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Abstract

We prove that every finite, simple, surjective algebra having no proper subalgebras is either
quasiprimal or affine or isomorphic to an algebra term equivalent to a matrix power of a unary
permutational algebra. Consequently, it generates a minimal variety if and only if it is quasipri-
mal. We show also that a locally finite, minimal variety omitting type 1 is minimal as a
quasivariety if and only if it has a unique subdirectly irreducible algebra.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 08 A 05, 08 A 40,
08 B 05.

1. Introduction

This note was inspired by C. Bergman and R. McKenzie's recent paper [1]
whose main result is that every locally finite, minimal, congruence modu-
lar variety is minimal as a quasivariety. To this end the authors find all
finite simple algebras without proper subalgebras, which generate a congru-
ence distributive variety and have the property that the set of unary term
operations forms a group. Here we extend this description in two aspects:
we drop the requirement that the algebras generate a congruence distributive
variety, and replace the assumption that the unary term operations form a
group by the much weaker condition that the algebra is surjective, that is, all
fundamental operations are surjective. It turns out that besides quasiprimal
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[2] Simple surjective algebras having no proper subalgebras 435

algebras and affine algebras, the only algebras satisfying the assumptions are
the matrix powers of some unary permutational algebras (Theorem 3.4). The
proof makes essential use of an improved version of I. G. Rosenberg's primal
algebra characterization theorem found in [16].

We present some applications of Theorem 3.4 as well: we specialize it
to algebras with a single fundamental operation (Corollary 3.5), and find
all strictly simple algebras in which unary term operations form a group, but
there is no restriction on the generated variety (Corollary 3.10). Furthermore,
we apply Theorem 3.4 to show that a finite, simple, surjective algebra having
no proper subalgebras—in particular, a finite simple groupoid without proper
subgroupoids—generates a minimal variety if and only if it is quasiprimal
(Theorem 4.2, Corollary 4.3). Finally, Corollary 3.10 makes it possible to
extend the main result of [1] as follows: a locally finite, minimal variety
omitting type 1 is minimal as a quasivariety if and only if it has a unique
subdirectly irreducible algebra (Theorem 4.4).

In Section 2 we also get some Slupecki-type results on matrix powers of
unary algebras.

2. Reducts of matrix powers of unary algebras

We adopt the convention that algebras are denoted by boldface capitals
and their universes by the corresponding letters in italics. We identify every
natural number n with the set n = {0, ... , n - 1} . For a set N, let TN ,
SN denote the full transformation monoid and the full symmetric group on
N, respectively. We denote by id the identity mapping of each set. The
cardinality of a set A is denoted by \A\. For an algebra A we denote by
Clo A, Go, A, and Clo • A the clone of term operations, the set of unary
term operations, and the set of surjective term operations of A, respectively.

For the notion and the history of matrix powers of arbitrary algebras the
reader is referred to [17]. Here we need the concept only for unary algebras.
To recall the definition, let C = (C; F) be a unary algebra and let m > 1.
For some mappings fi:m —» n, a e Tm and for g0, ... , gm_x e ClOj C
let us define an operation h°[g0, ... , gm_l] on Cm as follows: for x( =

The mappings n and a will be referred to as the variable mapping and
component mapping, respectively. If g0 = •• • - gm_x — id, then we will
write h" instead of h"[g0, ... , gm_\\- The wth matrix power of C, de-
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noted C[m], is the algebra with universe Cm and with all h°[g0, ... , gm_{]

as fundamental operations. It is easy to see that c5m] has no other term
operations than its fundamental operations; that is to say, CloC1"1' consists
of all operations of the form h°[g0,... , gm_x] as above (compare Corollary

2.5). Clearly, every term operation of CIm] depends on at most m variables.
CloC has a useful generating system, too (see [17]).

CLAIM 2.1. Clo C[ m ] is generated by the m-ary operation h1^ (the so-called
diagonal operation), the unary operation hy

m_>l with y the cyclic permutation
(0 1 • • • m - 1), and the fundamental operations of the mth direct power of C.

Recall that a transformation monoid G c TN (in particular, a permutation
group G c SN) is called transitive if the unary algebra (N; G) has no proper
subalgebras. A permutation group G C SN is said to act primitively on N
if (iV; G) is simple and \G\ > 1 (if \N\ = 2). Clearly, primitivity implies
transitivity.

The main result of this section is the following theorem.

THEOREM 2.2. Let A be a simple surjective algebra such that A is isomor-
phic to a reduct of (N; SN)[m] for some finite set N (\N\ > 2) and for some
m > 1. If m is chosen minimal with respect to the existence of such an iso-
morphism, then A is isomorphic to an algebra term equivalent to (N; G)[m]

for some permutation group G on N which acts primitively on N if\N\ > 2.

We introduce some notation. For a set A and for <p e TA we denote
by kerq> the kernel of <p . For B c A" and for / = {/0, . . . , ik_l} Q n ,
i0 < • • • < ilc_l, the projection of B onto its components in / is

Throughout this section N is a fixed set, \N\ > 2. Unless stated otherwise,
N is not assumed to be finite. If A = {Nm ; F) is a reduct of (N; TN)[m] *
then TK will denote the collection of all component mappings of unary term
operations of A, that is,

T A = i° e Tm.ha
m^[gQ, . . . , #„ ,_ , ] € C l o , A for s o m e g0,..., g m _ { } .

Clearly,
T A = i° e Tm- hl[go, • • • , * M _ , ] € d o A for s o m e JU and g0,..., g m _ x } .

Furthermore, we set

A for some <T and ^ 0 , . . . , gm_x).
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LEMMA 2.3. ( i ) / / /£ [g 0 , . . . , gm_x] is a surjective operation of (N; TN)[m],
then g0,... , gm_x are surjective.

