responsible for the
defense against invading organisms. Uncontrolled liber-
ation of a multitude of pro-inflammatory and potentially
autotoxic mediators has been described in experimental
models of sepsis as well as under clinical conditions
(Dinarello, 1997; Chabot et al. 1998; Heller et al. 1998).
The fact that such a systemic inflammatory reaction may
not only be triggered by microbial invasion, but is
encountered in response to different kinds of tissue injury,
is reflected by the term ‘systemic inflammatory response
syndrome’ (SIRS). In addition to the causative organism,
products released by bacteria such as endotoxins
[lipopolysaccharide (LPS)], exotoxins, superantigens, or
lipoteichoic acid may also trigger the excessive release of
otherwise protective inflammatory mediators and lead to a
hyper-inflammatory response harming the host (Fig. 1).

Polymorphonuclear granulocytes (PMN) are intimately
involved in these events representing the first line of defense
against microbial invasion but at the same time bearing the
capacity to cause serious tissue destruction (Chabot et al.
1998; Yao et al. 1998). Monocytes are able to control the
inflammatory cascades (Volk et al. 2000), based on their
capacity to liberate both pro- and anti-inflammatory
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cytokines as well as chemokines regulating activation and
recruitment of further leucocyte populations to the
inflammatory focus.

In parallel to the inflammatory response to the inciting
injury an anti-inflammatory reaction is initiated that has
been coined ‘compensatory anti-inflammatory response
syndrome’ (CARS) (Bone, 1996). It combines an upregula-
tion of anti-inflammatory cytokines, impairment of
neutrophil function and monocyte deactivation leading to
an impaired host defense and enhanced susceptibility to
secondary infections (Docke et al. 1997; Kox et al. 1997;
Solomkin et al. 1984, 1981).

Biochemical basis of the anti-inflammatory effects of n-3
lipids: exogenous fatty acids influence inflammatory cell

activation

Leucocytes, lipid mediators and cytokines: n-3 fatty acids
modulate the cellular response to an inflammatory trigger

Lipid mediators are products derived from fatty acids (FA)
such as arachidonic acid (AA) via lipoxygenase, cycloox-
ygenase and cytochrome P–450 pathways, and include
eicosanoids [prostaglandins (PG), thromboxanes (Tx),
leukotrienes (LT), lipoxins, hydroxy- and epoxy-fatty
acids] and platelet-activating factor (PAF). Eicosanoids
and PAF have long been implicated in both pro-
inflammatory and anti-inflammatory events as occurring in

sepsis (Heller et al. 1998; Mayer et al. 1998b). In vitro,
inflammatory ligands are poor activators of neutrophil
leukotriene synthesis. The latter characteristic changes
fundamentally upon simultaneous addition of free precursor
fatty acid; the application of exogenous AA amplifies LT
generation (Grimminger et al. 1992). Bearing in mind that
substantial levels of free AA are known to arise at sites of
inflammatory events (Hammarström et al. 1975; Unterberg
et al. 1987) this finding may be of major relevance.

The family of n-6 fatty acids including AA represents the
predominant polyunsaturated fatty acids in common
Western diets and current nutritional regimes. In contrast,
n-3 fatty acids in which the last double bond is located
between the third and fourth carbon atom from the methyl
end, such as eicosapentaenoic acid (EPA) and docosahex-
aenoic acid (DHA), make up an appreciable part of the fat in
cold-water fish and seal meat. They serve as alternative lipid
precursors for both cyclooxygenase and lipoxygenase
pathways, with the formation of trienoic prostanoids
(instead of the 2-series originating from AA) and 5-series
leukotrienes (LT) (instead of the 4-series LTs derived from
AA) (Calder, 1998). EPA represents the preferred substrate
for the lipoxygenase pathway compared to AA resulting in a
higher formation of EPA-derived products at the expense of
AA-derived metabolites when both free FA are simul-
taneously available. Many of the n-3 fatty acid-derived
metabolites, including 5-series cysteinyl-LTs, LTB5 and
TxA3, possess markedly reduced inflammatory and
vasomotor potencies as compared to the AA-derived lipid
mediators and may even exert antagonistic functions
(Kragballe et al. 1987). Beyond their direct influence on
the generation of eicosanoids, EPA and DHA modulate the
inflammatory response by inhibiting the generation of pro-
inflammatory cytokines: after several weeks of dietary n-3
fatty acids release of TNFa and IL-1 from mononuclear
cells were suppressed (Endres et al. 1989; Caughey et al.
1996). Lymphocytes are extremely sensitive in their
response to free polyunsaturated fatty acids (PUFA).
Addition of free PUFA in vitro or dietary supplementation
of PUFA were reported to suppress IL-2 production, antigen
presentation, lymphocyte proliferation and natural killer cell
activity (Calder, 1998).

