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PRIMITIVE DIVISORS ON TWISTS OF FERMAT’S CUBIC

GRAHAM EVEREST, PATRICK INGRAM and SHAUN STEVENS

Abstract

We show that for an elliptic divisibility sequence on a twist of
the Fermat cubic, u3 +v3 = m, with m cube-free, all the terms
beyond the first have a primitive divisor.

1. Statement of Main Theorem

Let C denote a twist of the Fermat cubic,

C : U3 + V 3 = mW 3 (1)

with m a non-zero rational number. If K denotes any field of characteristic zero,
the set C(K) of projective K-rational points satisfying (1) forms an elliptic curve.
With respect to the usual chord and tangent addition the set C(K) forms a group.
The identity of the group is (−1, 1, 0) and the inverse of the point (U, V,W ) is
(V, U,W ). Let R ∈ C(Q) denote a non-torsion rational point. Write

nR = (Un, Vn,Wn), Un, Vn,Wn ∈ Z

in lowest form with gcd(Un, Vn,Wn) = 1.

Definition 1.1. Let (An) denote a sequence with integer terms. We say an integer
d > 1 is a primitive divisor of An if

(a) d | An and

(b) gcd(d,Am) = 1 for all non-zero terms Am with m < n.

This paper is devoted to proving the following theorem.

Theorem 1.2. Let C denote the elliptic curve in (1) with m ∈ Z assumed to be
cube-free. Let W = (Wn) denote the sequence obtained as above from R ∈ C(Q), a
non-torsion rational point. For all n > 1, the term Wn has a primitive divisor.

The sequence W = (Wn) is a divisibility sequence, which means that, for all
m,n ∈ N,

m | n implies Wm |Wn. (2)

In line with recent developments [11, 12, 13, 14, 15, 16, 25, 26, 27] we define
the sequence W = (Wn) to be an Elliptic Divisibility Sequence. Admittedly this
stretches the definition originally used by Morgan Ward [29] but we believe it is a
reasonable name for a divisibility sequence that arises from an elliptic curve.
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Primitive divisors on twists of Fermat’s cubic

In the sequel, it will often be convenient to work with the affine curve

u3 + v3 = m (3)

and we will also refer to this curve as C. Properties of points such as being integral
will generally refer to the affine curve. Thus, an integral point on C is a pair of
integers (u, v) satisfying (3). Theorem 1.2 is the best possible in the sense that if R
is an integral point, then W1 has no non-trivial divisors and so (by our definition)
no primitive divisors. Thus, the identity

(1 + t)3 + (1 − t)3 = (6t2 + 2),

for any integer t > 1, gives rise to an elliptic divisibility sequence for which Theo-
rem 1.2 is best possible, whenever 6t2 + 2 is cube-free. There are infinitely many t
such that 6t2 + 2 is cube-free by a result of Erdős [9].

If one removes the condition that m be cube-free, then it is easy to construct
counter-examples to Theorem 1.2 by clearing denominators. However, any elliptic
curve in the form (1) can be transformed into one with m a cube-free integer by a
simple scaling. Thus, Theorem 1.2 does give complete information, taking account
of the transformation.

Note that Theorem 1.2 has an immediate application to the study of integral
points on elliptic curves in the form (1). In [23], Silverman showed that, when m is
cube-free, there exists an absolute constant κ such that (1) has at most κ1+rank(C/Q)

integral points. In particular, the number of integral solutions to (3) is bounded
uniformly if we restrict attention to curves C with rank not exceeding a given bound.
Note that C(Q) is torsion-free when its rank is positive. Thus if rank(C/Q) = 1,
then C(Q) consists solely of the multiples of a single point R, say. By Theorem 1.2,
the denominator of nR, for each n �= ±1, 0, has a primitive divisor. In particular,
none of these denominators is 1.

Corollary 1.3. If m ∈ Z is cube-free, and rank(C/Q) = 1, then (3) has at most
two integral solutions — either of which generates C(Q).

Corollary 1.3 is not overly surprising. The method of proof in [23] gives very
strong bounds on the number of integral points on C as the diophantine approxi-
mation involved in this case is trivial. Corollary 1.3 is noted because it is sharp and
completely qualitative. For quantitative results of similar strength for other elliptic
curves, see [15].

In the next section, we will set Theorem 1.2 in its proper context, as well as
outline the structure of the proof. The proof occupies the rest of the paper.

2. Primitive prime divisors

Let M = (Mn) denote the Mersenne sequence, whose nth term is Mn = 2n − 1.
No proof is known that M contains infinitely many prime terms. The concept
of a primitive divisor was introduced as a way of showing that new primes are
produced by the terms of M , but in a less restrictive sense. In 1886 Bang [2] showed
that if a is any fixed integer with a > 1 then the sequence with nth term an − 1
has a primitive divisor for any index n > 6. This is a sharp result because the
term M6 = 63 = M2

2 .M3 does not have a primitive divisor. Bang’s theorem is
remarkable because the number 6 is uniform across all a and it is small. Indeed,
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Primitive divisors on twists of Fermat’s cubic

it is not hard to show that a = 2 is the only example realizing this bound. Bang’s
Theorem was incredibly influential, as we now indicate briefly.

In 1892 Zsigmondy [30] obtained the generalization that for any relatively prime
a and b with a > b > 0, the terms of the sequence An = an − bn all have primitive
divisors if n > 6. This lovely result was re-discovered several times in the early 20th
century and it has turned out to be quite applicable. See [20] and the references
therein where applications to Group Theory are discussed. For example, for fixed q
a prime power, let Fq denote the finite field with q elements. Zsigmondy’s Theorem
applied to the explicit formula for the order of the group GLn(Fq) shows this order
has a primitive divisor for all large n. Thus Sylow’s Theorem can be invoked to
deduce information about the structure of the group.

Definition 2.1. Let A = (An)n�1 be an integer sequence. Define

Z(A) = max{n | An does not have a primitive divisor}
if this set is finite, and Z(A) = ∞ if not. The number Z(A) will be called the
Zsigmondy bound for A.

Thus Bang’s Theorem may be stated: Z(M) = 6, while Zsigmondy’s Theorem
may be stated: Z(A) � 6, where An = an − bn as above. Following Zsigmondy’s
Theorem, the next major theoretical advance was made by Carmichael. Let u and v
denote conjugate quadratic integers. Consider the integer Lucas sequence U defined
by

Un = (un − vn)/(u− v).

For example, the Fibonacci sequence F = (Fn) is a Lucas sequence. Carmichael [5]
showed that if u and v are real then Z(U) � 12. This too is a sharp result because
F12 does not have a primitive divisor. The general case was settled by Bilu, Hanrot
and Voutier [3]. They proved that Z(U) � 30 using a powerful cocktail of methods
including start of the art bounds from Diophantine analysis as well as massive
computations to deal with special cases. Again this is a sharp result as the sequence
generated by the roots of the polynomial x2 − x+ 2 illustrates. The paper [3] gives
details about the long journey from Carmichael’s result to the general case.

2.1. Elliptic curves
Now let E denote an elliptic curve in Weierstrass form,

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, . . . , a6 ∈ Z. The shape of the defining equation forces the denominator of
x(Q) to be an integer square, for any Q ∈ E(Q). Let Q ∈ E(Q) denote a non-torsion
point. For every n ∈ N write

x(nQ) = An/B
2
n

in lowest terms. The sequence B = (Bn) is an elliptic divisibility sequence associ-
ated to Q and E. Silverman [28] obtained a primitive divisor theorem for elliptic
divisibility sequences arising from curves in Weierstrass form. It seems likely that
a uniform version of this theorem holds for curves in global minimal form. In other
words, if B = (Bn) arises from a rational point on a curve in global minimal
form then Z(B) � N0, where N0 is independent of E and Q. Indeed, the proof of
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Silverman’s Theorem suggests that the Zsigmondy bound is higher for sequences
generated by rational points with small global canonical height. Therefore it is sig-
nificant that all such heights are conjectured (by Lang) to be uniformly bounded
away from zero. This suggests that a proof that Z(B) is uniformly bounded above
seems to require a result as strong as Lang’s conjecture. The following example
appeared in [14].

Example 2.2. Let B denote the elliptic divisibility sequence generated by the point
Q = [7107,−602054] on the elliptic curve

y2 + xy + y = x3 + x2 − 125615x+ 61201397

Computations suggest that Z(B) = 39 and no higher value of Z(B) is known for
an elliptic divisibility sequence coming from a Weierstrass curve in minimal form.

