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Abstract We consider semilinear elliptic problems in which the right-hand-side nonlinearity depends
on a parameter λ > 0. Two multiplicity results are presented, guaranteeing the existence of at least
three non-trivial solutions for this kind of problem, when the parameter λ belongs to an interval (0, λ∗).
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concave nonlinearities perturbed by an asymptotically linear nonlinearity at infinity.
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1. Introduction

Let Z ⊂ R
N be a bounded domain with C2-boundary ∂Z. We consider the following

semilinear elliptic problem depending on a parameter λ > 0:

−∆x(z) = f(z, x(z), λ), z ∈ Z,

x|∂Z = 0.

}
(P )λ

This paper deals with the existence of multiple solutions for problem (P )λ. More precisely,
we prove the existence of at least three non-trivial solutions of (P )λ for sufficiently small
values of λ > 0, whenever the nonlinearity f : Z × R × (0, λ̄) → R, with λ̄ > 0, involves
either

• concave–convex type nonlinearities (see Theorem 2.1), or

• concave terms perturbed by an asymptotically linear nonlinearity at infinity (see
Theorem 2.3).
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We emphasize that we do not impose any symmetry hypothesis on the nonlinearity f . As
we know, if f(z, x, ·) is odd, under further assumptions, one can usually produce infinitely
many solutions for problem (P )λ.

Problems with concave–convex nonlinearities (i.e. f(z, x, λ) = λ|x|p−2x+ |x|r−2x, with
1 < p < 2 < r < 2∗) were studied by Ambrosetti and coauthors [2, 3], Bartsch and
Willem [4], Adimurthi et al . [1], Tang [20] and others. In particular, Bartsch and Willem
[4] proved, for every λ > 0, the existence of a sequence of solutions for (P )λ for which the
energy level tends to 0. Wang [22] considered the nonlinearity λ|x|p−2x + f(z, x) with
f(· , ·) on Z×R, odd in x ∈ R for small |x|, and f(z, x) = o(|x|p) at x = 0 and no condition
on f(z, ·) for large x ∈ R; Wang still guarantees, for every λ > 0, a whole sequence of
solutions of (P )λ with the same properties as in [4]. In [17], Perera deals with problems
where the nonlinearity has the form f(z, x, λ) = λ|x|p−2x + ax + |x|r−2x + o(|x|r−1)
at x = 0 and at x = ∞, with 1 < p < 2 < r < 2∗. When Z is the unit ball and
f(z, x, λ) = λ|x|p−2x + |x|r−2x, with 1 < p < 2 < r < 2∗, Adimurthi et al . [1] and Tang
[20] proved that (P )λ has exactly two positive solutions whenever λ > 0 is sufficiently
small. Taking into account these facts, our first result (see Theorem 2.1, below) can be
fitted into the works [1,20] and [2–4,22], respectively.

Semilinear problems involving concave terms perturbed by an asymptotically linear
nonlinearity at infinity has been investigated by several authors (see [10,11] and refer-
ences therein). To the best of our knowledge, there is no multiplicity result that guaran-
tees at least three non-trivial solutions in this context. The aim of our second result (see
Theorem 2.3, below) is to give a contribution in this direction.

Our approach uses variational techniques based on critical point theory, suitable trun-
cation methods and Morse theory. The strategy of the proofs can be described as follows.
First, we construct two local minimizers of the energy functional associated with prob-
lem (P )λ: one of them is positive, the other is negative. In order to find these elements,
we exploit the result of Brézis and Nirenberg [5] and the strong maximum principle of
Vázquez [21], as well as a result of Guedda and Véron [8]. Next, we may construct a
mountain-pass-type solution for (P )λ. An argument based on critical groups shows that
this last element cannot be zero (see [9,14]).

Multiplicity results for elliptic problems depending on a parameter λ > 0 were also
established by Delgado and Suárez [7], Maya and Shivaji [13], Motreanu et al . [15],
Mugnai [16], Ricceri [18] and Shi [19], using different hypotheses and methods.

2. Multiplicity theorems

In the rest of the paper, let

C1
0 (Z̄) = {x ∈ C1(Z̄) : x|∂Z = 0}.

This is an ordered Banach space with order the (positive) cone

K+ = {x ∈ C1
0 (Z̄) : x(z) � 0 for all z ∈ Z̄}.
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It is well known that

IntK+ =
{

x ∈ K+ : x(z) > 0 for all z ∈ Z and
∂x

∂n
(z) < 0 for all z ∈ ∂Z

}
.