(ii) For finite N, every surjective reduct of (N; TN)lm] is a reduct of
{N;SN)[m].

(Hi) An operation h°[g0, ... , gm_x] of(N;SN)[m] is surjective if and only
if ker/t n ker a is the equality relation.

PROOF. The range of the operation h"[gQ, ... , gm_t] is

Thus (i), and hence also (ii) are obvious. To show (iii), let gQ, ... , gm_x

be permutations. If there exist indices / < j (0 < /, j < m - 1) with
(i, j) € ker/i n ker a, that is with i/i = j/i and ia = jo, then

pr{ij}R = {(£(*£), gj{x%)):xtl = xjl GN} = {(y, gjg;\y)):y e N},

hence R^Nm . Otherwise, x J , ... , JtJlJJj e N can be selected indepen-
dently, implying that R = Nm .

It is straightforward to check that the operations of (N; TN)[m] are com-
posed as follows.

LEMMA 2.4. For an n-ary operation h°[g0, ... , gm_t] and for k-ary oper-

ations hl<[f0l, ... , fm_x ,] (/ = 0, . . . , n - 1) of (N; TN)[m] we have

„, ••• , xk_x))

^ ' ••• ' Jm-\ ,o(

°Xr-1) f fx(m~1)T"-1

0un_1 )>•••> Jm-l,n-\yJl(Lm-l)vn_l

a f

COROLLARY 2.5. For arbitrary submonoid G of TN,

(i:m->n,

aeTm,g0,...,gm_xGG}.

Clo(N; G)lm] = {hl[g0,..., gm_x\. n>l,(i:
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PROOF. The left hand side clearly contains the projections, and by the
previous lemma it is closed under composition. Therefore, by the definition
of (N; G)[m] the claim follows.

We start to investigate some reducts of (N\ TN)[m]. Note that by Corol-
lary 2.5 every term operation of a reduct A of (N; TN)[m] is of the form
hl[g0, ... , gm_x] for some n>l,n:m->n, o € Tm , and g0, . . . , gm_x €

TN . Moreover, if A is a reduct of (N; SN)lm], then for every term operation
A£[S0' • • • • Sm-ll W e h a V e a l s O #0 ' • • • ' Sm-l € SN •

LEMMA 2.6. Let X be a reduct of (N; TN)[m].

(i) If A is surjective, then

rA = {<> e Tm: hl[g0,..., gm_x] e CloSUIj A for some n andg0,..., gm_{).

(ii) If A is simple, then TA is a transitive submonoid of Tm .

PROOF, (i) Since the fundamental operations of A are surjective, it fol-
lows that every term operation of A arises from a surjective term operation
by identification of variables. The identification of variables changes merely
the variable mapping, which implies the equality.

(ii) We write T for TA. Applying composition for elements of Clo, A
we see that T is closed under multiplication. Because of the projection in
Clo, A, T contains the identity mapping. Now let / be a subset of m that
is closed under all transformations in T. Then the equivalence relation =
on Â m defined by

x = y if and only if pr7 x = pr7 y

is a congruence of A. Since A is simple, we conclude that / = 0 or / = m ,
proving the transitivity of T.

LEMMA 2.7. Let A be a reduct of (N; SN)lm] such that A is surjective.
(i) eA is invariant under TA, that is, (/, j) e eA implies (ia, jo) e eA

for all aeTA.
(ii) If eA is the equality relation on m, then A has an m-ary term operation

whose variable mapping is bijective (that is, it depends on all of its m variables).

PROOF. Let us write T, e instead of TA, eA, respectively,
(i) Assume (/', ; ) e e , and using Lemma 2.6(i) select a surjective term

operation h°[g0, . . . , gm_l] of A with component mapping a. It suf-
fices to show that (ia, jo) € keri/ for the variable mapping v of each
surjective term operation of A. Consider the composition in Lemma 2.4

https://doi.org/10.1017/S1446788700029979 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029979


[6] Simple surjective algebras having no proper subalgebras 439

for A*[g0, . . . , gm_{] and for arbitrary operations ^ ' [ / 0 / , . . . , / m _ , p / ] 6
Clo • A ( / = 0 , . . . , « - l ) such that the variable mappings f; have pair-
wise disjoint ranges. (Replacing the variable mapping with another one of the
same kernel is equivalent to renaming the variables.) Thus v = v. (— v. )
runs over the variable mappings of all surjective term operations of A. Fur-
thermore, the disjointness condition ensures that the composition is surjec-
tive. In the variable mapping of the composition / and j are sent to iav
and jav, respectively. Since (i, j) € e, we have iav — jav, implying
(ia, ja) € kerf, as required.

(ii) Let h°[g0, . . . , gm_l] be a surjective term operation of A such that
ker/i is minimal. We are done if we prove that ker/i is the equality relation
on m. Suppose this claim fails, and let hT

u[f0, ... , fm_l] be an arbitrary
surjective term operation of A. Consider the composition in Lemma 2.4
with T/ = x, fa = fj for all / = 0 , . . . , « - 1, i = 0, ... , m - I, and
with f0, . . . , vn_{ such that their ranges are pairwise disjoint and keri^ =
kerv for all / = 0 , ... , n - 1. Thus the composition is surjective. By the
choice of v0, . . . , vn_{, for the variable mapping K of the composition we
have ker« < ker/i. Thus the minimality of kerpi implies that ker/c =
ker n. Consequently, for every block B of ker/i, K is constant on B.
Clearly, for b e B, bic — bavf where rB is the unique element of B/x.
Therefore v , and hence also v, is constant on Ba. Since this holds for
all variable mappings v of surjective term operations of A, we get that Ba
is contained in a block of e. However, \B\ = \Bo\ for all blocks B of
ker/j., as h"[gQ, ... , gm_l] is surjective, and therefore Lemma 2.3 implies
that ker fi n k e r a is the equality relation. This contradicts the assumption
that e is the equality relation, completing the proof.

