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Introduction. If S is a semigroup, then an S-set AS is

a set A together with a representation of S by mappings of A
into itself. In this article, the theory of injective envelopes is
carried from R-modules to S-sets. These results are known to

hold in every Grothendieck category, but the category EnsS of

(right) S-sets is not even additive.

In the first section we show that Enss has enough injectives;

in the second we proceed to construct the injective envelope as a
maximal essential extension. These results are applied in the
last section to show that, for instance, the extended system of
reals is the injective envelope of the rationals in EnsS .

This article is essentially a generalization and simplifica-
tion of part of my doctoral dissertation written under the direction
of Professor J. Lambek.

1. Injectivity.

DEFINITION 1. A right set (A,f) over a semigroup S,
or a right S-set AS , consists of a set A, and a mapping f

from A X S into A, written f(a,s) = as, such that for any a
in A, and s, s' in S, we have:

(1) a(ss') = (as)s' .

A homomorphism ¢ from AS to BS’ both right S-sets,

is a mapping from A to B such that for any a in A and s

in S, ¢(as) = (¢(a))s .
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The category of right S-sets (henceforth called S-sets)
and homomorphisms will be denoted by Ens_ . Left S-sets are

S
defined dually (c.f. also [6],[3]).

There are two subcategories of EnsS which deserve at-
tention. The first is EnsM , where M is a monoid with identity
element 1, satisfying (1) and

(2) a*1=a for all a in A

e
Od
with same homomorphisms as above. The second is EnsM in

o
which A is a pointed set with distinguished element * , Mo is

a monoid with a zero element 0, satisfying (1), (2) and:

(3) *+m =% forall m in M »
o

(4) a-0=% forall a in A ,
and every homomorphism maps distinguished element on same.

All the results and definitions in this paper are stated for

Enss , but they can be trivially extended to the latter two cate-

gories.

There are numerous examples of S-sets, a semigroup
over itself and the set of all maps on a set being the two most
obvious ones. A more interesting one is treated in greater de-
tail at the end.

Now the notions of injection, surjection, isomorphism,
sub S-set, congruence relation, as well as the relationship with
semigroup representations, are all immediate. The direct pro-
duct of two S-sets is their cartesian product with operations de-
fined component-wise, while their coproduct is their disjoint
union: the two are obviously not isomorphic, which in itself shows
that EnsS is not additive.

The proofs of the next three theorems are easy and will
be omitted.

THEOREM 1. If [0} is a homomorphism from AS to
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BS then [¢], defined on A by x[¢]y if and only if ¢(x) = ¢(y),

for all x and y in A, is a congruence relation on AS and the

following diagram:

¢
Ag ———— Bg

|

Allel
commutes, where © and ¢ are the usual surjection and injec-
tion respectively.

THEOREM 2. If 0 is a congruence relation on BS , 6b

the congruence class of b for any b in B, then every sub

S-set of B/6 is of the form A/6={9a|ae A} , where AS is

a sub S-set of BS .
THEOREM 3. If 6C6' are two congruence relations on
AS , then the relation 6'/6 , defined on A/6 by 6x(0'/6)0y<>x0'y

for all x and y in A, is a congruence relation on A/6, and
every congruence relation on A/6 is of that form.

We now proceed to show that Ens_ has enough injectives,

S
but first:
DEFINITION 2. An S-set Is is injective if and only if
for any injection K:AS—> BS and homomorphism ¢):AS—>IS there
is a homomorphism 6:BS—> I such that K = ¢ .

The next theorem is obvious.
THEOREM 4. A retract of an injective S-set is injective.

For the next two theorems we need the following concept.
We let S' denote the monoid obtained by adjoining an element 1
to S, with s+ 1=1.s =35 for all s in S, with the additional
convention that it be equal to S if S is already a monoid (i.e.
S'=98). S'S is then an S-set extending SS .

DEFINITION 3. An S-set AS is weakly injective if and
only if for any right ideal K of S (i.e. KS CK ) and homo-

morphism ¢):Ks—>AS there exists an element a in A such that
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for all s in K, ¢(s) = as .

This is a transcription of the well known criterion of in-
jectivity for R-modules, but all we can prove here is

THEOREM 5. If AS is injective, then it is weakly in-

jective.

Proof. Let [0} be as in the above definition, and extend

it to (f):S'S - AS by the injectivity of AS . If ¢(1) = a then

for any s in K, ¢(s) = ¢(1s) = (¢(1))s =as . Q.E.D.

It will be shown in the last section that the converse is not
true. Meanwhile, we prove the key result of this section.

