
BULL. AUSTRAL. MATH. SOC. 53C35

VOL. 38 (1988) [377-386]

REFLECTIONS AND SYMMETRIES IN COMPACT
SYMMETRIC SPACES

BANG-YEN CHEN AND LIEVEN VANHECKE

Point symmetries and reflections are two important transformations on a Riemannian
manifold. In this article we study the interactions between point symmetries and reflec-
tions in a compact symmetric space when the reflections are global isometries.

1. INTRODUCTION

Let (M, g) be an n-dimensional smooth Riemannian manifold, m a point of M
and u a unit tangent vector at m. Let 7 be the geodesic t —> expTO (tu) through
m = 7(0) with tangent vector u = j'(0) and arc length t. Define the map

sm : expm (tu) -> expm (-tu).

For each TO there exists a neighbourhood of m such that sm is a local diffeomorphism.
The map sm is called the local geodesic symmetry at TO (or simply the point symmetry
at TO). The Riemannian manifold M is called a (global) symmetric space if, for each
point TO in M, the point symmetry sm at TO is a (global) isometry of M.

More generally, suppose B is a (connected and) topologically embedded p-
dimensional submanifold which is relatively compact. Let TO £ B and 7 be a geodesic
parameterised by arc length t such that 7(0) = ra and 7'(0) = u € T^B. Then
f(t) = expm (tu). The map defined by

<PB • expm (tu) -> expm (-tu)

is a diffeomorpliism of a sufficiently small tubular neighbourhood of B. It is called
the (local) reflection with respect to B. The radius of the tubular neighbourhood is
assumed to be smaller than the distance from B to its nearest focal points. It is clear
that the reflection ips is involutive, that is, (<PB) — id- On the other hand, if an
involutive transformation <p of M is an isometry and has some fixed points, then <p is
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the reflection with respect to each connected component of the fixed point set F(<p; M)

and these connected components are totally geodesic submanifolds [6].

In [4], the authors have obtained a necessary and sufficient condition for a local
reflection <PB to be isometric. In particular, they showed that if (M, g) is a locally
symmetric space, then the reflection >PB is an isometry if and only if (1) B is totally
geodesic and (2) for each point m in B, the normal space T^B of B in M at m is
the tangent space of a totally geodesic submanifold B of M through m .

The purpose of this article is to study the interactions between point symmetries
and reflections in a compact symmetric space when the reflections are global isometries.
Our results are obtained by applying the method introduced in [2] and developed in [2]
and [3] (for a general survey on this method and its applications, see [1] and [7]). (For
general results concerning symmetric spaces, see [5, 6].)

2. PRELIMINARIES

Let M be a compact symmetric space of positive dimension and o a given point in
M. Denote by G the closure of the group of isometries generated by point symmetries
in the compact-open topology and by K the isotropy subgroup of G at o. Then K is
compact and M — G/K.

In the following, by a circle we mean a closed smooth geodesic (circles always exist
in M). Let p be an antipodal point of o on some circle. The following results were
obtained in [2].

LEMMA 2.1. If p is an antipodal point of o in a compact symmetric space M,

then sosp — spso .

THEOREM 2.2. Let M be a compact symmetric space and o £ M . Then we have

(i) the fixed point set F(so;M) \ o is the set of all the points p which are

the antipodal points of o on some circles passing through o;

(ii) for each antipodal point p of o, we have

(ii-a) K"(p) is a complete connected totally geodesic submanifold of M and

K(p) is exactly the connected component M+(p) of F(so;M) through

p;
(ii-b) there is a complete connected totally geodesic submanifold M.Z.(p)

through p such that TpM°_{p) = T^M^p);
(ii-c) M1(p) is the connected component of the fixed point set F(sosp;M)

through p;
(ii-d) rkM°_ (p) = rkM; and
(ii-e) M°_{p) = Ml{o).

Let p be an antipodal point of o in a compact symmetric space M — G/K. Then
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K(p) = M+(p) is called a poiar of o. A polar of o in M is called a pole of o if the
polar is a singleton. The following results were obtained in [3].