LEMMA 2.8. Let A be a reduct of (N; SN)[m] such that A is surjective,
TA is transitive on m and eA is the equality relation on m.

(i) For every transformation T G Tm , A has a term operation with compo-
nent mapping x and variable mapping v = id.

(ii) If N is finite, then the diagonal operation h\^ is a term operation of
A.

PROOF, (i) By renaming the variables if necessary we get from Lemma
2.7(ii) that A has a term operation of the form h°A[gQ, ... , gm_l] for some
a E Tm and g0, . . . , gm_x 6 ^ . Let us compose this operation with some
essentially unary term operations A^_r , i [^ , , . . . , fm_{ ,] of A such that
iaxt = ix (i = 0, . . . , n — 1) (the transitivity of TA ensures the existence
of such T() . Then the variable mapping of the composition is the identity,
while the component mapping is x.
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(ii) By (i) A has a term operation of the form hl£[g0, . . . , gm_{[ for
some g0,... , gm_i e SN. Identifying its variables we get the unary term

operation Aj£_, [g0, . . . , gm_\] of A, which is a permutation on Nm . Since
N is finite, for some natural number k, we have

I'd r - 1 - 1 i / / i d r i \ £ /-.i »

" m ^ i l £ n >-.->gm \\ = (n
m^ilgn> •• • > gm A) G ClOi A .

Thus
• i d , .

proving the claim.
The next lemma makes it possible to take an isomorphic copy of the repre-

sentation of A as a reduct of (N; SN)[m], in which the unary term operations
are easier to handle.

LEMMA 2.9. Let n0, ... , nm_i e 5 ^ , and let n be the permutation of Nm

defined by

Then n is an isomorphism of arbitrary reduct A of (N; SNfm] onto another
reduct of (N; SNfm] if we make correspond to each fundamental operation

K\gQ' ••• ' gm-]] °f ^ the operation
- l - l ,

PROOF. Indeed, for JC0 , . . . , xn_x e Nm we have

Off, , (m-l)(T,N

0|i)' ••• ' nm-\gm-M(m-\)n))
/ 0<r>x —1 / , (m— 1

^ ) ) ' ••• ' ^m-l^m-lV-l^V-DcAV-

As in Claim 2.1, y will denote the cyclic permutation (0 1 • • • m - 1) on
m.

LEMMA 2.10. L<tf A be a reduct of (N; TN)lm] such that h* and
are term operations of A. Then

GA = {g GT^.h^g, ... , g]

is a transformation monoid on N, and A is term equivalent to {N; GA)[m].
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PROOF. Let us write G instead of GA. That G is a submonoid of TN

is immediate from the definition. Since h^ , hy
m_tX e CloA, it follows from

Claim 2.1 that Clo(./V; G)lm] c CloA. To prove the reverse inclusion let
h^lgQ, ••• , gm_{] be a term operation of A, and let / e m. It suffices to

show that gte G, that is, hl^x[gi, . . . , gt] e Clo1 A. This can be verified
as follows. For arbitrary natural numbers k, I, let us compute the unary
term operation (hy

m^x)
k h"m^x[gQ, ... , gm_x]{hy

m^x)
1 of A (addition in the

subscripts and superscripts is understood modulo m):

K ^ ) hm^[g0,...,gm_l](hr
m^l){(x , . . . , x ))

) h [ g g ] ( ( x ,x , . . . , x ))

For every j e m, choosing k — i — j and I = j — ia, we see that A has a
unary term operation «y with

yth component

Thus

is indeed a term operation of A.
After these preparations we prove Theorem 2.2.

PROOF OF THEOREM 2.2. We assume without loss of generality that A =
(Nm ;F) is a reduct of (N; SN)[m]. Recall that N is now finite. Let us write
T, s instead of TA, eA, respectively. By Lemma 2.7(i), e is invariant under
T.

First we show that e is the equality relation on m. Let Io, ..., Is_{ be
the blocks of e, let us identify the set Nm with iV7° x • • • x N1*-' , and write
its elements in the form x = (x°, ... , xm~l) = (x'°, . . . , x's~') (that is,
pr7 x = xIj). Consider a fundamental operation h°[gQ, ... , gm_x] of A,

say it is n-ary, and let <f: s —> s, Jl:s —• n be the mappings defined by the
following conditions: for j e s, Ijfi = {jji} and IjO c I-. Furthermore,
for j € 5, let us consider the mappings
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Then for arbitrary elements x0, ... , xn_lG Nm we have

By surjectivity, all ~gj are surjective, and hence \Ij\ < \I-\ for all j GS.
We show that |/0| = • • • = \IS_X\. Let J C s consist of all indices j e s

for which \Ij\ is maximal. Let T denote the submonoid of Ts generated by
the mappings W as a runs over the component mappings of all fundamental
operations of A. Then, by the previous remark, / is closed under all trans-
formations
denned by
formations in T. Hence the equivalence relation = on iV/o x ••• x NIs~l

x = y if and only if x ' = y ' for all j & J

is a congruence of A. Since A is simple, we conclude that J = s, as
required.

This yields a representation of A as a reduct of the matrix power
(N °; SNi0) . By the minimality of m we get s = m, whence |/0| = • • • =
\Is_i\ — 1, that is e is the equality relation.