1
THEOREM 6. If AS denotes the set of all mappings

Sl
from S' to A, then it is an injective S-set A S extending to

A_ .
S

Proof. Defining for any mapping f:S'=-A and s in S,
1
fs by (fs)(t) = f(st) for all t in S' turns AS into an S-set

1

ASS which extends AS for the canonical embedding ( defined

for each a in A by (¢(a))(s) = as for all s in S and

(p(a))(1) = a is an injection. If ¢ is a homomorphism from BS

S! C . - . .
to AS and K:BS—’CS an injection, then ¢ is defined by

(FeN(®) = K HctN)(1) if ct isin K(B), and to any fixed
element a of A otherwise (in particular when t = 1). 6 is

the required extension of ¢ since (6(05))(t) = (¢(K_1(cst)))(i) =
(a(c))(st) = (((_ﬁ(c))s)(t) if cst isin K(B) with ¢ in C and s
and t in S.

COROLLARY 1. Every S-set can be embedded into an
injective S-set.

COROLLARY 2. AS is injective if and only if it is a re-

tract of every extension.

COROLLARY 3. As is injective if and only if it is a re-
1

S
tract of BS for some set B .
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These results could also have been obtained by using a
"transfer' theorem, due to Maranda ([2] and [4]), or by embedding

AS into a product of S*1s , where s* is the right S-set of all

mappings of S into some fixed set X containing at least two
elements, since that product is injective.

2. The Injective Envelope.

DEFINITION 4. A sub S-set AS of BS is large in B

, if and only if any homomorphism ¢ from

WIlttell A. < IS
S S

BS to CS , for any S-set C_ , with restriction to AS an in-

S
jection is itself an injection. If Asf_ BS , then BS is also said
to be an essential extension of AS .

LEMMA 1. If a.1 and a.2 are in AS , then the relation
[ai, a2] defined on AS by:

x[a1,a2]y¢@x=y;or X:ai, yzaj, with i and j in{'l,Z};

or there exists a finite sequence s ,s s of elements of S
n

1: 2! L]
such that x=a, s, and a,, s, =a s  and a, s = ... and
i1 iy, 2 j', 2
a. s =a.s,  and a, s.=...=a. s and a. s = ith i
] . 1 : Y: w1 _]
Ji_1 1—1 Ji 1 J i 1 _]n n J'n n i

and j'i in {1, 2y ,i=1,2,...,n, is the smallest congruence
lati A lati t .

relation on S relating a1 o a2

Proof. It is easy to verify that it is a congruence relation

relating a, to a, Now assume © is a congruence relation on

AS such that aiea2 , and suppose that x[a ,az]y , where x and

1

y are in AS . With the above notation, we have a, s 6a, s.,
J.or )1
i i

and ultimately x0y in the only non trivial case.
THEOREM 7. If AS is a sub S-set of BS , and Cs is a
sub S-set of BS extending AS , then the following are all

equivalent:
265
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(1) AS is large in BS

(2) I 6 is a congruence relation on BS which is not the

identity, then its restriction to A_ is not the identity relation.

S
(3) For any two distinct elements b'1 and b2 in B,

there are two distinct elements a'1 and a2 in A such that

b b .
a,lb,.b,la,

(4) (2) holds for any congruence relation with domain CS ]

(5) Definition (4) holds for any homomorphism with domain

Proof. If © is not the identity on BS , then the canonical

surjection of B onto B/6 is not an injection, nor is its re-

S
striction to AS by (1), which shows (2). If b1 #bz in B, the

restriction of [b'l’ bZ] to A is not the identity, and thus (2) im-

plies (3). If © is a congruence relationon C with

S )
Asg CS - BS , not the identity, then there exist two distinct b'1

and b2 in C with b19b , and by (3) there are two distinct a1

2
and a, in A such that ai[b1,b2]a2, which implies that aiea2
by Lemma 1. If 0] is a homomorphism with domain CS , not an
injection, then the congruence relation [¢] of Theorem 1 is not

the identity on CS and the result follows by (4). Finally, (1) is

a special case of (5).

DEFINITION 5. AS is strictly large in an extension B

if and only if for any b1 # b2 in B thereis an s in S such

S

that b1s # bzs and both are in A .

It is obvious that strictly large implies large, but the con-
verse is not true as will be seen in the last section.

COROLLARY. (1) < is a transitive relation.

(2) ¥ A,<Bg and A C C.C B

S S S S’
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then ASS‘ C.< BS and A_ is nota proper retractof C

S S S

(3) Every essential extension of AS is contained
in every injective extension up to isomorphism over AS .
THEOREM 8 . If AS is a sub S-set of BS and 0 is a

congruence relation on B_ maximal in the set of all congruence

S

relations on BS with restriction to AS the identity, then B /6

contains a large sub S-set A/6 isomorphic to AS .

Proof. Using theorems 2 and 3, we see that AS is iso-

morphic to A/6, and if /0 is a congruence relation on B/6
with restriction to A/6 the identity, then n is a congruence
relation on BS , containing 0, and with restriction to AS the
identity; for if a, and a, are in A, then

0 0)6 =0 = .
a, m a2<:> a1(n/ ) a2<=>ea1 az'é:>a1 a,

It follows from the maximality of © that © = n and thus n/e is
the identity relation.