Intracellular signal transduction – fatty acids modulate
lipid signaling

In addition to the described consequences on inflammatory
mediators, fatty acids influence the intracellular second
messenger systems. Upon occupation of a receptor the
phosphatidylinositol-specific phospholipase C (PI-PLC) is
activated and cleaves PIP2 to inositol-tris-phosphate (IP3)
and diacylglycerol (DAG). The produced amount of
inositol-phosphates (IPx) depends on the fatty acid
composition of PIP2. An increase in the content of n-3
PUFA in the PI pool leads to a reduced generation of IPx and
DAG and a subsequent decreased response of leucocytes to
an inflammatory stimulus (Sperling et al. 1993). The DAG-
dependent activation of the protein kinase C (PKC) is again
influenced by the fatty acid composition of this second
messenger, which is directly derived from the fatty acid
composition of the lipid membrane. DAG with an n-3 fatty

Fig. 1. Different levels of immunological control of inflammation and
the postulated interaction of n-3 fatty acids. In sepsis uncontrolled
and unrestricted upregulation of host defense takes place. n-3 Fatty
acids interfere with the regulation and decrease the exaggerated
response.
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acid occupying the sn-2 position is less effective in
activating PKC compared to DAG with an n-6 fatty acid.
For complete activation of PKC the enzyme is translocated
to the cell membrane binding to phosphatidylserine (PS).
This process again is dependent on the FA composition of
PS with n-3 FA decreasing the effectiveness of binding and
activation (May et al. 1993; Terano et al. 1996). All these
mechanisms may translate into a reduced inflammatory cell
activation thereby increasing the anti-inflammatory effect of
n-3 fatty acids.

Leucocytes, endothelial cells, and their interaction

The emigration of leucocytes from the intravascular
compartment into the inflamed tissue is a fundamental
process in many acute and chronic inflammatory diseases
including ARDS and sepsis. It is required for both healing as
well as perpetuating the chronic course. Leucocytes enter
the tissue and leave the circulation by crossing the vascular
endothelium. This process of transendothelial migration is a
multistep mechanism, involving the tethering of leucocytes
to the vessel wall, rolling on the endothelial cells, adhesion
to the endothelium followed by movement of the leucocytes
through the intercellular junctions into the inflamed tissue.
Several adhesion molecules have been shown to be involved
in the transendothelial migration, including b2-integrins
(CD11/CD18 complex), the b1 integrins, selectins, ICAM-1
(intracellular adhesion molecule-1), PECAM-1 (platelet
endothelial cell adhesion molecule-1) and VCAM-1
(vascular-cell adhesion molecule-1). Cytokines, such as
TNF-a and IL-1 arising from the inflamed tissues facilitate
the extravasation of leucocytes by increasing the expression
of ICAM-1 and VCAM-1 on endothelial cells. (Spertini
et al. 1992; Meerschaert & Furie, 1994; Muller et al. 1993;
Andrew et al. 1998; Weber & Springer, 1998). n-3 Fatty
acids are capable of reducing the TNF-induced expression
of VCAM-1 on the endothelial surface. This leads to

a reduced adhesion of leucocytes to endothelial cells and
a subsequent transmigration into the inflamed tissue
(DeCaterina et al. 1994; Weber et al. 1995) and may add
to the anti-inflammatory effect of n-3 fatty acids.

Enteral nutrition versus parenteral lipid infusion

Effects of long-term dietary supplementation of volunteers
or patients with n-3 are thoroughly described and result in
suppression of experimentally induced immune responses
such as the release of TNF-a by mononuclear leucocytes
(Endres et al. 1989) or improve the course of hyper-
inflammatory diseases (Calder, 1998; Mayer et al. 1998b).
Weeks to months are needed for the full effect of n-3 fatty
acids to become effective. In contrast, parenteral infusion of
synthetic lipid aggregates activates endothelial lipoprotein
lipases, including a translocation of the enzyme from the
cellular binding site into the vascular compartment, with
resultant immediate increase in plasma free fatty acids due
to escape from local cellular uptake mechanisms (Peterson
et al. 1990). Thus, parenteral infusion of lipids with n-3 fatty
acids containing triglycerides overcomes kinetics and extent
of dietary substitution by order of magnitude (Rustan et al.
1998; Lovegrove et al. 1997).