Thus we get from Lemmas 2.6(ii) and 2.8 that h^ is a term operation
of A, and A has a term operation of the form h(d[g0, •. • , gm_{\ for some
g0, . . . , gm_{ € SN. Now we apply Lemma 2.9 with n0 = id and ni =
gogi''' Si-\ f ° r ' = I, .-- , m — I. Then the operation corresponding to

tfd[g0» • • • . gm-\] i s o f t n e f o r m ^fd[id' • • • ' id> S] for some geSN. It is
easy to see that the diagonal operation corresponds to itself in this assignment.
So we can assume that A is a reduct of (N; SN)[m] such that the diagonal
operation h1^ and /ifjid, ... , id, g] are term operations of A.

We prove that h\A is a term operation of A, and hence so is hy
m_^l .

Indeed, identifying the variables of Afd[id, . . . , id, g] we get that q =
hy

m^x[id, ... , id, g] is a unary term operation of A. Clearly, qm -

Thus
> ••• » S\» so for some natural number k, qmk = h^^[g~x, ... , g~x\

xm_2, qmk{xm_{))

is a term operation of A, as required.
Hence Lemma 2.10 applies to A, yielding that A is term equivalent to

(N; GA)[m]. Now GK is a subgroup of SN , as A is a reduct of (N; SN)lm]

and N is finite. Since Con A £ Con(JV; GA)[m] = Con{N; GA) and A is
simple, therefore (N; GA) is simple, so GA acts primitively on N provided
| ^ | > 2 .

The proof of the theorem is complete.
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We conclude this section with some Slupecki-type results which can be
proved analogously to Theorem 2.2. They extend a theorem of B. Csakany
[3]. I am indebted to L. Szabo for pointing out that the foregoing arguments
can be applied in this direction.

Slupecki's theorem [12] and a strengthening of it due to A. A. Salomaa [11]
states that for every finite set A with \A\ > 3 , the clone W of all operations
on A satisfies the following conditions, respectively:

(SI) the set of all unary operations in & together with any surjective
operation in W depending on at least two of its variables forms a
generating set for W;

(Sa) the set of all permutations in W together with any surjective opera-
tion in W depending on at least two of its variables forms a gener-
ating set for W.

It can be shown that the clones of matrix powers of unary permutational
algebras have property (Sa), even if the base set is infinite.

PROPOSITION 2.11. Let N be a set and m an integer such that \N\ > 1,
m > 1. For arbitrary permutation group G on N, condition (Sa) is satisfied
by the clone & = C\o{N; G)[m].

PROOF. Consider an arbitrary surjective operation / in ^ depending on
at least two of its variables, and let A be the reduct of (N; G)[m] whose
fundamental operations are / and all permutations in W. Let us write T,
e instead of TK, eA , respectively. Clearly, T is transitive; in fact, SmQT.
By construction A is surjective, therefore Lemma 2.7(i) yields that e is
invariant under T. Furthermore, the operation / of A ensures that s is
not the full relation on m . Combining this with Sm Q T we conclude that
e is the equality relation on m.

A slight modification of the proof of Lemma 2.8(ii) yields that the conclu-
sion remains valid for A though at present N is not necessarily finite. This
is because now A ^ J g J " 1 , . . . , g^-\] € Clo, A holds by the definition of
A. Thus hfA € CloA, and by assumption hr

m_^l, h^^g, ... , g] (g e G)
are fundamental operations of A. Hence Lemma 2.10 applies to A with
GA = G, yielding CloA = W. This completes the proof.

The analogue of Slupecki's theorem holds for all matrix powers of finite
unary algebras.

COROLLARY 2.12. Let N be a finite set and m an integer such that \N\ >
1, m > 1. For arbitrary transformation monoid U on N, condition (SI) is
satisfied by the clone % = C\o{N; U)[m].
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PROOF. Consider an arbitrary surjective operation / = ha[g0, . . . , gm_l]
in W depending on at least two of its variables, and let 21 be the subclone
of ^ generated by / and all unary operations in ^ . The surjectivity of /
implies that g0, ... , gm_, are surjective. By the finiteness of N,it follows
that U n SN is a permutation group on N and g0, ... , gm_y e U nSN .

Thus by Proposition 2.11 the clone Wo = Clo(N; U n SN)[m] is generated by
/ and all permutations in %?0. Hence Wo C 2 , implying that h1^ G 21. By
assumption hy

m^x, h^^g,... , g] (g e U) also belong to 2>. Therefore
Lemma 2.10 applies to the algebra A = (Nm ; 31), and we have GA = U,
whence ^

3. The main result

In this section we give a full description, up to term equivalence, for all
finite, simple, surjective algebras having no proper subalgebras. Recall that a
finite algebra A is called quasiprimal if every operation on A preserving the
internal isomorphisms (that is, isomorphisms between subalgebras) of A is
a term operation of A. The concept as well as the following characterization
of quasiprimal algebras is due to A. F. Pixley [9], [10].

CLAIM 3.1. A finite algebra A is quasiprimal if and only if the ternary
discriminator

{ c if a = b
\ . (a,b,ceA)

a otherwise
on A is a term operation of A.

An algebra A is said to be affine with respect to an Abelian group A if A
and A have the same universe, x — y + z is a term operation of A , and

{{a,b,c,d)eA4:a-b + c = d}

is a subuniverse of A4 (that is, the fundamental operations of A commute
with x—y + z). The algebras that are affine with respect to A are well known
to be related to the module (Ead^A (that is, A is considered as a module

over its endomorphism ring End A).

CLAIM 3.2. Let A be an algebra and A an Abelian group on its universe.
The algebra A is affine with respect to A if and only if A is polynomially
equivalent to a module RA for some subring R of End A.