THEOREM 9. An S-set AS is injective if and only if it

has no proper essential extension.

Proof. Let us assume that the condition holds and that

B_. is a proper extension of A By Corollary 2 of Theorem 6

S S’

it suffices to show that AS is a retract of BS . BS is not an

essential extension, by the hypothesis, and thus there is a con-

gruence relation 0 on BS with restriction to AS the identity.

Since the union of any chain of such congruence relations still
has that property, © may be assumed to be maximal by Zorn's
Lemma. By Theorem 8, B/© is an essential extension of A/6 ,
the latter being isomorphic to AS . The hypothesis implies that

B/6 = A/6, or that for each b in B there is a unique a in A
such that 6b = 0Oa ; this in turn implies the existence of a homo-

morphism from BS to AS with restriction to AS the identity.

The converse is immediate.

THEOREM 10. Every S-set AS has a maximal essential
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extension whichis injective and unique up to isomorphism over AS .
Proof. Let IS be an injective extension of AS ,

guaranteed by Corollary 1 of Theorem 6. Then the union of any

chain of essential extensions of AS contained in I_ is an essen-

as

tial extension of AS , and thus by Zorn's Lemma, AS has maxi-

mal essential extensions in I, . If B_ is any such maximal

S S

essential extension in IS and CS any other essential extension

of BS then it easily follows that BS = CS , and thus BS is a

maximal essential extension of AS and is thus injective by the

preceding proposition. If BS and CS are two maximal essential

extensions of AS , then the embedding of AS in CS can be ex-

tended to an injection of BS into Cs , the latter being onto by
the maximality of BS .
DEFINITION 6. Any maximal essential extension of an

S-set AS is called an injective envelope of AS . It is unique up

to isomorphism over AS .

THEOREM 11. IS is the injective envelope of AS if and

only if IS is a minimal injective extension of AS .

Proof. If IS is the injective envelope of AS and I'_ is

injective between AS and IS then the identity map of I'S can be

extended to an injection of IS into I'S since AS_<_ I'S

the second part of the corollary of Theorem 7, and thus I'S =1

<
<Ig by

S

If conversely I'_ is the injective envelope of A_ and I_ a

S S S
minimal injective extension of AS then it follows that IS = I'S .
COROLLARY. The following are all equivalent:

(1) IS is the injective envelope of AS ,
(2) IS is both an injective and an essential extension of A_,

S

(3) IS is a minimal injective extension of A_ .

S
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3. Example. Let S be a lower semi-lattice, i.e., a

partially ordered set (S,<) in which any two elements have an
~inf . Then S can be regarded as a commutative idempotent

semigroup if the product of any two of its elements is defined to
be their inf , and it is well known that S can be embedded in a
complete lattice D in which the order relation of Sis preserved
together with all sups and infs already existing in S, and
such that moreover for any d in D, sup {seS:s<d} =d =
inf {se S:d< s} . This lattice D will be referred to as the
Dedekind- MacNeille or DM completion of S, and it is of course
an S-set DS extending SS .

In the sequel, semi-lattice will mean lower semi-lattice,
but everything is dually true for upper semi-lattices.

We now show that if S is a chain then its DM completion,
itself a chain, is its injective envelope, but we first recall

THEOREM 12. If D is the DM completion of the chain
S and d1 and d2 are any two distinct elements of D with at

most one of them in S, then there exists an infinite sequence

si,sz, 53,... of elements of S such that d1<s1<52<s3<...<d.2

(strict inequalities).

Proof. Let us assume that d1 < d2 I d2 is notin S
then d1 < d2 implies that there exists an S in S such that
d1< Si< d2 . Repeating this argument with Sy 8, etc. yields the

required sequence. The argumentis the same if d1 isnotin S .Q.E.D.

This theorem is used to prove the following important

THEOREM 13. The DM completion D_ of a chain SS

S

is an essential extension of it.

Proof. Let © be a congruence relation on DS not the

identity. Then there exist two distinct elements d1 and d2 in
D, say d1 < d2 , such that d'1 0 d‘2 . If both are in S, there
is nothing to prove. If one of them is notin S, then by the pre-

ceding theorem there exist two distinct elements sy and s, in

d d 6 i ies that
S such that d1<s1< s2<d2 an 1 d2 implies tha
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s 06d. s =
1 11 2 1 1 2

2 2
by symmetry and transitivity of 6 . Q.E.D

= =d 0 d = . T 0
d d s and d1 1s2 s s2 hus s1 s

The result also follows from the fact that every congruence
relation on DS is a partition of D into disjoint intervals and

that the smallest congruence relation linking d1 to d2 (that of

Lemma 1) is of the form X[di’ dZ]Y if and only if x =y or x
and y are both in the closed interval [di’ d for any x and vy

in D.