Sepsis and adult respiratory distress syndrome:
experimental evidence and clinical outlook

Adult respiratory distress syndrome/acute lung injury–
important lessons from experimental and clinical studies

ARDS, an acute inflammatory disorder of the lungs, was
described as a syndrome of inflammation and increased
permeability linked with radiological and physiological
disturbances not caused by left atrial hypertension. New
investigations promote the idea of a local imbalance of pro-
inflammatory and anti-inflammatory cytokines as well as
oxidative stress and antioxidants to increase the suscepti-
bility to develop ARDS (Suter & Ricou, 1998; Quinlan et al.
1997). Moreover, TxA2-mediated pulmonary hypertension
and subsequent lung edema induced by leukotrienes,
cytokines and other mediators are key features of this
disease (Connelly & Repine, 1997). In models of acute lung
injury the protective effect of n-3 fatty acids is well
described. Acute intervention with infusion of either free
AA or EPA aggravated or ameliorated respectively,
pulmonary edema formation in a model of septic lung
failure (Grimminger et al. 1997b, Fig. 2). Application of AA
lead to exaggerated generation of leukotrienes and TxA2

accompanied by circulatory disorders. In contrast, EPA
induced the generation of 5-series leukotrienes, TxA3 and
reduced pulmonary hypertension (Grimminger et al. 1993;
1995; 1997a; 1997b; 2000). In line with this notion, dietary
supplementation of n-3 fatty acids ameliorated experimental
septic lung injury and exhibited organ-protective effects on
the basis of similar changes: reduction of AA-derived pro-
inflammatory metabolites, decrease in pulmonary hyperten-
sion, reduced pulmonary edema formation, and attenuated
pulmonary neutrophil accumulation (Manusco et al. 1997a;
1997b; Murray et al. 1991; 1993; 1995; Sane et al. 2000).
Based on these investigations, an important multi-center

Fig. 2. Influence of free fatty acids in a model of septic lung failure.
Acute septic lung failure was induced by injection of an exotoxin (E.
coli hemolysin (HlyA)) into the pulmonary artery of an isolated rabbit
lung. Simultaneous application of HlyA and free arachidonic acid
(AA) aggravated the lung edema, in contrast, co-application of HlyA
and free eicosapentaenoic acid (EPA) decreased the injury.
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study in patients with ARDS investigated the effect of
enteral nutrition with EPA, g-linoleic acid (GLA), and
antioxidants on clinical outcome. The authors reported
improved oxygenation, reduced days on ventilation,
decreased incidence of new organ failure, and shortened
length of stay in the intensive care unit (Gadek et al. 1999).
However, the nutrition incorporated a mixture of EPA,
GLA, and antioxidants and thus, no conclusion may be
drawn whether only the combination or a single component
was responsible for the therapeutic success. Moreover, no
published clinical data are available concerning the effect of
parenteral n-3 fatty acids on the course of ARDS. On the
basis of the available experimental data and the study using
dietary supplementation (Gadek et al. 1999) we speculate
that parenteral nutrition using n-3 fatty acids will prove to
be a useful tool for feeding patients with ARDS.

Sepsis and intravenous n-3 fatty acids – when should
intervention take place?

As described above for the first phase of sepsis syndrome,
supraphysiological levels of TNF-a and IL-1 appear to be
key components, and are currently regarded as suitable
targets for therapeutic intervention. Moreover, TNF-a-
and IL-1-release by human monocytes can be effectively
suppressed by dietary intake of n-3 lipids. We believe that
this effect can be massively augmented in septic patients
by using the parenteral route for lipid application, since
intestinal losses due to lipid remodelling and incomplete
absorption are bypassed. As already discussed, an
extremely increased response to intravenous lipid infusion
can be expected and increased levels of free fatty acids in
septic patients without lipid infusion have already been
detected (Bursten et al. 1996; Robin et al. 1981). This is
probably due to different reasons. Plasma free fatty acid
elevation is part of the general metabolic response
syndrome to stress due to metabolic changes in liver and
other organs (Weissman, 1990) and secretory phospho-
lipase A2 is elevated in sepsis (Guidet et al. 1996).
Moreover, iatrogenic interventions as vasopressors, such
as adrenaline or noradrenaline, preferentially increase the
plasma levels of polyunsaturated free fatty acids by
activating lipoprotein lipase and the hormone-sensitive
triglyceride lipase of adipose tissue (Gavino & Gavino,
1992; Samra et al. 1996). Heparin, used in low doses in
septic patients, is a well-known activator of the
lipoprotein lipase (Jaume et al. 1996). Due to these
reasons, a highly effective and rapid modulation of the
inflammatory response can be expected.