THEOREM 2.3. Let o be a point in a compact symmetric space M. Then o has

a pole, say o, in M if and only if M is a Riemannian double covering space of a.

compact symmetric space M = M/T, wiere T is the Riemannian double covering

transformation on M which carries o into o.

Sometime we denote the compact symmetric space M/T by M/{o, o}.

THEOREM 2.4. Let o and p be two points in a compact symmetric space M.
Then p is a pole of o if and only if so — sp .

THEOREM 2.5. Let o and p be two points in a compact symmetric space M.

Then the point symmetries so and sp commute, that is sosp = sp3o , if and only if one

of the following two cases occurs:

(a) o and p are antipodal;

(b) o and p are not antipodal, but sp(o) is a pole of o.

In this paper we make the following general assumption:

Assumption. M is a compact symmetric space, B a connected embedded submani-
fold of M and the reflection ^g with respect to B in M is an isometry on M.

3. WHEN DOES

In view of Theorem 2.5 we ask the following

PROBLEM 1. When do a reflection ifiB and a point symmetry commute?

The following result gives a complete answer to Problem 1.

THEOREM A. Let M be a compact symmetric space and B a submanifold of M.

Then the reflection ipg commutes with a point symmetry so for some point o in M,

that is <PBSO = so<PB > if and only if one of the following two cases occurs:

(1) o G F ( ^ B ; M ) ;

(2) <PB{O) is a pole of o.

PROOF: First we observe that the submanifold B is totally geodesic in M, since
<PB is an isometry.

Assume that PBSO = 3ofB f°r some point o in M. Then <PBSO(O) = >PB(O) —
S0<PB{O) • So, we find <PB(O) £ F(so; M).

If ¥>B(O) = o, then o G F(ipB\M). In this case, case (1) of Theorem A occurs.
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If <PB{O) 7̂  o, then <PB{°) is an antipodal point of o (Theorem 2.2). Hence we
have

sVB(o) = PBSo<PB = PBSofB = <PB9O = »o

Therefore, by applying Theorem 2.4, we see that o — <PB{°) is a pole of o.
Now, we prove the converse. First, if o lies in the fixed point set F{y>B\ M) , then

VB(O) = o. Thus, so = 'PBSO'PB1 • This implies that <PB and so commute. Next, if
<PB(°) is a pole of o, then we have so - ^^(o) (Theorem 2.4). On the other hand, we
also have

So, <PB and s0 commute. H

Remark 3.1. If B is a point, Theorem A is nothing but Theorem 2.5.
Next, we consider the following

PROBLEM 2. When is a submanifold B of a compact symmetric space M a polar?

The following observation gives an answer to this problem in terms of reflections.

THEOREM B. A complete connected submanifold B of a compact symmetric space
M is a polar of some point in M if and only if the reflection <PB has an isolated fixed
point not in B .

PROOF: Since the reflection <PB is isometric, B is totally geodesic. Assume <PB
has an isolated fixed point, say o, not in B. Then, since <PB is involutive and both
so and <PB have o as an isolated fixed point, we have so = <PB • Because B is fixed
by so, each point of B is an antipodal point of o (Theorem 2.2) and because B is
a connected component of the fixed point set F(<PB>M) , B is the polar M+(p), for
some antipodal point p in B.

Conversely, if B is a polar of o, say B = M+(p) for some antipodal point p in
B, then o £ B. Since the reflection <PB with respect to the polar M+(p) is the point
symmetry so, o is an isolated fixed point of <pg . |

Remark 3.2. In view of Theorem B, it is interesting to note that the reflection <ps
with respect to B has an isolated fixed point in B if and only if B is a singleton.

In the remaining part of this section, we give a characterisation of M°_ in terms of
reflections.

THEOREM C. Let B be a complete connected submanifold of a compact symmetric
space M and o 6 B. Then SO<PB (or <PBSO) has an isolated fixed point p(^ o) if and
only if p £ B and exactly one of the following cases occurs:

(a) o and p are antipodal and B — MZ{p)',

https://doi.org/10.1017/S000497270002774X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002774X


[5] Reflections and symmetries 381

(b) •Sp(o) is a pole of o and B is the connected component of the fixed point

set F(so3p;M) through o. (In this case, B ^ M°_(p)).