In an earlier paper [16, Corollary 3.5] the following theorem was proved.
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THEOREM 3.3 [16]. Let A be a finite, simple, surjective algebra having no
proper subalgebras. Then one of the following conditions holds:

(a) A is quasiprimal;
(b) A is affine with respect to an elementary Abelian p-group (p prime);
(c) A is isomorphic to a reduct of (N; SN)[m] for a finite set N (\N\ > 2)

and for some integer m > 1.

If A satisfies condition (c), then Theorem 2.2 applies, and since A is
assumed to have no proper subalgebras, the group G is primitive even if
\N\ = 2. Thus we get

THEOREM 3.4. Let A be a finite, simple, surjective algebra having no proper
subalgebras. Then one of the following conditions holds:

(a) A is quasiprimal;
(b) A is affine with respect to an elementary Abelian p-group {p prime);
(c) A is isomorphic to an algebra term equivalent to (N; G)[m^ for some

finite set N (\N\ > 2), some m > 1, and for some permutation group G on
N which acts primitively on N.

In the context of tame congruence theory, Theorem 3.4 can be restated as
follows.

Let A. be a finite, simple, surjective algebra having no proper subalgebras.
If A is of type 1, then A is isomorphic to an algebra term equivalent to
(N; G)lm] for some primitive permutation group G on N; if A is of type 2,
then A is affine, while if A is of type 3 , then A is quasiprimal. A cannot
be of type 4 or 5.

Assume now that A = (A; f) is an algebra with a single fundamental op-
eration. Clearly, if A has no proper subalgebras, then / must be surjective.
Thus we can specialize Theorem 3.4 to algebras with a single fundamental
operation.

COROLLARY 3.5. Let A be a finite simple algebra with a single fundamental
operation and with no proper subalgebras. Then one of the following conditions
holds:

(a) A is quasiprimal;
(b) A is affine with respect to an elementary Abelian p-group (p prime);
(c) A is isomorphic to an algebra term equivalent to (N; G)lm] for some

set N of prime cardinality, some integer m>\, and some cyclic permutation
g of length \N\ on N.
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PROOF. Apply Theorem 3.4. If (a) or (b) holds for A, then we have noth-
ing to prove, so assume (c). Furthermore, assume without loss of generality
that A is term equivalent to (N; G)lm], and let / = h°[g0, ... , gm_l] (/i: m
—• n, a &Tm, g0,... , gm_l e G) be the fundamental operation of A. The
same argument as in the proof of Lemma 2.6(ii) yields that no proper sub-
set of m is closed under a, and hence a is a cyclic permutation of m.
Rearranging the components we can assume that a = y — (Ol-m-l).
Secondly, in the same way as in the proof of Theorem 2.2 when we ap-
plied Lemma 2.9, taking an isomorphic copy of A via an isomorphism n
with n0 = id and nt: - g0 • • • gi_l (i — 1, . . . , m - 1), we can assume that
/ = A* [id, . . . , id, g] for some p.m —• n and g e G. Observe that in both

steps the clone of term operations of A remains equal to Clo(7V; G)[m].
Hence G must be generated by the single permutation g. Thus the primi-
tivity of G forces g to be a cycle and N to be of prime cardinality. This
completes the proof.

We note that the description in Corollary 3.5(c) of the simple algebras
of type 1 having a single fundamental operation and no proper subalgebras
is a special case of Theorem 4.8 in R. McKenzie's paper [7], which can be
restated as follows.

Every tame algebra of type 1 with a single fundamental operation which
is not constant, is isomoprhic to an algebra term equivalent to (N; g)[m] for
some finite set N, some integer m>\, and some permutation g on N.

PROBLEM 3.6. It would be interesting to have a common generalization
of this result and the analogous description in Theorem 3.4 (c) of the simple
surjective algebras of type 1 having no proper subalgebras.

In the next section we will need simple algebras without proper subalge-
bras in which unary term operations form a group. Obviously, if the unary
term operations of some algebra A form a group, then A is surjective. Fur-
thermore, for m > 2, the matrix powers (iV; G)lm] with \N\ > 2 and G an
arbitrary permutation group on N possess unary term operations that are
not permutations. Thus Theorem 3.4 immediately implies

COROLLARY 3.7. Let A be a finite simple algebra having no proper subal-
gebras. If Go, A is a group, then one of the following conditions holds:

(a) A is quasiprimal;
(b) A is affine with respect to an elementary Abelian p-group (p prime);
(c) A is term equivalent to (A; G) for some primitive permutation group

G on A.
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Note that in case (c) of Theorem 3.4 and Corollaries 3.5, 3.7 it holds
also that, conversely, all algebras appearing in the description satisfy the
assumptions (up to term equivalence). Indeed, it is straightforward to check
that the algebra (N; G)[m] with G a primitive permutation group on N is
simple and has no proper subalgebras. By Claim 2.1 it is also term equivalent
to a surjective algebra. Moreover, it is not hard to show (applying Claim 2.1
and adequate parts of the proofs of Corollary 3.5 and Theorem 2.2) that the
algebras satisfying the stronger constraints of Corollary 3.5 (c) are also term
equivalent to an algebra with a single fundamental operation.

Thus in case (c) Theorem 3.4 and Corollaries 3.5, 3.7, respectively, pro-
vide an explicit description, up to term equivalence, for the corresponding
algebras. Using some known results an analogous description can be given in
cases (a) and (b) as well.

Recall that a permutation group G on A is called semiregular if the iden-
tity permutation is the only member of G having fixed points, and regular
if it is transitive and semiregular. An operation / is called idempotent if it
satisfies the identity f(x,... , x) = x, while an algebra is said to be idem-
potent if every fundamental operation (and hence every term operation) of
the algebra is idempotent. For an algebra A we denote by Cloid A the clone
of idempotent term operations of A.