The curve in Example 2.2 was taken from a list of small height points main-
tained by Noam Elkies [8]. The curves in Elkies’ table are not generally in minimal
form but the curve in Example 2.2 has been rendered in minimal form in order to
estimate Z(B).

Computations with congruent number curves suggest the Zsigmondy bound is
generally very small. A uniform Zsigmondy bound appears in [12] and [14] for an
infinite class of sequences arising from congruent number curves. Specifically, let
T � 5 denote a square-free integer and let Q denote a non-torsion rational point
on the curve

y2 = x3 − T 2x.

In [12] it was shown that, if x(Q) < 0 or x(Q) is a rational square, then Z(B) � 21.
In [14] this result was improved by reducing the Zsigmondy bound to 2 (and allow-
ing any of x(Q) or x(Q)±T to be a square), a bound witnessed by an infinite family
of sequences. Provided the rank of the curve is positive, there will always be points
satisfying the hypotheses stated: this is because, if x(Q) > 0 then x(Q+ [0, 0]) < 0
and, for any rational point Q,

x(2Q) and x(2Q) ± T

are all rational squares.

2.2. Comparisons with the classical theory
There are notable similarities between the results for elliptic divisibility sequences
and the classical results described earlier. Both give a uniform bound across in-
finitely many sequences which is best possible, both rely upon lower bound on
heights and both reduce the problem to solving a finite number of Thue–Mahler
equations. Also, the uniformity result for Lucas sequences relies on good bounds
from transcendence theory together with the fact that the answer to Lehmer’s
problem is known for quadratic integers. Therefore, a uniform result for elliptic
divisibility sequences in general would appear to require not just Lang’s conjecture
on a uniform lower bound for heights of points, as we already mentioned, but also
better elliptic transcendence results than are currently known.

In one respect, however, the arithmetic of these two classes of sequences differs
markedly. Bang’s Theorem may well have arisen as part of an attempt to prove the
Mersenne Prime Conjecture (which remains open). On the other hand the analogue
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of that conjecture is false for elliptic divisibility sequences on curves of the form
(1), and heuristics, as well as proofs in special cases, indicate that it fails for those
on Weierstrass curves too, see [10] and [11].

In the section that follows we will reduce the given problem to one on the
Weierstrass model of a curve birationally equivalent to the curve (1). The method
proceeds in a pincer movement, somewhat similar to that in the two papers [12]
and [14]. These papers used a good lower bound for the canonical height of a ratio-
nal point which were obtained in [4]. Here, our workhorse is the paper [17], although
the height bounds are not stated or used in the same way as in [17]. However, beside
the similarities, there are many intriguing differences. Most notably, in this paper
we make heavy use of a numerator sequence on a Mordell curve, see (4), for which
we can prove a uniform Zsigmondy bound — see Theorem 2.3. Remarkably, this
sequence is not a divisibility sequence, one of the few known cases where a primitive
divisor theorem can be proved for a sequence which lacks the divisibility property.
Also, remarkably, we have been unable to prove a uniform Zsigmondy bound for
the corresponding denominator sequence on the Mordell curve.

2.3. The structure of the proof
The proof of Theorem 1.2 relies upon two different techniques. The first one bounds
Z(W ) above by showing that the non-existence of a primitive divisor of Wn implies
a certain divisibility relation (see (24)) involving the terms An, which are defined
in (5). This relation leads to an inequality which is violated for all sufficiently
large n. This part results in an upper bound for n of n � 14.

The second step shows directly that for each of the indices n � 2 not covered
by the first part, Wn does have a primitive divisor, by reducing the checking to
a finite number of Thue–Mahler equations. In the reduction, the elliptic division
polynomials, which are elliptic analogues of the cyclotomic polynomials, play a
starring role.

The combination of techniques described here runs exactly parallel to those used
in earlier primitive divisor theorems such as those of [2, 3, 5, 30]. Note that it
is essential to reduce the bound for Z(W ) in the first step as low as possible, in
order to keep to a minimum the number of Thue–Mahler equations which need
to be solved in the second step: without adequate care, computationally infeasible
problems result.

The proof uses the well-known bi-rational equivalence of (3) with the Mordell
curve

E : Y 2 = X3 − 432m2. (4)

The map is given by

u =
36m+ Y

6X
and v =

36m− Y

6X
.

If R ∈ C(Q) corresponds to Q ∈ E(Q) under the transformation, and we write

nQ =
(
An

B2
n

,
Cn

B3
n

)
, (5)

then
Un

Wn
=

36mB3
n + Cn

6AnBn
and

Vn

Wn
=

36mB3
n − Cn

6AnBn
. (6)
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The proof of Theorem 1.2 exploits both the denominator sequence B = (Bn)
in (5), as in [12, 14], and the numerator sequence A = (An). The latter may
have independent interest, not least because it is a rare example where a primitive
divisor result may be obtained, Theorem 2.3 below, for a sequence which is not a
divisibility sequence. Instead, a weaker kind of divisibility relation holds, as detailed
in Lemma 3.2.

Theorem 2.3. Let E denote the Mordell curve (4) and suppose Q is a non-
torsion point in E(Q). Let A = (An) denote the sequence as defined in (5). Then
Z(A) � 12.

In principle, techniques analogous to those used in [14] and Section 5 can be
used here to reduce the bound stated in Theorem 2.3. In practice, however, the
computations involved for some cases are beyond our current capabilities. We are
uncertain about the supremum of the values Z(A) as m varies. Perhaps it occurs
when m = 7: in this case Z(A) = 2 because A2 is a proper divisor of A1, whereas
all the terms A3, A4, . . . have a primitive divisor.

3. Local arithmetic

Since we are interested in the prime divisors of the numerators and denominators
of x(nQ), for Q ∈ E(Q), it makes sense to address the local arithmetic of E.

Standing Assumption. Throughout Section 3, p will be a prime other than
2 or 3.

We will analyze E(Qp), as in [24, Chapter VII], through the exact sequence

0 → E1(Qp) → E0(Qp) → Ẽns(Fp) → 0, (7)

where E0(Qp) is the subgroup of E(Qp) consisting of points with nonsingular re-
duction modulo p, E1(Qp) is the kernel of reduction modulo p, and Ẽns(Fp) is the
group of nonsingular points on the curve reduced modulo p. Throughout the paper,
we adopt the familiar convention of referring to the term nonsingular reduction as
good reduction, and the term singular reduction as bad reduction.

For an arbitrary integer sequence A = (An), we follow Morgan Ward’s termi-
nology [29] and define the rank of apparition of the prime p in the sequence A to
be the least index n such that p | An (the rank is ∞ if no such index exists). For
the sequence B defined above, note that p | Bn is equivalent to ordp(x(nQ)) < 0,
in other words, nQ ∈ E1(Qp). The rank of apparition of p in the sequence B is,
then, the order of Q in E(Qp)/E1(Qp), and p | Bk precisely when k is divisible by
this order. In fact, the power to which p divides Bkn is entirely predictable once we
know the power to which p divides Bn. The following lemma is obtained in [24] by
appeal to formal groups (and by an examination of division polynomials in [14]).

Lemma 3.1. Let Q ∈ E1(Qp). Then

ordp(x(kQ)) = ordp(x(Q)) − 2 ordp(k).

Remember that p > 3 is a standing assumption in this section. Lemma 3.1 is not
generally true when p = 2 (although it is true when p = 3).
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Note that the commentary above about the rank of apparition leads to an entirely
algebraic interpretation of primitive divisors in the sequenceB. To say that the term
Bn fails to have a primitive divisor is to say that there is no prime p such that Q has
order exactly n in E(Qp)/E1(Qp). This quotient, for primes p of good reduction,
is simply Ẽ(Fp). The rank of apparition of p in the sequence A may similarly
be interpreted in terms of the local arithmetic of E, although the interpretation
depends on whether E has good or bad reduction at p.

If p is a prime of bad reduction for E, then p | m (recalling again that p > 3
here). The curve Ẽ has a singularity at the point [0, 0], and so p | An precisely
when nQ is singular modulo p, in other words, nQ has non-trivial image in the
quotient E(Qp)/E0(Qp). Since the discriminant of E is Δ(E) = −21239m4, we see
that ordp(Δ(E)) is divisible by 4 for all p | m other than 3, and one can easily check
(see [24, Table 15.1] or use the addition formula) that

E(Qp)/E0(Qp) ∼= Z/3Z.

Thus if p appears in the sequence A at all, then it appears in precisely the terms
Ak for which 3 � k. The primes so occurring are, of course, exactly the primes of
bad reduction dividing A1.