Here, we denote by n(z) the unit outward normal at z ∈ ∂Z. If u1 ∈ H1
0 (Z) is the

L2-normalized principal eigenfunction of (−∆, H1
0 (Z)), then we know that u1 ∈ IntK+.

For the first multiplicity theorem, the hypotheses on the nonlinearity f(z, x, λ) are as
follows.

(H1) f : Z × R × (0, λ̄) → R, with λ̄ > 0, is a function such that

(i) for all x ∈ R and all λ ∈ (0, λ̄), the function z �→ f(z, x, λ) is measurable;

(ii) for almost all z ∈ Z and all λ ∈ (0, λ̄), the function x �→ f(z, x, λ) is continuous
and f(z, 0, λ) = 0;

(iii) for almost all z ∈ Z and all (x, λ) ∈ R × (0, λ̄), we have

|f(z, x, λ)| � a(z, λ) + c|x|r−1

with a(· , λ) ∈ L∞(Z)+ = {η ∈ L∞(Z) : η(x) � 0 a.e. x ∈ Z}, ‖a(· , λ)‖∞ → 0 as
λ → 0+, c > 0, 2 < r < 2∗;

(iv) for every λ ∈ (0, λ̄) there exist M = M(λ) > 0 and θ = θ(λ) > 2 such that

0 < θF (z, x, λ) � f(z, x, λ)x for a.a. z ∈ Z and all |x| � M,

with F (z, x, λ) =
∫ x

0 f(z, s, λ) ds;

(v) for every λ ∈ (0, λ̄) there exist µ = µ(λ) ∈ (0, 2), δ = δ(λ) > 0 and η =
η(λ) ∈ L∞(Z)+, with η(z) � λ1 a.e. on Z (λ1 denotes the principal eigenvalue of
(−∆, H1

0 (Z))), η �= λ1 such that µF (z, x, λ) � f(z, x, λ)x and F (z, x, λ) � 1
2η(z)x2

for a.a. z ∈ Z and all |x| � δ;

(vi) for every λ ∈ (0, λ̄) we have f(z, x, λ)x > 0 for a.a. z ∈ Z, all x �= 0 (sign condition).

Our first result can be read as follows.

Theorem 2.1. If the hypotheses of (H1) hold, then there exists λ∗ ∈ (0, λ̄) such that
for all λ ∈ (0, λ∗) problem (P )λ has three distinct solutions: x0 ∈ IntK+, v0 ∈ − IntK+,
and y0 ∈ C1

0 (Z̄), y0 �= 0.

Remark 2.2. The classical concave–convex nonlinearity f(z, x, λ) = λ|x|p−2x +
|x|r−2x, 1 < p < 2 < r < 2∗, satisfies Hypotheses (H1). Or, let f(z, x, λ) =
(2+sgn(x))(λ|x|p−2x+|x|r−2x), which also verifies the hypotheses; in addition, it is not an
odd function. Another possibility is the function f(z, x, λ) = λ|x|p−2x+ξ(z)x+ |x|r−2x+
g(z, x), with ξ ∈ L∞(Z)+, ξ(z) � λ1 a.e. on Z, ξ �= λ1 and g(z, x) a Carathéodory func-
tion such that there exist µ ∈ (0, 2) and δ > 0 for which we have µG(z, x) � g(z, x)x for
a.a. z ∈ Z and all |x| � δ, g(z, x)x � 0 for a.a. z ∈ Z, all x ∈ R and g(z, 0) = 0 a.e. on Z.
(Note that g(z, ·) can be a non-odd function.)
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In what follows, {λm}m�1 are the distinct eigenvalues of (−∆, H1
0 (Z)). For the second

multiplicity theorem, we impose the following conditions on the nonlinearity f(z, x, λ).