PROOF: First, we observe again that B is totally geodesic in M, since ipg is an

isometry.

(•£==): If p G B and p is an antipodal point of o and B = MZ.{p), then the
reflection PB is nothing but sosp (Theorem 2.2). Thus, SO<PB = sp which has p as an
isolated fixed point.

Now, suppose that p € B and sp{o) is a pole of o such that B is the connected
component of F(sosp; M) through o. Let ip = sosp. Then ip = spso according to
Theorem 2.5. Thus, %j> is an involutive isometry. Since B is a connected component of
F(rj)\M), tp = (pg . Thus, so(pB = s^sp — sp which has p as an isolated fixed point.

( = > ): Assume that SO<PB (or <PBSO ) h&s an isolated fixed point p . Since o £ 5 ,
Theorem A implies that SO<PB = fB^o • Thus, sofB is an involutive isometry. Because
p(^ 6) is an isolated fixed point of SO<PB

 a n < i 3p; w e have SO<PB = sp . This implies that
ipB = sosp. Therefore, sosp = spso. Consequently, by applying Theorem 2.5, either
p is an antipodal point of o or sp(o) is a pole of o. Suppose o and p are antipodal.
Since MZ{p) is the connected component of F(sosp; M) through o (Theorem 2.2) and
B is also a connected component of F(3osp;M)(= F((fB\M)) through o, we obtain
B = M°_{j>).

Suppose o and p are not antipodal in M. Then o = sp(o) is a pole of o in
M. So, by applying Theorem 2.3, M is a Riemannian double covering space of a
compact symmetric space M = Mjj, where T is the double covering transformation
on M which carries o into o. Let TT: M —*• M_ = M/T be the natural projection.
Since <ps = &oSp, the reflection <PB induces a reflection <p on M_ with respect to the
submanifold J3 := ft(B) in M. Since ips — So^p, we have fg = SgSp. Because o and
p are antipodal in M_, the previous case applies which yields p £ B_ and B_ = Mrijp) •
Thus, p (E F(SOSP; M] . Let c be a circle in B_ joining o and p. Then c lifts to a
circle c in B. The point p and sp(o) must lie in c. So, p G B. And hence B is the
connected component of F(soap;M) through o. |

As an easy application of Theorem B, we obtain the desired characterisation of
M°_.

COROLLARY D. Let o be a point in B. Then B — M^(p) for some antipodal
point p 6 B of o if and only if sotpB has an isolated fixed point p 6 M such that o
and p are antipodal.

Combining Theorem B and Corollary D we obtain the following

COROLLARY E. Let (B, C) be a pair of complete connected totally geodesic sub-
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manifolds of a compact symmetric space M through a point p £ M such that the

tangent space TpB and TpC are orthogonally complementary. Then (B, C) is a pair
(M+, M_) in the sense of [2] if and only if either the reflection (pB has an isolated

fixed point not in B or sp<pc has an isolated fixed point which is an antipodal point

of p.

4. WHEN DOES <pr = r<p?

Let B be a submanifold in a compact symmetric space M. As we have already
mentioned in the introduction, the reflection tpB is involutive. And on the other hand,
if <p is an involutive isometry on M with non-empty fixed point set, then (p is the
reflection with respect to each connected component of the fixed point set F(<p; M).

For this reason, we may also call an involutive isometry on M with non-empty fixed
point set a reflection when no specified component B is mentioned.

Now, we consider the following

PROBLEM 3. Let M be a Riemannian double covering space of a compact sym-

metric space and B a submanifold of M. When does a reflection tp commute with the

double covering transformation T on M ?

The following result gives an answer to this problem.

THEOREM F. Let M be a compact symmetric space and <p a reflection. Then the
following three statements are equivalent:

(1) tp carries some point o £ M into a pole of o;

(2) M is a itiemannian double covering space of some compact symmetric

space M_ = M/T and <p commutes with the double covering transforma-

tion T , that is <pr = rip ;

(3) M is a Riemannian double covering space of some compact symmetric

space M_ = M/T and the fixed'point set F(<p;M) is stable under the

covering transformation T, that is, r(F((p; M)) = F(<p;M).

