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GROUP EXTENSIONS ARE QUASI-SIMPLY-FILTRATED

S.G. BRICK AND M.L. MIHALIK

A finitely presented group G is quasi-simply-filtrated (abbreviated qsf) if, given
a finite complex with fundamental group G, the universal cover of the complex
can be "approximated" by simply connected finite complexes. This notion is a
generalisation of a concept of Casson's used in the study of three-manifolds.

In this paper we show that any extension of a finitely presented infinite group
by a finitely presented infinite group is qsf.

1. INTRODUCTION

Suppose X is a finite complex. Write X for its universal cover. We say that X is
quasi-simply-filtrated (abbreviated qsf) if, given a connected finite subcomplex C C X,
there is a simply connected finite complex D, and a cellular map / : D —• X with
fff-i(C) '• /~1(C) ~* C a homeomorphism.

In [2] it is shown that if X\ and X2 are finite complexes with isomorphic funda-
mental groups then X\ is qsf if and only if X2 is qsf. Thus one can say that a finitely
presented group G is qsf if some (and hence any) finite complex X, with TTI(X) = G,
is qsf.

The qsf condition is developed in [2] (also see [5]) as a geometric generalisation
of Andrew Casson's C2 condition on presentations of groups (see [3]). Both of these
conditions can be used to show that certain closed irreducible 3-manifolds are covered
by R3. The advantage of the qsf condition, besides it being a geometric condition,
is that it is an invariant of finitely presented groups whereas the validity of the Gz
condition may vary between different presentations of a group.

In [2] it is shown that all one-relator groups and all simply connected at infinity
groups are qsf. And (see [2]) the qsf property is preserved by taking finite extensions,
amalgamations, and HNN-extensions. In [4] all automatic and semihyperbolic groups
are shown to be qsf.

The purpose of this paper is to expand the class of groups known to be qsf by
proving the following result:

THEOREM . HI —* H —* G —• L —• 1 is a short exact sequence of finitely presented
infinite groups, then G is qsf.
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22 S.G. Brick and M.L. Mihalik [2]

2. PRELIMINARIES

Choose a finite presentation

V = {AUB\RUSUT)

of G where (A \ R) is a presentation of H and each element of T is of the form
b~1abw~1 where a £ A±x, b E B^1 and w = w(a, b) is some word in the generators
A.

Take X to be the two-complex associated to V, and, as above, write X for the
universal cover of X. Let Y be the two-complex associated to the presentation (A | R)
of H. Then Y C X and lying above Y in X is a collection of components, each
component being a copy of the universal cover Y. There is one component for each
coset of H in G or, equivalently, each element of L. Write IY for a typical component.

We shall refer to those edges of X lying above edges that correspond to elements
of A as A-edges. An A-path or an A-loop is an edge path or loop consisting entirely
of A-edges. We define B-edges in a similar fashion. And those two-cells of X lying
above two-cells corresponding to relators in T will be called conjugation cells. Note
that the attaching map of a typical conjugation cell is of the form &j~1a&2'"> where 6i
and 62 are B-edges lying above the same edge in X, a is an .A-edge, and w is an
.A-path lying above the path corresponding to the word w — w(a,b) (thus we abuse
notation slightly).

We shall work with subcomplexes of X that are connected, finite and intersect
each copy, IY, of Y in a connected (possibly empty) subset. Call such subcomplexes
admissible.

Start with an arbitrary connected finite subcomplex C C X. Choose a basepoint
* in C. By adding finitely many edges, we may assume that C is admissible. We shall
enlarge C to a subcomplex K by adjoining finitely many edges, and conjugation cells
such that fti(K) can be killed by killing finitely many loops which are null-homotopic
in X \G. Then we can attach disks to each such loop, yielding a simply connected
finite complex D, and map each of the disks into X \G. Clearly, this will suffice to
show that X is qsf.

So we need to study the generators of the fundamental group of finite subcomplexes.
They are of two different types: conjugates of A-loops and other elements. Refer to
those generators that are conjugates of .A-loops as being of type 1 and the others as
being of type 2.

We need two lemmas on the effect of adjoining A-edges and conjugation cells.