If, on the other hand, p � m, then E(Qp) = E0(Qp) and Ẽ = Ẽns. LetHp ⊆ Ẽ(F̄p)
be the subgroup generated by the two points in Ẽ(F̄p) with x-coordinate 0. It is
easy to verify that Hp

∼= Z/3Z, and clearly p | An if and only if

nQ̃ ∈ Hp \ {O}
where Q̃ is the image of Q in Ẽ(Fp). Thus the rank of apparition of p in A is the
order of Q̃ relative to Hp \ {O}, or the least n such that nQ ∈ Hp \ {O}. Note that
as −432m2 = −3(12m)2, we have

Hp ⊆ Ẽ(Fp) if and only if p ≡ 1 mod 3,

that is, precisely if E has ordinary reduction at p. Super-singular primes cannot
appear at all in the sequence A, in marked contrast with the situation for the
sequence B, in which every prime eventually occurs. Of course, even p being a prime
of ordinary reduction for E does not ensure that p has finite rank of apparition in
A.

The usefulness of Lemma 3.1, from our perspective, is that it allows one to
obtain a strong bound on the size of a term Bn failing to have a primitive divisor,
as in [12, 14, 16]. The main goal of this section is to prove a similar result for the
sequence A.

Lemma 3.2. Suppose ordp(x(Q)) > 0. Then, for any k coprime to 3,

ordp(x(kQ)) = ordp(x(Q)) + ordp(k).

Proof. Much of what we need to prove our result has already been established. If
p is a prime of good reduction for E, then the condition ordp(x(Q)) > 0 ensures
that Q̃ ∈ Hp \ {O}. In particular, 3Q̃ = O, and so 3Q ∈ E1(Qp). As 3 � k, we have
kQ̃ ∈ Hp \ {O} as well, and consequently 3kQ ∈ E1(Qp). Indeed, triplication on E
follows the law

x(3Q) =
x9(Q) + 2934x6(Q)m2 + 21237x3(Q)m4 − 21839m6

9x2(Q)(x3(Q) − 2633m2)2
, (8)
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and so we deduce (for primes p � m) that

ordp(x(Q)) > 0 =⇒ ordp(x(3Q)) = −2 ordp(x(Q)).

Applying Lemma 3.1, we obtain

2 ordp(x(kQ)) = − ordp(x(3kQ))
= − ordp(x(3Q)) + 2 ordp(k)
= 2 ordp(x(Q)) + 2 ordp(k).

The proof is somewhat more involved for the case where p is a prime of bad
reduction. In this case we know that E(Qp)/E0(Qp) ∼= Z/3Z, and ordp(x(Q)) > 0
ensures that Q is non-trivial in this quotient. If we let

En(Qp) = {Q ∈ E(Qp) : ordp(x(Q)) � −2n},

then for each n � 0,

En(Qp)/En+1(Qp) ∼= Z/pZ. (9)

This agrees with our definitions above ofE0 and E1, and the fact that E has additive
reduction modulo p. It is worth mentioning that (9) is essentially equivalent to
Lemma 3.1 (although (9) only holds in the general case for n � 1).

Returning to (8) we see that ordp(x(Q)) > 0 implies

2 ordp(x(Q)) = − ordp(x(3Q)) + 2 ordp(m). (10)

If 3Q ∈ En(Qp)\En+1(Qp) and r = ordp(k), then (9) tells us that 3kQ ∈ En+r(Qp)\
En+r+1(Qp) so, by (10),

2 ordp(x(kQ)) = − ordp(x(3kQ)) + 2 ordp(m)
= − ordp(x(3Q)) + 2 ordp(k) + 2 ordp(m)
= 2 ordp(x(Q)) + 2 ordp(k).

4. The proofs that Z(A) � 12 and Z(W ) � 14

After gathering some preliminary results, we proceed with the proof of Theorem
2.3. The proof that Z(W ) � 14, which advances along similar lines, follows. The
step from Z(W ) � 14 to Z(W ) � 1 is taken in Sections 5 and 6.

4.1. Preliminaries

It will not generally be true that the defining equation (4) for E is in global minimal
form. The following comes from [17, Lemma 1].
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Lemma 4.1. If 9 | m write M = m/9. Then the global minimal form E∗ for E is
indicated:

(I) E∗ : y2 = x3 − 27m2

4
if 2 | m and 9 � m

(II) E∗ : y2 + y = x3 − 27m2 + 1
4

if 2 � m and 9 � m

(III) E∗ : y2 = x3 − 3M2

4
if 2 | m and 9 | m

(IV) E∗ : y2 + y = x3 − 3M2 + 1
4

if 2 � m and 9 | m.
The following explicit transformations render the curve E in minimal form:

X = u2x and Y = u3y + t

where [u, t] = [2, 0], [2, 4], [6, 0], [6, 108] (respectively).

In the sequel, these four possibilities will be referred to as Cases (I)–(IV).

Lemma 4.2. Write Q for a non-torsion point on E(Q), corresponding to Q∗ ∈ E∗(Q),
where E∗ denotes the minimal model. Write, for all n � 1, x(nQ∗) = an/b

2
n and

h = ĥ(Q). Also, write M = m/9 if 9 | m and M = m otherwise. Then

−2
3

logM − 3
2

log 3 � hn2 − 1
8

log
∣∣∣∣a4

n +
54M2anb

6
n

m

∣∣∣∣ � 1
12

log 3.

The proof follows immediately from [17, Proposition 2]. Note the misprint in [17]
(which has + signs on the left hand side). We are going to use this in the following
form:

hn2 − 1
12

log 3 − 1
8

log
∣∣∣∣1 +

54M2

mx3
n

∣∣∣∣ � 1
2

log an and (11)

1
2

log an � hn2 +
2
3

logM +
3
2

log 3. (12)

Lemma 4.3. Let P denote any non-torsion point in E(Q). Then

ĥ(P ) � 1
27

logm− 1
27

log 2 − 1
36

log 3 >
1
27

logm− .0562 (13)

unless m ≡ ±2 mod 9 and m has a prime factor congruent to 1 mod 6, in which
case

ĥ(P ) � 1
27

logm− 1
27

log 2 − 1
12

log 3 � 1
27

logm− .1173 (14)

Remark 4.4. The difference between the bounds in (13) and (14) might seem so
slight as to be hardly worth mentioning. However the sieving allowed by the second
bound greatly reduces the amount of manual checking in the sequel. Having said
that, it will become clear in the following proof that further sieving is possible. The
lemma as stated represents a compromise between further savings on the checking
of values of m as against a more complicated version of Lemma 4.3.
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Proof. The proof of Lemma 4.3 uses the analysis in [17]. It begins by estimating
a lower bound for ĥ(kP ), for k = 2 or 3, then uses ĥ(kP ) = k2ĥ(P ) to obtain
the bound sought. The global height is bounded by estimating the local canonical
height λp at each place. Write

ĥ(P ) =
∑
p�∞

λp(P ).

We write Q = kP and estimate λp(Q) for each finite prime p. Suppose that
Q ∈ E0(Qp), the non-singular part of the p-adic curve; then from [17, (2.5)] we
get

λp(Q) =
1
2

log max{1, |x(Q)|p} − 1
12

log |Δ∗|p,
where Δ∗ denotes the discriminant of the minimal equation, so

λp(Q) � − 1
12

log |Δ∗|p. (15)

For the archimedean valuation, assume first that 9 � m. In [17, (2.3)] the following
bound is proved:

λ∞(Q) � 1
8

log |x(Q)4 + 54m2x(Q)| − 1
12

log Δ∗. (16)

The bound in (16) holds for any rational point.
If Q ∈ E0(Qp) for all primes p then sum over all p, using (16) and (15), to obtain

ĥ(Q) � 1
8

log |x(Q)4 + 54m2x(Q)| =
1
8

log |x(Q)| + 1
8

log |x(Q)3 + 54m2|,
using the product formula to write

∑
p�∞ log |Δ∗|p = 0. Since

x(Q)3 � 27m2/4,

it follows that

ĥ(Q) � 1
24

log
(

27
4

)
+

1
24

logm2 +
1
8

logm2 +
1
8

log
(

27
4

+ 54
)
>

1
3

logm.