Assume A satisfies the assumptions of Theorem 3.4. If A is quasiprimal,
then its term operations are exactly the operations preserving the automor-
phisms of A (as A has no proper subalgebras). Since the fixed points of each
automorphism of A form a subalgebra, we conclude that Aut A is semireg-
ular. For a permutation group G acting on A let 3t'(G) denote the clone
of all operations on A admitting all members of G as automorphisms. It
is easy to see that if G is semiregular and not regular, then 31 {G) contains
unary operations that are not permutations. Combining all these facts we get

CLAIM 3.8. If A. is a surjective quasiprimal algebra without proper subalge-
bras [or, in particular, a quasiprimal algebras without proper subalgebras and
with a single fundamental operation], then it is term equivalent to {A; 31{G))
for a semiregular permutation group G on A. Moreover, ifCiolA is a group,
then A is term equivalent to (A; 31 {G)) for a regular permutation group G
on A.

These descriptions are best possible. Indeed, it is not hard to show that
for any semiregular permutation group G on A the algebra {A;3l(G)) is
quasiprimal, has no proper subalgebras, and is term equivalent to an algebra
with a single (surjective) fundamental operation. Furthermore, if G is regu-
lar, then its unary term operations are exactly the permutations commuting
with all members of G, which form a regular permutation group on A .
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The description of finite simple affine algebras appeared first in [2] (com-
pare [14, Chapter 2] for a direct proof): For every finite simple affine algebra
A there exist a finite field K, a vector space KA = (A; +, K), and an en-
domorphism e of KA with e1 = e such that A is term equivalent to

Here EndKA stands for the endomorphism ring of KA and T(A) for the
group {x + a: a e A} of translations of A. Clearly, if A has no proper
subalgebras, then the first case cannot occur. If, in addition, A has a single
fundamental operation, then it is easy to see that some nonidentity translation
x+b {b € A) is an automorphism of A, so the second case with e = 0 cannot
occur either.

Thus we have

CLAIM 3.9. If A is a simple, surjective, affine algebra without proper sub-
algebras [or, in particular, a simple affine algebra without proper subalge-
bras and with a single fundamental operation], then it is term equivalent
to (A; C l o i d ( ( E n d ^ i ) , e, T(A)) for some vector space KA = {A;+,K)

over a finite field K and some endomorphism e of KA with e1 = e [and
e ± 0]. Moreover, if Clo, A is a group, then A is term equivalent to
(A; Cloid( - /4) , T(A)) for some vector space KA = (A;+,K) over a
finite field K *

Again, these descriptions are best possible, as it is straightforward to check
that all algebras (A; Cloid((End ^A), e, T(A)) above are simple, affine, have
no proper subalgebras, and are term equivalent to a surjective algebra; more-
over, if e / 0 , then to an algebra with a single (surjective) fundamental op-
eration. Furthermore, if e is missing (that is, e — id), then Clo, A = T(A).

Now we are in a position to give a full list of strictly simple algebras
with unary term operations forming a group, thus improving Corollary 10
in [1]. Recall that an algebra is called strictly simple if it is simple and has
no nontrivial (that is, nonsingleton) proper subalgebras. Let A be a strictly
simple algebra such that Clo, A is a group. As was noted in [1], either A is
idempotent or A has no proper subalgebras. The latter case is settled above.
In the first case Theorem 2.1 from [15] applies. For a permutation group G
acting on A let ^(G) denote the set of idempotent members of £%{G). For
a e A and for an integer k > 2 let &£ denote the clone of all operations
f on A such that

Xl - {(aQ, ... , ak_x) e Ak:a. = a for at least one /, 0 < / < k - 1}
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is a subuniverse of (A; f)k . Furthermore, we put ^ = f|^l2 ^k • *n c a s e

\A\ = 2 , we denote by J£x& the clone of monotone, idempotent operations
on A.

Summarizing, we have

COROLLARY 3.10. Let A be a finite, strictly simple algebra such that Clo1 A
is a group. If A has no trivial subalgebras, then A is term equivalent to one
of the following algebras:

(a) (A;&(G)) for a regular permutation group G on A;
(b) (A-Clo^^A), T{A)) for some vector space KA = (A;+,K)

over a finite field K;
(c) {A; G) for a primitive permutation group G on A.

If A has trivial subalgebras, then A is idempotent, and it is term equivalent
to one of the following algebras:

(a° ) {A; ̂ {G)) for a permutation group G on A such that every non-
identity member of G has at most one fixed point;

(b° ) {A; Cloid( ~A)) for some vector space KA = (A; +, K) over a

finite field K;
(x °) (A; J"{G) n 9 ? ) for some k (2 < k < co), some element 0 e A,

and some permutation group G on A such that 0 is the unique fixed point
of every nonidentity member of G;

(m ° ) a reduct of {A; ̂ d ) provided \A\ = 2.

It is easy to see that all algebras listed in Corollary 3.10 are in fact strictly
simple and have the property that their unary term operations form a group.
An interesting consequence of Corollary 3.10 is that very few permutation
groups can occur as Clo, A for a strictly simple algebra A. Namely,

(i) the one-element group {id} (for idempotent A),
(ii) regular permutation groups (for quasiprimal or affine A),
(iii) primitive permutation groups (for essentially unary A).

COROLLARY 3.11. If X is a finite simple algebra having no proper subal-
gebras such that Clo, A is a group, then Clo, A is either regular or primitive.

Clearly, if Clo, A is a transitive permutation group on A, then A has no
proper subalgebras. Thus the following result from [8] is also a consequence
of Corollary 3.10.

COROLLARY 3.12 [8]. If G is a nonregular transitive permutation group on
A and A is a simple algebra with G = Clo, A, then A is term equivalent to
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4. Minimal varieties

It is well known, and easy to see that every locally finite minimal variety
is generated by a strictly simple algebra. It is an open problem, in general,
which finite, strictly simple algebras generate minimal varieties. Making use
of Theorem 3.4 we can determine all finite, simple, surjective algebras having
no proper subalgebras, which generate minimal varieties.