PROOF: (2) = > (3): Assume that tpr = rip. Then, for any point p in F(tp; M),
we have <pr(p) — rip(p) = r(p). Thus, r(p) £ F{ip\ M).

(3) = * (2): Let p £ F{<p;M). Then (r<pr)(p) = r(^(r(p))) = r(r(p)) =

p = tp(p). Thus, both npT and <p fix the point p . Now, let B be the connected
component, F(<p;M)p, of F{tp;M) through p . Then, for any X £ TpB, we have
T . ( X ) £ TT(P)T(B). Since r permutes connected components of the fixed point set
F(<p;M), T» carries the normal space T^B onto T^-,T(B) and the totally geodesic
submanifolds B and T(B) are isometric via T . Therefore, we have

(TVT).(X) = T.V.(T,X) = T.(T.X) =X= <p.X.
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Now, for any Y £ T^B, we have T , F £ T^p)r(B). Thus, f*{rtY) = -T,Y .
Therefore, we find

(TVr).(y) = r . ^ . ( r . r ) = -T}Y = - y = y>.y.

Since both T<^T and <p are isometries, TI^T = ip. This gives rip = (pr.

(1) ==> (3): Let <p be a reflection which carries a point o £ M into a pole o := y(o)
in M. Let 5 be a connected component of the fixed point set F((p; M). Let c be
a geodesic in M joining o and o such that c meets at a point TO € B orthogonally.
Then the point symmetry sm carries o into o. Since o — <p(o) is a pole of o in M, Af
is a Riemannian double covering space of some compact symmetric space M_ = M/T ,
where r is the double covering transformation on M which interchanges o and o.
Let c = TT(C) . Then c is a circle in M such that o = TT(O) is an antipodal point of
m := 7r(m.). Let -y be the lift of c in M. Then 7 is a double covering of c which
passes through o, m and o. Let m' be the antipodal point of m on 7. Then m' is a
pole of m. Thus, m' = r(ro). Since m £ F{f\ M) , sm(p = (psm . Therefore, we obtain

m' - sm<p(m') = ipsm{m') - <p{m').

Consequently, we get m' = T(TO.) £ F(ip;M). Let q be any other point in B. Then
there exists a geodesic c' in 5 joining m and 5. Let b be the middle point on c'
between'm and g. Then Sb(m) — q. Since st(B) = B, sj, carries the normal space
T^5 onto T^-B. Moreover, S(,(o) is a pole of sb(o) and sb(o) = <p(sb(o)). Applying
the same argument to q, we obtain r(g) £ F(<p;M).

Let S' be another component of F(ip; M). Then the reflection with respect to
B' is exactly the reflection with respect to B. So, the reflection with respect to B'
also carries o into the pole o of o. The same argument applies to this case. Thus, we
obtain the same result for B'. Consequently, we obtain r(F(<p; M)) = F(<p; M).

(2) =4> (1): Let B be a connected component of F(<p;M). Assume that M is a
Riemannian double covering space of a compact symmetric space M_ = M/T for some
covering transformation r on M such that <pr = rep. Then <p gives rise to a reflection
tp in M_ with respect to B_ = T(B) . Let ml £ B_ and let C_ be the connected component
of F(<psmr, M) through m'. Then C is a complete totally geodesic submanifold of M.
Let o' be an antipodal point of m' in C_. Then <p(o') = o'.

Let o and o be the preimages of o', that is, 7r(o) = ir(o) = o'. Then o is a pole
of o and <p(o) = o. This proves statement (1). |

Remark 4.1. It is easy to see that two reflections <p and -0 commute if and only if
their product <pifr is again a reflection.

Remark 4.2. According to Theorem 2.5, the product sosp of two point symmetries
so and sp , o,p £ M, is a reflection if and only if either o and p are antipodal or sp(o)
is a pole of o.
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5. WHEN DOES <pip = sol

In view of Remark 4.2, we consider the following

PROBLEM 4. When is the product of two reflections a point symmetry?

The following result gives a solution to this problem.