If m �≡ ±2 mod 9 then, according to [17, Page 180], 3P ∈ E0(Qp) for all primes p
so we may put Q = 3P . The lower bound

ĥ(P ) >
1
27

logm

results, which is stronger than the lower bound (13). If m ≡ ±2 mod 9 but p has
no prime factors congruent to 1 mod 6 then, by [17, Page 180] again, we may take
Q = 2P . This time we obtain the lower bound

ĥ(P ) >
1
12

logm

which, again, is stronger than the lower bound in (13).
When 9 | m, we use [17, (2.4)], which gives

λ∞(Q) � 1
8

log |x(Q)4 + 6M2x(Q)| − 1
12

log Δ∗,
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in place of (16). Assuming again that Q ∈ E0(Qp) for all primes p and summing
over p, we obtain

ĥ(Q) � 1
8

log |x(Q)4 + 6M2x(Q)| =
1
8

log |x(Q)| + 1
8

log |x(Q)3 + 6M2|.

When 9 | m, x(Q)3 � 3M2/4 so

ĥ(Q) � 1
24

log
(

3
4

)
+

1
24

logM2 +
1
8

logM2 +
1
8

log
(

3
4

+ 6
)
,

which simplifies, upon setting M = m/9 to

ĥ(Q) � 1
3

logm− 1
4

log 3 − 1
3

log 2.

Again by [17, Page 180], we have 3P ∈ E0(Qp) for all primes p and putting Q = 3P
yields

ĥ(P ) � 1
27

logm− 1
36

log 3 − 1
27

log 2 >
1
27

logm− .0562

Thus (13) holds when 9 | m.
Finally consider the case when m ≡ ±2 mod 9 but p has prime factors congruent

to 1 mod 6. In this case Q = 3P ∈ E0(Qp) for all primes p �= 3. When p = 3,
use [17, (2.6)] to obtain,

λ3(Q) � −3
2

log 3 − 1
12

log |Δ∗|3. (17)

Now sum over all p, using (15), (16) and (17), to obtain

ĥ(Q) � 1
8

log |x(Q)4 + 54m2x(Q)| − 3
2

log 3. (18)

Since x(Q)3 � 27m2/4,

ĥ(Q) � 1
24

log
(

27
4

)
+

1
24

logm2 +
1
8

logm2 +
1
8

log
∣∣∣∣27

4
+ 54

∣∣∣∣− 3
2

log 3,

which simplifies to

ĥ(Q) � 1
3

logm− 1
3

log 2 − 3
4

log 3.

Writing Q = 3P and dividing through by 9 gives the bound in (14).

4.2. Proof of Theorem 2.3
Assume that n is an index such that An has no primitive divisor; the following
proof shows that n � 12. The proof comes in two steps. For the first step we will
show that the assumption implies a divisibility statement of the following kind:

An | 2μ3λρ(n)
∏
q|n

An
q
, (19)

where the product is taken over primes, and where ρ(n) denotes the product of the
primes q > 3 which divide n,

ρ(n) =
∏

3<q|n
q.
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This step is crucial in the sequel. A little parsimony here greatly reduces the number
of values m which need to be checked manually.

To prove (19), let p be any prime dividing An. Assuming An has no primitive
divisor, there is a term Ak with k < n such that p | Ak. Initially, suppose that
p � 6. If α is the rank of apparition of p in the sequence A then we know, by the
discussion in Section 3, that p | Ak if and only if k = dα for some d prime to 3.
Since α < n, there is some prime q, necessarily distinct from 3, such that qα | n,
and hence p | An/q. Applying Lemma 3.2, we have

ordp(An) = ordp(An
q
) + ordp(q) � ordp(An

q
) + 1.

Now consider the possibilities when p | 6, subdividing according to the cases in
Lemma 4.1, beginning with the simplest.

Case II: 2 � m, 9 � m. For the case when p = 2 notice that there are no rational
points on the minimal model with x ≡ 0 mod 2. This is because the expression
(27m2 + 1)/4 is odd and the equation y2 + y = 1 has no solutions in F2. Hence the
maximum value of ord2(An) is 2, using the transformation X = 4x, and indeed this
is the 2-adic order of all the An. In other words we may may take μ = 0 in (19),
unless n is prime, in which case μ = 2.

Similarly, on the minimal model there are no points with x ≡ 0 mod 3. To
see this, notice that (27m2 + 1)/4 ≡ −20 mod 81, if 3 | m, and the equation
y2 +y+20 ≡ 0 mod 81 has no solutions. If 3 � m then (27m2 +1)/4 ≡ 7 mod 81 but
y2 + y + 7 ≡ 0 mod 81 has no solutions. Again, using the transformation X = 4x,
we see that 3 | An cannot hold and we may take λ = 0 in (19).

The possibilities for the remaining cases can be summarized as follows:
Case I: 2 | m, 9 � m. If 4 � m then x ≡ 0 mod 2 does not hold while if 4 | m

then x ≡ 0 mod 4 does not hold. Using the transformation X = 4x, we see that
2 � ord2(An) � 3 so we take μ = 1, unless n is prime, in which case μ = 3. For
the prime 3, when 3 � m we find x ≡ 0 mod 3 does not hold while if 3 | m we find
x ≡ 0 mod 9 does not hold. Hence we may take λ = 0 unless n is prime, in which
case λ = 1.

Case III: 2 | m, 9 | m. If 4 � m then x ≡ 0 mod 2 does not hold while if 4 | m
then x ≡ 0 mod 4 does not hold. Using the transformation X = 36x, we see that
2 � ord2(An) � 3 so we take μ = 1 unless n is prime, in which case μ = 3. For the
prime 3, we find x ≡ 0 mod 3 does not hold. Hence we may take λ = 0 unless n is
prime, in which case λ = 2 (from X = 36x).

Case IV: 2 � m, 9 | m. We find that x ≡ 0 mod 2 does not hold and neither does
x ≡ 0 mod 3. Using the transformation X = 36x gives μ = λ = 0 unless n is prime,
in which case μ = λ = 2.

Now that (19) is established, take logarithms:

logAn � log ρ(n) +
∑
q|n

logAn
q

+ μ log 2 + λ log 3,

where the sum runs over primes q. In each case, going to the minimal model means
we must substitute An = u2an. This yields

log an � log ρ(n) +
∑
q|n

log an
q

+ 2 logu(ω(n) − 1) + μ log 2 + λ log 3, (20)
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where ω(n) denotes the number of distinct prime divisors of n.
In order to apply Lemma (4.2) we will need the following bound:

log
∣∣∣∣1 +

54M3

mx3
n

∣∣∣∣ � log 9 = 2 log 3. (21)

To prove (21) note firstly that when 9 � m, we have m = M . Using either form of
the minimal equation in Lemma 4.1, it follows that x3

n � 27m2/4 and the bound
in (21) follows at once. When 9 | m, M = m/9 and Lemma 4.1 gives x3

n � 3M2/4.
Now (21) comes out in exactly the same way.

Multiplying (11) by 2 gives

2hn2 − 1
6

log 3 − 1
4

log
∣∣∣∣1 +

54M3

mx3
n

∣∣∣∣ � log an

and inserting (21) gives

2hn2 − 2
3

log 3 � log an.

Inserting this into (20), we get

2hn2 − 2
3

log 3 � log ρ(n) +
∑
q|n

log an
q

+ 2(ω(n) − 1) log u+ μ log 2 + λ log 3, (22)

On the other hand, multiplying (12) by 2, replacing n by n/q, and inserting
into (22) gives

2hn2 − 2
3

log 3 � log ρ(n) +
∑
q|n

(
2h
(
n

q

)2

+
4
3

logM + 3 log 3

)

+2(ω(n) − 1) log u+ μ log 2 + λ log 3.

Re-arranging gives

2hn2

⎛
⎝1 −

∑
q|n

1
q2

⎞
⎠ � log ρ(n) +

4
3
ω(n) logM

+2(ω(n) − 1) logu+ μ log 2 +
(
λ+ 3ω(n) +

2
3

)
log 3.

To ease the notation, write

f(n) = 1 −
∑
q|n

q prime

1
q2
.

Since M � m in each case, dividing by logm yields

2hn2

logm
f(n) � 4

3
ω(n) +

log ρ(n) + ω(n) log(27u2) + log(2μ3λ+ 2
3 /u2)

logm
. (23)

Case II: 2 � m, 9 � m.
In this case, u = 2 and μ = λ = 0 unless n is prime, in which case μ = 2 and

λ = 0. When n is composite, assume m � 40. The bound (13) inserted into (23)
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now forces n � 12. Assuming m � 290, the bound (14) inserted into (23) forces
n � 12. Thus we need to check all cases manually when m � 40 and all cases
m � 290 when m ≡ ±2 mod 9 and m has a prime divisor ≡ 1 mod 6. This will
follow in the next section.

When n is prime, ω(n) = 1 but we need to take μ = 3 and λ = 1. When
m � 40, (13) and (23) force n � 7. When m � 290, (14) and (23) force n � 7.