LEMMA 2 . 1 . Suppose Z is an admissible subcomplex of X and e is an A-edge
that meets Z. Then Z U e is admissible. And if iri(Z) is generated by {ui , . . . ,un}
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then TTI(Z U e) is generated by { u j , . . . , u n , T A T " 1 } , where A is an A-loop in the copy

of Y containing e.

PROOF: We need only consider the case where both endpoints of e lie in Z. Since

Z is admissible there is an .A-path, p , in Z from the terminal point of e to the initial

point of e. Let A = ep. Take T to be a path from the basepoint of Z to the initial

point of e. Now the result is immediate. U

LEMMA 2 . 2 . Suppose Z is an admissible subcomplex of X and A is a conju-

gation cell with dA = b^1ab2w~1, and &i C Z. Then Z U A is admissible. Further

if fti(Z) is generated by {tt i , . . . ,«„} then iri(Z U A) is generated by {ui,... ,unt

wii • • • ,vm} where each Vi is a type 1 generator. Moreover, if a C Z then each «,• is of

the form T\T~1 where A is an A-loop in the copy of Y containing the endpoint of &i.

PROOF: Applying lemma 2.1 repeatedly shows that "K\{Z U a U w) is gotten from
7Ti(Z) by adding some new type 1 generators.

If a is in Z, then these new generators arise from adjoining w, and are of the
desired form, again by lemma 2.1.

If 62 is not in Z then ZUaUw is a strong deformation retract of ZU A. Otherwise
TTI(Z U A) is obtained from "K\{Z U a U w) by adding a new relator. In either case, the
lemma follows. D

For sake of brevity, we make the following convention: When we speak of adjoining
conjugation cells .to a subcomplex Z, we mean that Z is admissible and that the cells
may be indexed A 1 , A 2 , . . . , A t with attaching maps dAi = 6^1ot-6,-2t»r1 such that
bn C Z and bu C Z U Aj U • • • U A ^ j for i > 1.

The above lemmas show that if a generating set for iti{Z) has been chosen then
adding finitely many j4-edges or conjugation cells does not create any new type 2
generators. Hence if by adding such edges and cells we are able to homotope a single
arbitrary type 2 generator to "nicer form" then by adding finitely many .A-edges and
conjugation cells, we can homotope all of the type 2 generators to such nicer forms.

3. T Y P E 2 GENERATORS

In this section we shall adjoin finitely many conjugation cells and A-edges to C,
yielding an admissible subcomplex C\ such that it\{C\) has a set of generators with
each type 2 generator being of the form Sipdi, where p is a loop null-homotopic in
X \ C and 6162 is an i4-loop.

Fix a generating set for TTI(C7). First observe that adjoining conjugation cells lets

us move .B-edges to the right of .A-edges (where doing so replaces the .A-edges with

.A-paths). See Figure 3.1. Note that the conjugation cell pictured lies above the cell in

X corresponding to the relator (b~x) ab~1w~1 where w = w(a,ft"1) . Hence we may
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24 S.G. Brick and M.L. Mihalik [4]

assume, at the cost of adding more type 1 generators, that each type 2 generator is of
the form a/3, where a is an A-path and /? is a U-path.

Figure 3.1

Let m be the maximum of the lengths of the type 2 generators. By [1, lemma
3.1], there is an integer N such that an edge loop in X based at a vertex v and having
length ^ TO is null-homotopic in the iV-neighbourhood of v, that is, the iterated star
(without subdivision), starJV(u).

Since H is infinite, we can find an .A-path, 7, from the basepoint * to a vertex v
not in the JV-neighbourhood of C. Observe that the ^-neighbourhood of v is disjoint
from C.

Consider an arbitrary type 2 generator a(3. Write Q'/3' for the translate of a/3 to
the vertex v. By our choice of N, this translate a'/3' is null-homotopic in X \ G. And
it follows that its cyclic conjugate j3'a' is likewise null-homotopic in X \C.

Conjugation cells can be adjoined to show that /? is homotopic relative to its
endpoints to a path of the form (frfi'-y'1 where <j> is an A-path. See Figure 3.2 It
follows that afi is homotopic, relative to its basepoint, in an enlarged subcomplex,
to a loop u = (<*<£)(/?'«') ( ( a 1 ) " ^ - 1 ) . Observe that u is of the form 6lPS2 with p
null-homotopic in X \ C and 6162 an .A-loop.