LEMMA 4.1. If m> 1 and C — (C; G) is a unary algebra such that G is
a permutation group on C, \G\ > 1, then C[m] does not generate a minimal
variety.

PROOF. Consider C[m] as an indexed algebra (recall that all operations
hllg0, ..., gm_x] wi th a eTm, fi:m^ n, g0,..., gm_x e G are funda-

mental operations of C[m]), and let U be the reduct of (2; id)[m] which is of
the same type as C[m], and for every fundamental operation h^[g0,... , gm_{]
of C[ml, the corresponding operation of U is h" . Clearly, U is term equiv-
alent to (2; id)[m].

We show that U is a homomorphic image of C[m] x C[w]. Let <p:Cm x
Cm —+ 2m be the mapping defined as follows: for any a = (a , ... , am~ )
and b = (b°,... , bm~l) in Cm , {a, b)(p is the m-tuple whose /th compo-
nent is

y {1 *?=b for all/ ( 0 < i < w - l ) .
y 0, otherwise

Clearly, <p is surjective. Let h°[gQ, ... , gm_{] (a eTm, fi:m -> n, g0, ... ,
8m-\ ^G) be an arbitrary fundamental operation of C[mJ, and (aQ, bQ), ... ,
(a

n-i > bn_{) arbitrary elements in Cm x Cm . For any / (0 < / < m - 1),
we have

( 10 \ /» IO \ 10 i 10

. %) = ,̂-(*,>) * a
ilt = hin

<*(hl((ao,bQ)<p,... , {an_x, bn_x

implying that q> is a homomorphism.
Thus U is a nonsingleton algebra belonging to the variety generated by

Cl m l . Since C[mJ has distinct fundamental operations for which the corre-
sponding operations of U coincide (forexample, A ^ , and hl^x[g,... ,g],
g e G, g / id), therefore U generates a proper subvariety of C[m'. The
proof of Lemma 4.1 is complete.
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Note that the claim and proof of Lemma 4.1 is analogous to the well-
known situation for affine algebras: if A is a simple affine algebra having
no proper subalgebras, then A does not generate a minimal variety, as A2

has a homomorphic image generating a nontrivial proper subvariety of the
variety generated by A ([6], [13]). Among the algebras occurring in Theorem
3.4 there remain only the quasiprimal algebras, which do generate minimal
varieties by Jonsson's lemma [5]. Thus we get

THEOREM 4.2. A finite, simple, surjective algebra having no proper subal-
gebras generates a minimal variety if and only if it is quasiprimal.

COROLLARY 4.3. A finite simple algebra with a single fundamental opera-
tion and with no proper subalgebras generates a minimal variety if and only
if it is quasiprimal.

Recently C. Bergman and R. McKenzie [1] proved that every locally finite,
minimal, congruence modular variety is minimal as a quasivariety. Now we
apply Corollary 3.10 to prove an extension of this result. Both the statement
and the proof require some notions from tame congruence theory, for which
the reader is referred to [4].

THEOREM 4.4. A locally finite, minimal variety omitting type 1 is minimal
as a quasivariety if and only if it has a unique subdirectly irreducible algebra.

The proof goes along the same lines as the proof for the congruence dis-
tributive case in [1, Theorem 12], which is based on the following lemma.

LEMMA 4.5 [1]. Let A be a finite, strictly simple algebra. The variety V(A)
generated by A is a minimal quasivariety if and only if V(A) — SP(A) and
A embeds into every nontrivial subalgebra of A2.

The two facts making it possible to weaken "congruence distributivity"
to "omitting type 1" are Corollary 3.10 and the following deep result from
tame congruence theory.

THEOREM 4.6 [4, Theorem 9.6]. For a locally finite variety V the following
conditions are equivalent:

(i) V omits type 1;
(ii) V satisfies a nontrivial idempotent, linear Mai' tsev condition.

Recall that a Mai' tsev condition is said to be idempotent if its identities
imply the idempotent law f(x, ... , x) = x for every term / occurring in
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it, and is called linear, if terms are not substituted into one another on either
side of each identity in the condition. A Mai' tsev condition is called trivial
if it is satisfied in every variety.

PROOF OF THEOREM 4.4. Let V be a locally finite, minimal variety omit-
ting type 1, and let A be a finite, strictly simple algebra in V (say, A is
a nontrivial algebra of minimal cardinality in V). If V is minimal as a
quasivariety, then we have V — SP(A) by Lemma 4.5, so A is the only sub-
directly irreducible algebra in V. Conversely, assuming that A is the unique
subdirectly irreducible algebra in V, we want to show that V is minimal as
a quasivariety. By Lemma 4.5 it suffices to verify

LEMMA 4.7. For arbitrary finite, strictly simple algebra A in a variety omit-
ting type 1, A embeds into every nontrivial subalgebra of A2.

PROOF. The argument is a slight modification of the proof in [1, Theorem
12], so we give a brief sketch only.

Suppose the claim fails for some A, and let A be of minimal cardinality.
That is to say, assume A is a strictly simple algebra such that

(i) the variety V(A) generated by A omits type 1,
(ii) there is a minimal subalgebra R of A2 such that A does not embed

into R, and
(iii) for every strictly simple algebra B such that \B\ < \A\ and V(B)

omits type 1, B embeds into each nontrivial subalgebra of B2 .
By Theorem 4.6, (i) is equivalent to requiring that there exists a nontrivial

idempotent, linear Mai' tsev condition (M) satisfied in V(A).
The first step of the proof is to show, using (ii), that A has no trivial

subalgebras. For the details the reader is referred to [1].
Now if Clo, A is a group, then we apply Corollary 3.10. Since no nontriv-

ial idempotent, linear Mai' tsev condition can hold in a variety generated by
a unary algebra, therefore condition (c) is excluded. Thus ClOj A and Aut A
are regular permutation groups on A, and every minimal subalgebra of A2

is (the graph of) an automorphism of A. Hence every minimal subalgebra
of A2 is isomorphic to A, contradicting (ii).