Remark 4.5. To obtain these explicit upper bounds rigorously requires a little
more than checking (23), because some of the functions that appear in (23) are
not monotonic. In fact (23) implies a weaker inequality, where ω(n) is replaced by
its upper bound of logn/ log 2, ρ(n) is replaced by its upper bound of n, and f(n)
is replaced by its lower bound of .547. The resulting inequality yields a rigorous
upper bound and the remaining cases can be checked manually. In none of the
cases needed does this higher bound exceed 24 so the amount of extra checking is
negligible.

Now we summarize the arguments in the other three cases:
Case I: 2 | m, 9 � m. Here u = 2 and μ = 1 and λ = 0 unless n is prime, in

which case μ = 3, λ = 1. Applying Lemma 4.3 together with (23) as before gives
the same bounds as the previous case with the same manual checking to be done.

Case III: 2 | m, 9 | m. Here u = 6, μ = 1 and λ = 0 unless n is prime, in which
case, μ = 3 and λ = 2. Inserting Lemma 4.3 into (23), the same bounds arise.

Case IV: 2 � m, 9 | m. Here u = 6 and μ = λ = 0 unless n is prime, in which
case μ = 2, λ = 2. Inserting into (23) and using Lemma 4.3 gives exactly the same
bounds as before.

The proof of Theorem 2.3 is complete subject to checking various values of m;
see Appendix A.1 for the details.

4.3. Proof that Z(W ) � 14
Note that if a prime p is a primitive divisor of a term An, where n � 2, then it
cannot divide Br with r < n. We have seen that a prime of bad reduction which
divides An, with n > 1, also divides A1, and so such a prime cannot be primitive
divisor of An. If p � 5 is a primitive divisor of An then p is a prime of good reduction
for E and so, by the results in Section 3, the rank of apparition of p in the sequence
B is 3n. When p | 6, the same conclusion follows by manual checking, using the
same case-by-case analysis as in Section 4.2.

The proof that Z(W ) � 14 runs along almost the same lines as the proof
that Z(A) � 12. Suppose p � 5 is a primitive divisor ofAn, and suppose that pa‖An.
Then either p dividesWn, in which case it is a primitive divisor, or pa | 36mB3

n+Cn,
according to (6). By the identity

(36mB3
n + Cn)3 + (36mB3

n − Cn)3 = m(6AnBn)3,

which is simply (1), we have pa | 36mB3
n −Cn, whence pa | 36mB3

n. As An is prime
to Bn, and as p � 5, we have pa | m. Thus Wn fails to have a primitive divisor just
in case the ‘primitive part’ of An divides m, or

An | m2μ3λρ(n)
∏
q|n

An
q
. (24)
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The arguments of the previous section now apply mutatis mutandis to show that

2hn2

logm
f(n) � 1 +

4
3
ω(n) +

log ρ(n) + ω(n) log(27u2) + log(2μ3λ+ 2
3 /u2)

logm
. (25)

When n is composite, assume m � 40. The bound (13) inserted into (25) now forces
n � 14 in all cases. Assuming m � 290, the bound (14) inserted into (25) forces
n � 14. This completes the proof that Z(W ) � 14, subject to checking various
values of m. The values of m required to complete the argument are checked in
Appendix A.1.

Thus the proof of Theorem 1.2 follows once we establish that Wn has a primitive
divisor for all 2 � n � 14. To that end we now turn.

5. Primitive divisors in specific terms

In the present section we concern ourselves with the question of, for fixed n,
which sequences W fail to have a primitive divisor in the nth term. For many small
values of n we can show that there are no such sequences, and this will bridge the
gap between the work in Section 4 and the goal of Theorem 1.2. To ease notation,
we will frequently write D in place of −432m2.

Proposition 5.1. Let W be a sequence as defined above. Then Wn has a primitive
divisor for each 2 � n � 14.

The proof will come in several pieces. For n � 5 not divisible by 3, the methods
developed in [14] suffice to treat this problem. Although we make use of the special
form of D = −432m2, much of the argument will work for general Mordell curves.
Indeed, we reduce the proposition to the checking of finitely many elliptic divisibility
sequences arising from Mordell curves, none of which turn out to be curves of the
special form under consideration. When n � 6 is divisible by 3 some problems arise,
but only a slight modification of the method of [14] is needed. The cases n = 4,
n = 3, and n = 2, treated in Section 6, are dispatched largely through ad hoc
means, although the spirit of the proof remains the same.

5.1. Division polynomials
We exploit, as above, the short Weierstrass form of the equation, and will in fact
show that Wn has a primitive divisor coprime to 6m for the n listed in the lemma.
We will consider the curves C and E, as defined in (1) and (4) respectively, bi-
rationally equivalent by the map defined in (6). There are (see, for example, [24])
rational maps φn, ψn, ωn ∈ Q(E), the function field of E, such that, for each n ∈ Z
and Q ∈ E(Q),

nQ =
(
φn(Q)
ψ2

n(Q)
,
ωn(Q)
ψ3

n(Q)

)
=
(
An

B2
n

,
Cn

B3
n

)
.

In Section 4, we exploited the existence of primitive divisors in the sequence A. Here
we use the properties of the division polynomial ψn, much as in [14], to establish the
existence of primitive divisors in Wn. An approach employing the polynomials φn

would be similarly successful, and would be in keeping with the flavour of Section 4,
but such an approach also encounters serious computational difficulties.
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We will show that for all n under consideration (save those treated later as special
cases), there is a prime p dividing Bn such that p � 6AkBk for any k < n. Such a
prime will divide Wn, as gcd(Bn, Cn) = 1, but not Wk for k < n. That is, p will be a
primitive divisor ofWn. It turns out that this amounts to showing that there is some
prime p � Δ(E) such that ordp(Fn(Q)) > 0, for a certain Fn ∈ Q(E) constructed
below. The hypothesis that there is no such prime will lead us to a non-trivial
solution of a certain Thue–Mahler equation which depends on n but, critically, not
on Q or m. By explicitly solving the Thue–Mahler equations in question, we will
treat all bar three cases of Proposition 5.1.

As Q(E) = Q(x, y), with y2 = x3 + D (for fixed D = −432m2), we may write
φn, ψn, and ωn as polynomials in x and y, where y occurs only to the first power.
In fact (see [24]), we may write φn as a polynomial in x alone, and either ψn or
y−1ψn similarly, as n is odd or even respectively. Note that, in all cases, ψ2

n may
be written as a polynomial in x, and we will view φn and ψ2

n as elements of Q[x].
In fact, if E[n] denotes the kernel of multiplication by n in E(Q̄),

ψ2
n(Q) = n2

∏
T∈E[n]
T �=O

(x(Q) − x(T )). (26)

Note that each linear term on the right side occurs precisely twice, except those
corresponding to T ∈ E[2].

As our proof relies on the properties of ψn, it is incumbent upon us to make a
few observations (these remarks are made as well in [14]). Note that if 3 � n, then
(x, y) ∈ E[n] implies both x �= 0 and

(x, y), (ζx, y), (ζ2x, y) ∈ E[n]

where ζ is a primitive 3rd root of unity. In particular, ψn or ψn/y, depending on
the parity of n, is a polynomial in x3; ψ2

n ∈ Q[x3] ⊆ Q[x]. When 3 | n, on the other
hand, ψ2

n ∈ x2Q[x3].
Although ψn depends on m, our stated aim is to construct, from each term Wn

without a primitive divisor, a solution to a Thue–Mahler equation that is indepen-
dent of m. Note that the points on y2 = x3 + D and those on y2 = x3 + D′ are
related by the scaling map

(X,Y ) ↔
(
X

(
D′

D

) 1
3

, Y

(
D′

D

) 1
2
)
.

Thus, the dependence of (26) on D is transparent. Along the same lines as [14], we
observe that ψ2

n may be written, over Z, as a binary form in x3 and 4D. We will
abuse notation somewhat, and denote this form by ψ2

n as well, so that

ψ2
n(Q) = ψ2

n(x3, 4D).

In general, ψ2
n ∈ Q(E) is not irreducible. Aside from being a square when n is

odd, the function has several obvious factors. Let e∞(T ) denote the order of the
torsion point T ∈ E(Q̄), and let

F 2
n(Q) = ε2(n)

∏
T∈E(Q̄)

e∞(T )=n

(x(Q) − x(T )), (27)
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where

ε(n) =

{
p if n = pa is a prime power
1 otherwise.

It is clear from (26) that

ψ2
n =

∏
d|n

F 2
d .