(H2) f : Z × R × (0, λ̄) → R, with λ̄ > 0, is a function such that (i), (ii), (v), (vi) are the
same as those in (H1), and

(iii) for almost all z ∈ Z and all (x, λ) ∈ R × (0, λ̄), we have

|f(z, x, λ)| � a(z, λ) + c min{|x|, |x|r−1}

with a(· , λ) ∈ L∞(Z)+, ‖a(· , λ)‖∞ → 0 as λ → 0+, c > 0, 2 < r < 2∗;

(iv) for every λ ∈ (0, λ̄), there exist functions θ = θ(λ), θ̂ = θ̂(λ) ∈ L∞(Z)+ such that
for some m ∈ N we have

λm � θ(z) � θ̂(z) � λm+1 for a.a. z ∈ Z, θ �= λm, θ̂ �= λm+1,

and

θ(z) � lim inf
x→±∞

f(z, x, λ)
x

� lim sup
x→±∞

f(z, x, λ)
x

� θ̂(z)

uniformly for a.a. z ∈ Z.

Theorem 2.3. If the hypotheses of (H2) hold, then there exists λ∗ ∈ (0, λ̄) such that
for all λ ∈ (0, λ∗) problem (P )λ has three distinct solutions x0 ∈ IntK+, v0 ∈ − IntK+,
and y0 ∈ C1

0 (Z̄), y0 �= 0.

Remark 2.4. Hypotheses (iv) and (v) of (H2) imply that our setting incorporates
problems with a concave nonlinearity λ|x|p−2x perturbed by an asymptotically linear
term at infinity. A concrete (odd) function verifying the hypotheses of (H2) is f(x, λ) =
λ|x|p−2x + θ min{|x|r−2, 1}x, where 1 < p < 2 < r < 2∗, and λm < θ < λm+1. Or we
may consider f(x, λ) = λ(2+sgn x)|x|p−2x+θ min{|x|r−2, 1}x, which is not odd but also
verifies (H2).

3. Proof of Theorem 2.1

Before starting the proof, we recall the notion of critical groups. Let X be a Hilbert space
and let ϕ ∈ C1(X) be a functional which satisfies the Palais–Smale (PS) condition.
Let x0 ∈ X be an isolated critical point of ϕ with ϕ(x0) = c0. For any c ∈ R, let
ϕc = {x ∈ X : ϕ(x) � c} and let U be a neighbourhood of x0. The nth-order critical
group (over Z) of ϕ at x0 is defined by

Cn(ϕ, x0) = Hn(ϕc0 ∩ U, ϕc0 ∩ U \ {x0}),

where Hn(· , ·) is the nth singular relative homology group with integer coefficients, n ∈ N.

Proof of Theorem 2.1. Let e ∈ IntK+ be the unique solution of the Dirichlet
problem

−∆x(z) = 1 a.e. on Z, x|∂Z = 0.
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We claim that we can find λ∗ ∈ (0, λ̄) such that, if λ ∈ (0, λ∗), then we can choose
γ1 = γ1(λ) > 0 such that

‖a(· , λ)‖∞ + c(γ1‖e‖∞)r−1 < γ1. (3.1)

We argue indirectly. Suppose that (3.1) is not true. Then we can find a sequence λn → 0+

such that

γ � ‖a(· , λn)‖∞ + c(γ‖e‖∞)r−1 for all n ∈ N and all γ > 0.

We let n → ∞ and, on account of (H1) (iii), we obtain

1 � cγr−2‖e‖r−1
∞ for all γ > 0.

Since r > 2, letting γ → 0+, we have a contradiction. This shows that (3.1) is true.
Fix λ ∈ (0, λ∗) and set x̄ = γ1e ∈ IntK+, with γ1 > 0 given by (3.1). We define the

truncated Carathéodory nonlinearity as follows:

f+(z, x, λ) =

⎧⎪⎨
⎪⎩

0 if x < 0,

f(z, x, λ) if 0 � x � x̄(z),

f(z, x̄(z), λ) if x̄(z) < x.

(3.2)

We introduce the functional ϕ+
λ : H1

0 (Z) → R defined by

ϕ+
λ (x) = 1

2‖Dx‖2
2 −

∫
Z

F+(z, x(z), λ) dz with F+(z, x, λ) =
∫ x

0
f+(z, s, λ) ds.

Clearly, ϕ+
λ ∈ C1(H1

0 (Z)) and, exploiting the compact embedding of H1
0 (Z) into L2(Z),

we can easily check that ϕ+
λ is sequentially weakly lower semicontinuous. Moreover,

because of (3.2) we have

ϕ+
λ (x) � 1

2‖Dx‖2
2 − c1(λ)‖Dx‖2

for some c1(λ) > 0, i.e. ϕ+
λ is coercive and bounded from below. Therefore, we can find

x0 = x0(λ) ∈ H1
0 (Z) such that

ϕ+
λ (x0) = inf

H1
0 (Z)

ϕ+
λ .