5]

It now suffices to show that the DM completion D of a
chain S is injective, and in the sequel 0 and 1 will denote the
smallest and largest elements of D respectively.

DEFINITION 7. If f is a mapping from S' to the chain
S then f = sup {xe S': f restricted to <0,x] (half closed) is

the identity} , and 0 if no such x exists.

The following lemma is obvious.
LEMMA 2, If f is as above and s in S then

(1) fs=f on <0,s] and fs = f(s), a constant map on

[s,1] .

(2) If fs is the identity mapping on <0,x] then so is f
for any x in S'.
SI
THEOREM 14. ¢ defined for any f in S by ¢(f) = llf

1
is a homomorphism from SS to D .

S S
Proof. ¢ 1is obviously a mapping and it suffices to show

that lfs = ﬂfs for any s in S . Now it follows from the second

part of the above lemma that 2 S < £, and thus the theorem is true

f f

for ﬂf =0. If sz # 0 there are two possibilities:

(1) s< ﬁf . Then fs =f = identity on <0, s] and thus
s<U{ I s<££s, then there is an x in S such that

fs

s<x</{ and fs restricted to < O,x] is the identity which

fs
implies that x = fs(x) = f(sx) = f(s) = s a contradiction. Thus
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(2) ﬂff_s. If ﬂfs<£f, then there is an x in S such

that ffs < xng and f restricted to <0,x] is the identity,

which means that fs = f = identity on <0,x], again a contradic-
tion, and thus lfs = ﬁf = Jlfs .

THEOREM 15. If D is the DM completion of a chain
S, then DS is the injective envelope of SS .

1

Proof. It suffices to show that DS is a retract of SS

1
and to this effect we embed D_ in SS as follows. We define a

S S
Sl
mapping K from D to S by (K(d))(x) =dx if dx isin S,
and to a fixed element k of S otherwise, for all x in S'.
K is obviously a homomorphism and it is also an injection. For,

let d1 < d2 in D . If both are in S, then (K(dz))(dz) = d2

and (K(d1))(d2) = d1 . If only one is in S, then by Theorem 12

there is at least one element x of S distinct from k and such
that d1<x<d2; then (K(d1))(x) =d1 if d1 isin S and to k

otherwise, while (K(dz))(x) =x . In every case, K(d1) # K(dz) .

Finally it follows from theorem 14 that ¢oK(d) =d for all d in
D .

COROLLARY. The chain of extended reals is the in-
jective envelope of the chain of rationals.

The rest of this section is devoted to proving the statements
made after Definition 5 and Theorem 5.

Firstly, we remark that the DM completion Ds of a non

complete chain SS is not a strictly essential extension. For if
d1< cl2 are notin S, then s in S must be between d1 and

d2 or larger than d_ in order to have d1s # dzs ; but then

2

dis=<il1 is notin S.

To prove the second assertion, we recall that the ideals,
or the sub S-sets, of a semi-lattice S are the semi-filters,
i.e., subsets K of S such that for any s in S and k in K,
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s < k implies that s is in K . We now have

THEOREM 16.  Every partial endomorphism f of a
semi-lattice SS with domain an ideal K is an inf preserving

idempotent contraction with f(K)C K .

Proof. For any k in K, fz(k) = fz(kz) = f(f(kk)) =
£(kE(K)) = (E(k))% = £(k) . If k' is also in K , then f(k)- £(k') =

f(kf(k')) = fz(kk‘) = f(kk') . Finally, f£(k) = f(kz) = (f(k))k and thus
f(k) < k, which implies that f(K)C K .

THEOREM 17. If f is a partial endomorphism on the
semi-lattice S with domain an ideal K , then there is an ele-
ment d in the DM completion D of S such that for any x in
K, f(x) = dx .

Proof. Let d=sup{keK:f(k) =k} . This set is not
empty since for any x in K, f(f(x)) = f(x) by the last theorem.
Thus f(x) < d for all x in K and f(x)= (f(x))x < dx . If now
k in K is such that f(k) = k then for any x in K, kx < f(x)
and in K which implies that d < f(x) and dx < f(x) .

THEOREM 18. Every chain is weakly injective.

Proof. Let f be a partial endomorphism on the chain S
with domain an ideal K, and let d be the element of the DM
completion D of S whose existence is guaranteed by the pre-
ceding theorem. If x is in K, then dx must be in K by
Theorem 16, and thus, if d is notin S, x must be less than
d . But by Theorem 12, there is an s in S between d and 1
with f(x) =dx = x = sx, and this for all x in K. Q.E.D.

And so, any non complete chain is weakly injective but not
injective, since the DM completion is a minimal injective ex-

tension.
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