Note that, when n �= 2, each term on the right of (27) occurs precisely twice,
allowing us to define Fn ∈ Q[x] implicitly in this way.

The functions Fn may be viewed as the elliptic analogues of the cyclotomic poly-
nomials exploited in [3, 5, 21] to treat the analogous problem for Lucas sequences.
By the same arguments as in the case of ψn, the product in (27) defines a binary
form over Z in x3 and 4D, at least when n �= 3. We will, then, write Fn(x3, 4D)
for the product above. We will frequently pass between the rational function Fn(Q)
and the binary form Fn(A3

1, 4DB6
1). It is worth noting that, as A1 and B1 are co-

prime, the primes appearing to a positive power in Fn(Q) occur to the same power
in Fn(A3

1, 4DB
6
1), except possibly those dividing ε(n).

5.2. Division polynomials in finite fields
Note that if p is a prime of good reduction for E, then the equations from [24]
define the division polynomials in the same way for E(Fp). In particular, if ep(Q)
is the order of the image of the point Q ∈ E(Q) in the group E(Fp), then ep(Q) is
precisely the rank of apparition of the prime p in the sequence (ψn(Q))n�1, that is,
the smallest n such that ordp(ψn(Q)) > 0. Equivalently, ep(Q) is the unique n such
that ordp(Fn(Q)) > 0. Note, on the other hand, that x(Q) ≡ 0 mod p implies that
Q is a point of order 3 in E(Fp). More generally, then, if n is the rank of apparition
of p in the sequence (φn(Q))n�1, it follows that ep(Q) = 3n. The converse may fail,
of course, as there may be points of order 3 in Ẽ(Fp) other than those with x = 0.
The following observation will be useful.

Lemma 5.2. Let Q ∈ E(Q), let An and Bn be defined as above, and let p � Δ(E).
Then the following hold:
(a) if ordp(ψn(Q)) > 0, then p | Bn;
(b) if ordp(φn(Q)) > 0, then p | An;
(c) if ordp(Fn(Q)) > 0 and 3 � n, then p | Bn and p � 6AkBk for k < n.

Proof. Note that results similar to (a) and (b) are derived in [1, 14, 16]. In par-
ticular, the result in [1] is stronger: the hypothesis is merely that the reduction of
Q modulo p is not singular. The lemma is demonstrated here for completeness.

As
An

B2
n

=
φn(Q)
ψ2

n(Q)
,

the conclusions of (a) and (b) can only fail if ordp(φn(Q)) and ordp(ψn(Q)) are
simultaneously positive. If this is the case, then ordp(ψk(Q)) > 0 for k = n± 1 as,
by definition (see [24]),

φn = xψ2
n − ψn−1ψn+1.
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By an easy modification of Lemma 4.1 of [29] (for details on this modification
see [16]), we have ordp(ψ3(Q)) > 0 and ordp(ψ4(Q)) > 0. Computing the resultants
of the binary forms ψ3(x3, 4D) and ψ2

4(x
3, 4D) in Z[D], we see that this can happen

only if p | 6m. That is, if p | Δ(E).
Now suppose ordp(Fn(Q)) > 0. Part (a) ensures that p | Bn, and the image of Q

in E(Fp) has order exactly n. If p | Bk for k < n, then ordp(ψk(Q)) > 0, and hence
ep(Q) � k < n, a contradiction. Similarly, if p | Ak then we have ordp(φk(Q)) > 0.
Hence the prime p has finite rank of apparition in the sequence (φn(Q))k�0, and so
n = ep(Q) is divisible by 3. We assumed it was not.

5.3. Thue–Mahler equations
The factors Fn are the binary forms exploited in [14, 16] to show the existence

of primitive divisors in specific terms of elliptic divisibility sequences arising from
elliptic curves in short Weierstrass form. We will use a similar approach here to
construct primitive divisors of the sequence B. The following, simple observation
will be used repeatedly.

Claim 5.3. Let

s = A3
1/ gcd(A3

1, 4D), t = 4DB6
1/ gcd(A3

1, 4D).

Then for all primes p � 5 dividing gcd(A1, D), we have

ordp(s) > ordp(t) = 0.

Furthermore, for all primes p � 5, the quantity ordp(t) is even.

Proof of the Claim. Note that, as m is cube-free, we have

ordp(m) ∈ {1, 2}
for all p � 5 dividing m. Suppose that p | A1 (and hence p � B1). If ordp(m) = 1,
then

ordp(A3
1) � 3 > 2 = ordp(4DB6

1) = ordp(−432m2).

Thus ordp(s) > ordp(t).
If, on the other hand, ordp(m) = 2, then p3 divides the right-hand-side of

C2
1 = A3

1 − 432m2B6
1 .

But then p4 divides A3
1 − 432m2B6

1 , as p divides the left-hand-side of the above to
an even power. Now p2 | A1, hence

ordp(A3
1) � 6 > 4 = ordp(−432m2),

and again ordp(s) > ordp(t). The fact that ordp(t) = 0 simply follows from s and t
being, by construction, relatively prime.

Now suppose that p � 5, and further that ordp(t) �= 0. We have just shown that
this ensures p � A1, and so

ordp(t) = ordp(−432m2) = 2 ordp(m) ≡ 0 mod 2.

We are now in a position to present the main tool in the proof of Proposition 5.1
for the values of n � 5 which are not divisible by 3. The values n = 2, 4, and those
values divisible by 3, require a slightly more careful treatment.
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Lemma 5.4. Suppose that Wn has no primitive divisor, for n � 5 not divisible by 3.
Then, for s and t defined as above, Fn(s, t) is divisible only by primes dividing 6ε(n).

Proof. We have seen that if p � Δ(E) and ordp(Fn(Q)) > 0, then p is a primitive
divisor of Wn. Thus, if Wn has no primitive divisor, we must have ordp(Fn(Q)) > 0
only for p | Δ(E). Clearing denominators, we see that the only primes dividing the
integer Fn(A3

1, 4DB6
1) are those of bad reduction for E or, possibly, those dividing

ε(n). If p � 6ε(n) is one such prime, then p | D. But then

Fn(A3
1, 4DB

6
1) ≡ ε(n)A3 deg Fn

1 mod p.

In particular, we can only have p | Fn(A3
1, 4DB

6
1) if p | A1. In the latter case we

have p | gcd(A1, D) whence, by Claim 5.3, we obtain ordp(s) > ordp(t) = 0. Note
that Fn(0, 1) = ±1 as in [14] (see also the tables in Appendix A.2). Thus

Fn(s, t) ≡ ±tdeg Fn �≡ 0 mod p.

In particular, the prime divisors of Fn(s, t) are at most those of 6ε(n):

Fn(s, t) = ±2α3βε(n)γ .

Note, for the purposes of impending computations, that we can say somewhat
more. If n = pa is a prime power (and so ε(n) = p), then ordp(Fn(Q)) > 0 and
p | Δ(E) together imply p | m. In this case D ≡ 0 mod p2, ergo

Fn(A3
1, 4DB

6
1) ≡ pA

3 deg(Fn)
1 mod p2.

Thus if p � A1, we have ordp(Fn(A3
1, 4DB6

1)) = 1. If, on the other hand, p | A1, we
have ordp(s) > ordp(t), and so p � Fn(s, t). In the notation of the proof, then, we
may take γ ∈ {0, 1}. We will see, by examining the individual forms, that we can
control the exponents of 2 and 3 by elementary means as well.

5.4. Solving the Thue–Mahler equations
We have reduced the proof of Proposition 5.1 to treating the special cases n = 2, 4
and 3 | n, as well as solving a number of Thue–Mahler equations. Although the
proof appears to require us to find all solutions to the Thue–Mahler equations

Fn(s, t) = 2α3βε(n)γ ,

we have already seen that we need only consider equations wherein γ ∈ {0, 1}.
Although we can, a priori, restrict the exponents α and β by employing such tech-
niques as lower bounds on linear forms in p-adic logarithms, it turns out that we
may also do so by more elementary means.

For the various n under consideration, consider Fn mod 2, and note that

Fn(s, t) ≡ 1 mod 2

whenever gcd(s, t) = 1 (note that these forms are available below for examination).
Similarly, we may consider Fn mod 3 and reduce the possible values of β to three:
0, deg(Fn), or 3

2 deg(Fn). Thus, our Thue–Mahler equations may be reduced to 6
or 12 Thue equations (depending on whether or not n is a prime power) of the form

Fn(s, t) = (−1)δ3βε(n)γ ,
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with δ, γ ∈ {0, 1} and β ∈ {0, degFn,
3
2 deg(Fn)}.