However, conflicting results using n-3 lipids in different
septic animal models have been published. Dietary n-3 lipid
pre-treatment reduced survival in a murine model of intra-
peritoneal-induced systemic infection (Fritsche et al. 1997).
Other authors have described increased circulating levels of
TNF-a in mice pre-fed with fish oil and subsequently
challenged with LPS (Blok et al. 1996). Chyi & Yeh have
described no influence of dietary supplementation with
lipids on the survival rate in a diabetic rat model of
intraperitoneal sepsis accompanied by increased levels of
inflammatory cytokines in the experimental group receiving
dietary n-3 fatty acids (Chyi & Yeh, 2000). In a similar

model using total parenteral nutrition, no differences in
inflammatory cytokines were detected (Chao et al. 2000).
On the other hand, beneficial effects of n-3 fatty acids on,
for example, lung edema or splanchnic blood flow have
been published (Sane et al. 2000; Pscheidl et al. 1994).
These conflicting results may be due to the different
conditions used: various species, different models (e.g.
chronic intraperitoneal sepsis versus bolus LPS infusion),
and dietary manipulations (enteral versus parenteral
nutrition) result in diverging inflammatory consequences
and outcome. A recent report affirms that the activation state
alters the effect of n-3 fatty acids in murine macrophages
(Mf): while fish oil decreases the inflammatory cytokine
response in thioglycollate-elicited Mf it increases the
production in resident Mf (Wallace et al. 2000).

Nutritional support in sepsis: alternating inflammatory
status but rigid immunonutrition?

Considering sepsis in intensive care patients, it is essential
to distinguish between early or acute sepsis syndrome with a
hyperinflammatory cytokine profile and an exaggerated
leucocyte response (i.e. SIRS), as well as chronic sepsis
with immunoparalytic features (i.e. CARS). Against this
background the application of any single anti-inflammatory
or pro-inflammatory principle needs to be based on a careful
and timely evaluation of the current immunological status of
the individual patient. On one hand, excessive suppression
of inflammatory leucocyte function will cause a decreased
ability of the compromised host to fight against invading
microorganisms and, on the other hand, an overamplified
inflammatory response may harm the patient. However,
there is a need for parenteral lipid nutrition in many septic
patients, offering the future possibility of a combination of
effective caloric support with immunomodulatory pharma-
cological therapy. The effect of oral versus intravenous lipid
application may differ or may even be adverse, since
intravenous infusion but not oral supplementation leads to a
massive increase in plasma-free fatty acids (Mayer et al.
1998a).

In contrast to a parenteral lipid infusion based on n-3 fatty
acids, an enteral diet supplemented with a combination of
arginine, nucleotides, and fish oil was developed which
incorporates different immune-modulatory agents. In the
last few years, several studies using this enteral nutrition in
septic patients have been published but to date only one
study has demonstrated a significant positive impact on
mortality. In a multicenter trial Bower et al. (1995) studied
critically ill patients. They reported a reduced length of stay
in hospital and decreased frequency of acquired infection,
which was also true for the subgroup classified as septic.
Using the same enteral nutrition in a single centre study,
Atkinson et al. (1998) demonstrated that only patients with
whom it was possible to achieve enteral nutrition displayed
a significant benefit in terms of mechanical ventilation and
length of stay in hospital. The most recent multicenter trial
using the same enteral nutrition is the first to report a
significant impact on mortality (Galban et al. 2000). The
mortality was 17 from 89 in the study group and 28 from 87
in the control group (P,0.05). The study also reported a
significant reduction in bacteremias and nosocomial
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infections. In contrast to the other studies, no significant
reduction in length of stay was stated. However, again it is
unclear which of the additives resulted in the reported
positive effects or whether only the combination of all was
effective. Moreover, it is open to speculation whether a
nutrition regime chosen to match the inflammatory demands
of a single patient — either immune enhancing or anti-
inflammatory — should incorporate all the components.
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Volk HD, Reinke P & Döcke WD (2000) Clinical aspects: from
systemic inflammation to immunoparalysis. Chemical Immu-
nology 74, 162–177.

Wallace FA, Miles EA & Calder PC (2000) Activation state
alters the effect of dietary fatty acids on pro-inflammatory
mediator production by murine macrophages. Cytokine 12,
1374–1379.

Weber C, Erl W, Pietsch A, Danesch U & Weber PC (1995)
Docosahexaenoic acid selectively attenuates induction of
vascular cell adhesion molecule-1 and subsequent monocytic
cell adhesion to human endothelial cells stimulated by tumor

necrosis factor-a Arteriosclerosis. Thrombosis, and Vascular
Biology 15, 622–628.

Weber C & Springer TA (1998) Interaction of very late antigen-4
with VCAM-1 supports transendothelial chemotaxis of mono-
cytes by facilitating lateral migration. Journal of Immunology
161, 6825–6834.

Weissman C (1990) The metabolic response to stress: an overview
and update. Anesthesiology 73, 308–327.

Wheeler AP & Bernard GR (1999) Treating patients with severe
sepsis. New England Journal of Medicine 340, 207–214.

Yao YM, Redl H, Bahrami S & Schlag G (1998) The inflammatory
basis of trauma/shock-associated multiple organ failure.
Inflammation Research 47, 201–210.

n-3 Fatty acids and sepsis S75

https://doi.org/10.1079/BJN
2001458  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1079/BJN2001458