THEOREM G. Let M be a compact symmetric space and <p and ip two reflections
on M. Then the product (pip is a point symmetry so for some o 6 M if and only if
exactly one of the following two cases occurs:

(a) o £ F((p;M) n F(ip\M) and the connected components B and D of
F(<p;M) and F(ip;M), respectively, through o are orthogonally comple-
mentary, that is,

(*) dim B + dim D = dim M and TOB±TOD;

(b) o <£_ F((p;M) U F(ip;M) and tp(o) = ip{o)(:= o) is a pole of o such
that if T is the Riemannian double covering transformation corresponding
to the pair of poles, {o, o}, then o € F(rtp\M) C\ F(rip;M) and the
connected components E and F of F(rip;M) and F(rip;M) through
o, respectively, satisfy condition (*).

PROOF: ( 4 = ) : Case (a). If there is a point o € F(<p; M) f~l F(ip; M) such that
the connected components B and D through o satisfy condition (*), then <p{o) = o,
ij)(o) — o and, for any vectors X € TOB and Y G TOD, we have

and
(<pi>),(Y) = ip.MY) = <P.Y = -Y. •

Because pip is isometric, these imply <pip = so.
Case (b). Assume that there is a point o such that (1) <p{o) = ip(o) is a pole

of o, (2) o £ F(<p;M) U F(ip;M), and (3) the corresponding covering transformation
T satisfies the condition given in the statement (b). Then, by Theorem F, we see
that the double covering transformation r commutes with f and ip. Thus, we have
(r<p) = (rip) = id, that is rip and rip are involutive. Since o lies in F{r<p\M) and
in F(rip; M), rip and rip are reflections on M. So, by applying case (a) to this case,
we have (T>P)(TII'). = so which implies <pip = so .

( = > ) : Assume that (pip = so for some point o in M. Then we have (pip = ip<p.
Thus,

ip = (piptp = (pso and so(p = tpip<p = (p2ip — ip.
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From these we obtain <pso — so<p. Similarly, we also have tpso = soij>. Therefore, by
applying Theorem A, we see that either o £ F(<p; M) or <p{6) is a pole of o. Similarly,
either o £ F(ip; M) of tf>(o) is a pole of o.

If o £ F(<p; M), then ij>{o) = <pso{o) = <p{o). Hence, we have o £ F(<p; M) l~l
F(ij>;M). If f(o) is a pole of o, then <p(o) = so(<p(o)) = ipt(>ip(o) = ip(o). Since
<p(o) ^ o, this implies o <fc F(<p; M)L)F(ip; M). We consider these two cases separately.

Case (i). o £ F(<p; M)C\F(ij>\ M). In this case, if we denote by B and D the connected
components of the fixed point sets F(<p; M) and F(tp;M) through o, respectively, then
B and D are totally geodesic in M. If TOB D TOD ^ {0} , then there exists a nonzero
vector X in TOB D TOD and (tpip)t(X) — X. Hence, we have (pip ^ so which is a
contradiction. Consequently, we get

(5.1) TOB n TOD = {0}.

Now, for any vectors X £ TOB and Y € TOD, we have

r ) = g(X, v.Y) = 5(S o.X, ao .^ .y) = -<7(X, V.F) = -«?(X, Y)

which implies that B and D meet orthogonally at o.
Now, we claim that dim B + dim D = dimM. If not, there exists a nonzero vector

Z in TOM such that Z is perpendicular to B and £> at o. Hence, we have

-Z = so'(Z) = <p.i>,(Z) = <p.(-Z) = Z

which is a contradiction. Consequently, Case (a) of the theorem occurs.

Case (ii). o £ F{<p : M) U F(%I>;M) and o := <̂ (o) = ip(o) is a pole of o. In this
case, there exists a Riemannian double covering transformation r : M —y M such
that T(O) = o (Theorem 2.3). Hence, we have rip(o) = r(g) — o = Tip(o) and
o £ F{np; M) n F(rip; M). Furthermore, by Theorem F, the double covering transfor-
mation T commutes with tp and ij). Therefore, we also have (T<P)(TIP) = iptp = s0.
Consequently, case (b) of the theorem occurs. |
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