We may also disregard several possible solutions in advance. For example, some
of these equations possess a solution (s, t) with t = 0. Such a solution cannot arise
from a pair (s, t) as constructed in Claim 5.3, however, as this would necessitate
either m = 0 or B1 = 0. Furthermore, we have from Claim 5.3 that ordp(t) is even
for all p � 5, and so we may ignore solutions (s, t) that fail to have this property.
As

t gcd(A3
1, 4D) = −432m2B6

1 < 0

and

(4s+ t) gcd(A3
1, 4D) = 4(A3

1 +DB6
1) = 4C2

1 > 0,

we may conclude as well that t < 0 and 4s+ t > 0 (here, notice that C1 = 0 only
for points Q of order 2, which are not the type under consideration). Any solution
not satisfying these inequalities may be discarded as well. Solutions wherein s = 0
correspond to points Q of order 3, and the solution (s, t) = (1,−1) gives rise to the
point (12, 36), a point of order 3 on y2 = x3 − 432. We shall call solutions falling
into the above categories expected.

A computation in PARI/GP [19] shows that there are no solutions to any of
the Thue equations above, other than (possibly) these expected solutions. In the
appendix, we list the binary forms Fn for the various values of n, in order that
the reader may confirm these findings. We should note that the Thue equation
solver in PARI/GP assumes, by default, the truth of the Generalised Riemann
Hypothesis. This default was overridden, and our results verified unconditionally.
The most strenuous computation arises in the case n = 11, in which a Thue–Mahler
equation of degree 20 must be treated. (The binary form arising in the case n = 13
is of greater degree but factors, and so the equations above may be treated by
elementary means.) Even this computation, however, took well less than a minute
(on a 1.83 GHz MacBook with 512MB of RAM).

5.5. The case 3 | n, but n �= 3
Some care must be taken when 3 | n and n �= 3, but the methods are not funda-
mentally different.

If Fn ∈ Q(E) is defined as above, where n = 3k, and if p is a primitive divisor of
Ak, then we have ordp(Fn(Q)) > 0. It is not clear, then, that the primitive divisor
of Bn which we prove to exist by the method above fails to divide Ak. We must
modify our argument to show that Bn has a primitive divisor distinct from those
coming from Ak. The binary form Fn factors in this case, and we will show that it
suffices to show that one of the factors has a prime divisor other than 2 or 3.

Let H ⊆ E(Q̄) be the group{
(0,

√
D), (0,−

√
D),O

} ∼= Z/3Z.

Note that for D = −432m2, H ⊆ E(Q(
√−3)), although much of what is written

here applies for all D. For Q ∈ E(Q̄), let e(Q,H) denote the least k such that
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kQ ∈ H , if one exists, and e(Q,H) = ∞ otherwise. Set, for n divisible by 3,

G2
n(Q) =

∏
T∈E(Q̄)

e(T,H)=n/3

(x(Q) − x(T )).

As H is fixed by the action of Galois on Q̄, we have immediately that Gn ∈ Q(E).
If Gn vanishes at Q, then An = 0, and so we see that Gn | φn. If we define
Hp ⊆ E(F̄p) to be the analogous subgroup (for p � Δ(E)), and ep(Q,H) to be the
analogous value, then ep(Q,H) is the rank of apparition of p in the sequence A, as
discussed above. Arguments similar to those before show that Gn may be written
as a binary form in x3 and 4D with coefficients in Z, and we will denote this form
by Gn(X,Y ). For example,

G9(X,Y ) = X3 − 24X2Y + 3XY 2 + Y 3.

Note that the roots of Gn are points on E(Q̄) of order precisely n. Thus Gn divides
Fn. Let

Fn(X,Y ) = Gn(X,Y )F̃n(X,Y ).

Lemma 5.5. Suppose that Wn has no primitive divisor, for 3 | n. Then F̃n(s, t) is
a {2, 3}-unit.

Proof. Suppose p � Δ(E) and ordp(F̃n(Q)) > 0. It follows that ordp(Fn(Q)) > 0,
and so, just as in Lemma 5.2, we have p | Bn and consequently p | Wn. We have,
by the same argument as is Lemma 5.2, that p � Bk for k < n. Suppose p | Ak, for
some k < n, and suppose without loss of generality that k is the least such value.
Then we have ep(Q) = 3k, and so n = 3k. We have as well that ep(Q,H) = n/3,
so ordp(Gn(Q)) > 0. But F̃n and Gn can have no common roots modulo p. If Q
were such a root, then x(nQ̃) ≡ 0 mod p while also x(nQ̃)3 ≡ −4D mod p, clearly
impossible if p � D. So we must not have p | Ak.

If, on the other hand, p | Δ(E) and p � 5, we have p | m. As above, we have
ordp(s) > ordp(t) = 0 and so, as F̃n(1, x) is monic, p � F̃n(s, t). The result is
proved.

Note that the lemma is true in the case n = 3. The binary form F̃3 has degree 1,
however, and so we cannot proceed in the same way as we will for n � 6. As in
the case of Lemma 5.4, some care must be taken with the exponents. We note that
F̃n(s, t) ≡ 1 mod 2 for all relatively prime s and t, while

ord3(F̃n(s, t)) =

⎧⎪⎨
⎪⎩

0, 3, or 5 if n = 6
0, 9, or 13 if n = 9
0, 12, or 18 if n = 12.

Computations in PARI/GP are as in the previous case, and reveal no unexpected
solutions.

6. Three special cases

We have, thus far, shown that Wn has a primitive divisor for all n � 5. We treat
the cases 2 � n � 4 here, completing the proof of Theorem 1.2.
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6.1. The cases n = 3 and n = 4
To treat the case n = 3, we show that A3 must have a prime divisor not dividing
6mA1A2. Such a divisor, being a prime of good reduction for E, must divide W3,
but cannot divide W1 or W2. Suppose, to the contrary, that A3 has no prime divisor
other than those dividing 6mA1A2. Comparing φ3 to ψ2 and φ2, we see that then
any prime p with ordp(φ3(Q)) > 0 must be a prime of bad reduction for E. If p � 5
is a divisor of m we see, just as above, that

φ3(s, t) = s3 − 24s2t+ 3st2 + t3

is not divisible by p. So φ3(s, t) is a {2, 3}-unit. Exactly as in previous cases, we
reduce this to

s3 − 24s2t+ 3st2 + t3 = ±3β,

with β ∈ {0, 3, 4}, by considering the possible values of φ3 modulo 2 and 3. Com-
putation produces no unexpected solutions.

For the case n = 4, we will show that A4 has a prime divisor not dividing
6mA1A2A3. As this divisor is a prime of good reduction for E, it divides W4,
witnessing that W4 has a primitive divisor. We consider one particular factor of
φ2

4(X,Y ). Let

F ∗
4 (X,Y ) = X4 − 134X3Y − 84X2Y 2 − 32XY 3 − 2Y 4.

One can verify that this binary form divides φ2
4, and (by computation of resultants)

that F ∗
4 (A3

1, 4DB
6
1) has no prime factors in common with A1, A2, A3, B1, B2, B3,

save possibly some divisors of Δ(E). By a final application of Claim 5.3, we see
that F ∗

4 (s, t) is a {2, 3}-unit. Solving the implied Thue–Mahler equations, one finds
no unexpected solutions.

6.2. The case n = 2
It remains to check that, for any m and Q, the term W2 has a primitive divisor.
From (6) we have, in the notation of previous sections, that

U2

W2
=

36mψ3
2(Q) + ω2(Q)

6φ2(Q)ψ2(Q)
,

where

φ2 = x(x3 − 8D), ψ2
2 = 4(x3 +D).