Doing this for each type 2 generator yields an admissible subcomplex d where
TI(CI) has a generating set with each type 2 generator having the desired form.

It is perhaps worth noting that at this point if Y (that is, H) was known to be
qsf then it would be easy to finish up the proof that X is qsf. The argument involves
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Figure 3.2

replacing each non-empty C\ D IY with a simply connected finite complex that maps
into IY, as well as attaching disks to each of the loops p and mapping them into X \ C.
We leave any further details to the reader.

4. FINISHING UP

At this point we have an admissible subcomplex C\ containing C with
having a generating set of the form

, . . . ,T,\,TB ,

where the Aj 's and the SijS2j 's are .4-loops and the pj 's are null-homotopic in X \ C.
In this section, we shall adjoin conjugation cells and attach a 5-edge so as to obtain a
subcomplex K containing C such that TTI (if) has a generating set of the form

, . . . ,T,X,TS ,. . . ,TrXrTr ,

where all of the ^4-loops Aj and 6ij62j are freely homotopic in K to .A-loops {ujt} that
themselves are null-homotopic in X \ C. As remarked in §2 above, we can attach disks
to each loop Uk and to each pj, yielding a simply connected finite complex D, and
map each of the disks into X \C. This will finish the proof that X is qsf.

Since C\ is a finite subcomplex, there are only finitely many components IY that
meet C\. As the group L is infinite, there is a JB-edge 6 with initial vertex v\ E C\
and terminal vertex V2 in some component IY that does not meet C\. Consider the
subcomplex C\ U b. Clearly 7ri(Ci) = 7Ti(Ci U b) and C\ U 6 is admissible.

Define a finite graph F as follows: the vertices of F are those components IY that
meet Ci U b, the edges of F are the B-edges of C\ U b. Let V2 be the vertex that
contains v^ .
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We shall be considering subcomplexes K obtained from C\ U b by adjoining con-
jugation cells. Given such a K and given a subtree T of F containing the vertex v2,
we shall say that its A-loopa are carried by T if iri(K) has a set of generators of the
form

{nAiTj" , . . . , T . X . T ' 1 , ... ,TTXTT~1 ySupiSzi,...,8uptl>2t}

where all of the .4-loops \ and 8\j62j are freely homotopic in K to .A-loops that are
in | J T ( O ) (recall that the vertices are components IY). Formally, we shall be working
with 4-tuples (K,(r,T,S) where a is the set of generators for ni(K) of the above form
and S is a set of A-loops in | JT ( 0 ) such that each of the 4-loops A< and 6ij£2j are
freely homotopic in K to some loop in <S. Call such 4-tuples acceptable.

Letting K = C\ U b, we see that its A-loops are carried by a maximal tree of F.
Thus there is an acceptable 4-tuple. We shall use induction on the size of the subtrees
T to prove that there is some such K with its A-loops carried by the singleton {v2},
that is, an acceptable 4-tuple (K,a, {^2},5).

Suppose (K,<r,T,S) is an acceptable 4-tuple. Since T is finite, there is at least
one vertex different from v2 that is terminal in F, that is, has valency one. Let v be
such a vertex, and let 6 be the B-edge in T emanating from v. And let v' be the
terminal vertex of 6 in T. We shall see how adjoining conjugation cells will yield a new
acceptable 4-tuple with j4-loops carried by T \ 6 .

Assume u is one of the j4-loops in S which is contained in the vertex 1;. Let v be
the initial vertex of 6 when viewed as an edge in X. By the admissibility of K, there is
an j4-path p in K from v to the basepoint of u. Consider the A-loop pup'1 = a\ • • • an •
By adjoining conjugation cells as pictured in Figure 4.1, and applying lemma 2.2, we
can easily homotope the loop pup'1 to an j4-loop in v1. Note that this may create
more type 1 generators of the form TAT"1 , but the point is that, by lemma 2.2, each
of the new A-loops, A, is in v'. Doing so for each such u, yields the desired 4-tuple,
{K\*',T\b,S').

'I '

Figure 4.1
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Hence, by induction, there is an acceptable 4-tuple {K,a,{vz},S). Now each A-

loop u G <S is in a copy IY of Y disjoint from C (the copy IY corresponds to the
vertex v). Since IY is simply connected, u is null-homotopic in IY C X \ C. As noted
above, we can now conclude that X is qsf.
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