Therefore Clo, A is not a group, so A has a unary term operation g
with g2 = g and g(A) ^ A . Let B = g(A), S = R n B2 , and let B be the
algebra with universe B whose operations are the restrictions f\B to B of
all term operations f(x0 ,...,xn_l) = g{f(x0 , . . . , * „ _ , ) ) ( « > 1) of A. It
was proved in [1] that B is strictly simple, S is a minimal subuniverse of
B 2 , and B ¥ S . By (i), A has term operations t0, ... , tk witnessing the
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satisfaction of the Mal'tsev condition (M) in V(A). Then the operations
T0\B, ... ,7k\B of B ensure the satisfaction of (M) in V(B). The properties
of B established so far contradict (iii). This completes the proof of the
theorem.

The example A = (A; SA) shows that the assumption on the type set of
F(A) cannot be omitted in Lemma 4.7.

When comparing Theorem 4.4 with the main result of [1] it is natural to
ask what are the nonmodular minimal varieties omitting type 1 that are also
minimal as quasivarieties. It can be shown that only some strictly simple
algebras of type 5 can generate such varieties. This follows by combining
one of the most striking results of tame congruence theory with a relatively
easy fact (which is known to most of those working in the theory, though is
not stated in [4]).

THEOREM 4.8 [4, Theorem 10.4]. Every residually small, locally finite va-
riety omitting types 1 and 5 is congruence modular.

CLAIM 4.9. Every type occurring in a variety occurs also as the type of the
monolith of a finite subdirectly irreducible algebra in the variety.

(The idea of the proof of Claim 4.9 is to show that for every finite algebra
A and for every type / e {1, . . . , 5} occurring in the type set of A, if a < ft
is a prime quotient of type / in the congruence lattice of A such that ft is
maximal with this property, then 0 is the unique upper cover of a, and
hence A/a is subdirectly irreducible with type / monolith.)

Thus we get

COROLLARY 4.10. Let V be a locally finite, minimal variety which is min-
imal as a quasivariety. If the unique subdirectly irreducible algebra in V is
of type 2, 3 or 4, then V is congruence modular.

Acknowledgement

I am indebted to the referees for their useful comments on the original
version of the paper.

https://doi.org/10.1017/S1446788700029979 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029979


454 Agnes Szendrei [21]

References

[1] C. Bergman and R. McKenzie, 'Minimal varieties and quasivarieties', J. Austral. Math.
Soc, to appear.

[2] D. M. Clark and P. H. Krauss, 'Plain para primal algebras', Algebra Universalis 11
(1980), 365-388.

[3] B. Csakany, 'Completeness in coalgebras", Ada Sci. Math. (Szeged) 48 (1985), 75-84.
[4] D. Hobby and R. McKenzie, The structure of finite algebras (Tame congruence theory],

(Contemp. Math., vol. 76, Amer. Math. Soc, Providence, R. I., 1988).
[5] B. Jonsson, 'Algebras whose congruence lattices are distributive', Math. Scand. 21 (1967),

110-121.
[6] R. McKenzie, 'On minimal, locally finite varieties with permuting congruence relations',

preprint, 1976.
[7] R. McKenzie, 'Finite forbidden lattices', Universal algebra and lattice theory, Proc. Conf.

Puebla, 1982, pp. 176-205 (Lecture Notes in Math. 1004, Springer-Verlag, 1983).
[8] P. P. Palfy and A. Szendrei, 'Unary polynomials in algebras IF, Contributions to general

algebra, Proc. Klagenfurt Conf., 1982, pp. 273-290 (Verlag Holder-Pichler-Tempsky,
Wien, Verlag Teubner, Stuttgart, 1983).

[9] A. F. Pixley, 'Functionally complete algebras generating distributive and permutable
classes', Math. Z. 114 (1970), 361-372.

[10] A. F. Pixley, 'The ternary discriminator function in universal algebra', Math. Ann. 191
(1971), 167-180.

[11] A. A. Salomaa, 'A theorem concerning the composition of functions of several variables
ranging over a finite set', J. Symbolic Logic 25 (1960), 203-208.

[12] J. Slupecki, 'Completeness criterion for systems of many-valued propositional calculus',
C. R. des Stances de la Societe" des Sciences et des Lettres de Varsovie Cl. II 32 (1939),
102-109 (Polish); English transl., Studia Logica 30 (1972), 153-157.

[13] J. D. H. Smith, Mal'cev varieties, (Lecture Notes in Math. 554, Springer-Verlag, Berlin,
1976).

[14] A. Szendrei, Clones in universal algebra (Seminaire de Mathematiques Superieures, vol.
99, Les Presses de l'Universite de Montreal, Montreal, 1986).

[15] A. Szendrei, 'Idempotent algebras with restrictions on subalgebras', Ada Sci. Math.
(Szeged) 51 (1987), 251-268.

[16] A. Szendrei, 'The primal algebra characterization theorem revisited', Algebra Universalis,
submitted.

[17] W. Taylor, 'The fine spectrum of a variety', Algebra Universalis 5 (1975), 262-303.

Bolyai Institute
Aradi vertanuk tere 1
6720 Szeged
Hungary

https://doi.org/10.1017/S1446788700029979 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029979