We suppose that every prime dividing W2 also divides W1, and hence 6A1B1. If
p � 5 is any prime with

ordp(ψ2(Q)) = ordp(4A3
1 + 4DB6

1) > 0,

then p is a primitive divisor of W2, or p | 6m. Assuming that the former is not the
case, then, we see that (4s+ t) is a {2, 3}-unit, employing Claim 5.3 as in the cases
above. That is, we know that p | (4A3

1 + 4DB6
1) only if p | gcd(A1,m), in which

case ordp(s) > ordp(t). In fact, we can say slightly more. Just as in Section 5.4, we
may conclude from the inequality

(4A3
1 + 4DB6

1) = 4C2
1 > 0

that (4s+ t) is a positive {2, 3}-unit.
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Now consider the primes dividing A3
1 − 8DB6

1 . Just as in the previous case, if
p � 5 is a prime divisor of this expression, and p is not a primitive divisor of W2,
then p | m. If this is the case, then another application of Claim 5.3 tells us that
(s− 2t) is a {2, 3}-unit. Solving two linear equations yields

9s = W1 + 2W2

9t = −4W1 +W2, (28)

where W1 and W2 ∈ Z are {2, 3}-units, and W2 > 0. It is (28) in which we are most
interested. The second part of Claim 5.3 tells us that ordp(t) is even for any p � 5.
Specifically, then, t = −dx2, for some positive d | 6 and some x ∈ Z (recall that
t < 0 as per Section 5.4). Equation (28) is now the representation of −dx2 as a sum
or difference of {2, 3}-units. We also know that gcd(W1,W2) | 9, as gcd(s, t) = 1.
We may use this information to solve the above system of equations for all possible
values of s and t. First, a lemma.

Lemma 6.1. The only integral equations a = b+ c such that
(a) c < 0;
(b) b and c are {2, 3}-units;
(c) gcd(b, c) = 1; and
(d) a, 2a, 3a, or 6a is a perfect square

are the following:

12 = 21 − 1, 72 = 34 − 25,

12 = 22 − 31, 2.12 = 31 − 1,

12 = 31 − 21, 2.22 = 32 − 1,

12 = 32 − 23, 2.112 = 35 − 1,

52 = 33 − 21, 3.12 = 22 − 1.

Proof. Supposing that a = b+ c is one such equation, we may multiply both sides
by sufficient powers of 2 and 3 to obtain an equation of the form

q2 = r3 − 2μ3ν ,

where r is a {2, 3}-unit. Thus, if we write μ = μ0 + 6μ1, where 0 � μ0 < 6, and
write ν = ν0 + 6ν1 similarly, we see that( r

22μ132ν1
,

q

23μ133ν1

)
is a {2, 3}-integral point on the elliptic curve Y 2 = X3−2μ03ν0 , with the additional
property that X is a {2, 3}-unit. Using MAGMA [18] to find all {2, 3}-integral
points on each curve of this form (for 0 � μ0, ν0 < 6), and tracing these points back
to the original equations, we have our result.

It is now a simple matter to solve the above system of equations for all possible
s and t. If gcd(W1,W2) = 9, then

−t =
4
9
W1 − 1

9
W2

is an equation as in the lemma. Moreover, as 4
9W1 is divisible by 4 and W2 > 0,

most of the equations listed in the lemma may be disqualified immediately. We are
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left with the possibilities (W1,W2) = (9, 27) or (9, 9). These yield (s, t) = (7,−1)
or (3,−3), the latter of which may be discarded as gcd(s, t) = 1 by construction.

If gcd(W1,W2) = 3, then

−3t =
4
3
W1 − 1

3
W2

defines an equation as in the lemma, yielding again the solution (3,−3) for (s, t).
The case gcd(W1,W2) = 1 yields no new solution.

The only solution, then, that might contradict our claim, is that corresponding
to (s, t) = (7,−1). One may trace this solution back to the point (2,−1) on the
curve u3 + v3 = 7. While the terms A3

1 + DB6
1 and A3

1 − 8DB6
1 do both turn out

to be {2, 3}-units in this example, we may simply compute W1 = 1 and W2 = 3 to
see that W2 does, indeed, have a primitive divisor.

This completes the proof of Proposition 5.1, and hence the proof of Theorem 1.2.

Appendix A. Computations

In this section we discuss some of the particulars of the computations.

Appendix A.1. Small values of m
As required in Sections 4.2 and 4.3, we computed manually the Zsigmondy

bounds Z(A) and Z(W ) for all the cases needed with m � 290. From the anal-
ysis given in Section 4.2, it is sufficient to consider all m � 40 (in fact we go out
to 50) but only those 40 < m < 290, for which m ≡ ±2 mod 9 and which possess
a prime divisor congruent to 1 mod 6. In all cases when the rank is positive the
rational torsion group is trivial.

For rank-1 curves, the values of Z(W ) are given in Table 1. The values of Z(A)
are much simpler: Z(A) = 0 except in the case m = 7, when Z(A) = 2.

Table 1: Zsigmondy bounds in rank-1

m E-generator Z(W ) m E-generator Z(W )
6 [28,80] 0 7 [84,756] 1
9 [36,108] 1 12 [52,280] 0
13 [52,260] 0 15 [49,143] 0
17 [84,684] 0 20 [84,648] 0
22 [553/9,4085/27] 0 26 [156,1872] 1
28 [84,504] 1 31 [217,3131] 0
33 [97,665] 0 34 [2733,4455] 0
35 [84,252] 1 42 [172,280] 0
43 [129,1161] 0 49 [196,2548] 0
50 [8148/27,138736/27] 0 51 [5473/36,333935/216] 0
58 [9444/27,173600/27] 0 61 [732,19764] 1
79 [316,5372] 0 97 [388,7372] 0
133 [228,2052] 1 151 [4228/9,261532/27] 0
169 [2028,91260] 1 223 [1561/4,49283/8] 0
241 [6748,554300] 1 259 [777,20979] 0
277 [5817/4,441261/8] 0 286 [588,12960] 1
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In rank-2 the situation is slightly more complicated. Provided ĥ(Q) > 0.1, equa-
tion (23) yields the Zsigmondy bound Z(A) � 12, and equation (25) yields the
Zsigmondy bound Z(W ) � 14. In all cases, there were no non-trivial rational points
with ĥ(Q) � 0.1 so no further checking was necessary. In Table 2 we list generators
for each of the rank-2 curves in the range. These were looked up in Cremona’s
tables [7], when the conductor was below 104, or computed using MAGMA [18] for
larger conductors.

Table 2: Rank-2 generators

m E-generators
19 [156,1908], [228,3420]
30 [76,224], [124,1232]
37 [84,36], [148,1628]
65 [129,567], [156,1404]
124 [372,6696],[2356,114328]
182 [273,2457],[364,5824]
209 [1596,63612],[532,11476]
218 [1308,47088],[13881/25,1534221/125]
254 [16257/4,2072385/8],[508,10160]

Table 3: The binary forms Fn

F5 [5, 95, -15, -25, -1]
F7 [7, 986, -2681, -12964, 3626, -1519, -686, -49, 1]
F8 [2, 616, -7336, -1544, -3430, -4124, -952, -104, -1]
F10 [1, 1173, -55284,29380,-368055,-1404072,-862941, 542232,

. . . -104805,-7070,-474,-177,1]
F11 [ 11, 23221, -1153603, -62045313, 66133914, -1596123771,

. . . -8579472693, -4760052033, -22319781, 8054721004,

. . . 10595519759, 4869514969, 1106263389, 189881835,
. . . 59389374, 17393277, 2270301, 102729,605,-242, -1]

F13 [13, 74737, -10304874, -1459820466, 7383882519, -294761888811,
. . . -3649379851026, -327751614216, 3634612800273,

. . . 75587434125411, 206422282971957, 165623202699903,
. . . 77423927253309, 50317031121903, 70684315657137,
. . . 64207462488471, 30461492791431, 8167061938581,

. . . 1237534488021, 33446767107, -47530886481, -16133119236,
. . . -2480541102,-183218139, -6445998, -217503,

. . . -22815,-338, 1]
F14 [1, 8826, -3182349, 27544616, -1267563423,-29876807793,

. . . -73452197357, -534368475927, -321414204609,
. . . -159623734993, -250499094747, -930524257131,
. . . -1172171589176, -509647490898, -20486729571,

. . . 61406271479, 22270327506, 3403598121, 263510632,
. . . 15278739, 2663808, 488510, 19851, 537, 1]
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Table 4: The binary forms F̃n

F̃6 [1, 57, 3, 1]
F̃9 [1, 657, 6111, -3318, 19647, 12033, 3972, 684, 9, 1]
F̃12 [1, 3630, -28608, 392908, 212553, 1121508,168108, 62712,

. . . 69507, 32782, 3684, 12, 1]

Appendix A.2. Division polynomials
Various specific binary forms are used for computations in Section 5, and these

are reproduced in Tables 3 and 4. To save space, only the coefficients have been
recorded. In the tables the line

F [vd, vd−1, · · · , v1, v0]
is to be interpreted as the statement

F (X,Y ) =
d∑

i=0

viX
iY d−i.

Note that, as a result of the action of complex multiplication on E, the polynomial
ψp factors when p ≡ 1 mod 3. In actual computations, this fact can be exploited
to great advantage, allowing the corresponding Thue equations to be solved by
elementary means.
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