Consequently, (ϕ+
λ )′(x0) = 0 and

−∆x0(z) = f+(z, x0(z), λ) a.e. on Z, x0|∂Z = 0. (3.3)

From regularity theory, we have x0 ∈ C1
0 (Z̄). Moreover, using −x−

0 ∈ H1
0 (Z) as a test

function in (3.3), we obtain

‖Dx−
0 ‖2

2 = −
∫

Z

f+(z, x0(z), λ)x−
0 (z) dz = 0.

Therefore, x−
0 = 0, i.e. x0 � 0.
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Next, we show that x0 �= 0. To this end, let δ > 0 be as in Hypothesis (H1) (v). Due
to the fact that x̄ ∈ IntK+, one may choose t > 0 small enough such that tu1 � x̄ and
tu1(z) ∈ [0, δ] for all z ∈ Z̄. Then

ϕ+
λ (tu1) = 1

2 t2‖Du1‖2
2 −

∫
Z

F+(z, tu1(z), λ) dz

= 1
2 t2‖Du1‖2

2 −
∫

Z

F (z, tu1(z), λ) dz

� 1
2 t2‖Du1‖2

2 − 1
2 t2

∫
Z

ηu2
1(z) dz (see Hypothesis (H1) (v))

= 1
2 t2

∫
Z

(λ1 − η(z))u2
1(z) dz (since ‖Du1‖2

2 = λ1‖u1‖2
2)

< 0 (recall the hypothesis on η and that u1 ∈ IntK+).

Therefore, we have ϕ+
λ (x0) � ϕ+

λ (tu1) < 0 = ϕ+
λ (0). Consequently, x0 �= 0, and x0 � 0.

Due to (H1) (vi), we have

∆x0(z) = −f+(z, x0(z), λ) � 0 a.e. on Z.

Invoking the strong maximum principle of Vázquez [21], we conclude that

x0 ∈ IntK+. (3.4)

On the other hand, if 〈· , ·〉 denotes the duality bracket for the pair (H−1(Z), H1
0 (Z)),

then, from (3.3), (H1) (iii) and (3.1), we have

〈−∆x0 + ∆x̄, (x0 − x̄)+〉 =
∫

Z

(f+(z, x0, λ) − γ1)(x0 − x̄)+ dz � 0.

Therefore, ‖D(x0 − x̄)+‖2
2 � 0, i.e. (x0 − x̄)+ = 0. Consequently, x0 � x̄ and

−∆x0(z) = f+(z, x0(z), λ)

= f(z, x0(z), λ)

� ‖a(· , λ)‖∞ + c‖x̄‖r−1
∞ (see Hypothesis (H1) (iii))

< γ1 (see (3.1))

= −∆x̄(z) a.e. on Z.

In particular, one can see that x0 ∈ IntK+ is a solution of (P )λ (see the second equality).
Moreover, by [8, Proposition 2.2], we infer that

x̄ − x0 ∈ IntK+. (3.5)

In addition, if ϕλ : H1
0 (Z) → R denotes the Euler functional for the problem (P )λ,

defined by

ϕλ(x) = 1
2‖Dx‖2

2 −
∫

Z

F (z, x(z), λ) dz for all x ∈ H1
0 (Z),
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then, using (3.4) and (3.5), the element x0 is a local minimizer not only of ϕ+
λ but also

of ϕλ in the C1
0 (Z̄)-topology. Hence, by [5], it is also a local minimizer of ϕλ in the

H1
0 (Z)-topology.
Analogously to the previous case, we find an element v0 ∈ − IntK+ that is a solution

for the problem (P )λ and a local minimizer of ϕλ.
Because of Hypotheses (H1) (iii) and (iv), the functional ϕλ satisfies the (PS) condition

(see, for example, [12, p. 100]). Since x0 ∈ IntK+ and v0 ∈ − IntK+ are local minimizers
of ϕλ, we have

Cn(ϕλ, x0) = Cn(ϕλ, v0) = δn,0Z for all n ∈ N (3.6)

(see [6, Example 1, p. 33]). On the other hand, by (H1) (iii), one can find r = r(λ) > 0
small enough such that r < ‖Dx0‖2, and

ϕλ(x) > 0 for all x ∈ H1
0 (Z), ‖Dx‖2 = r.

Moreover, by construction, ϕλ(x0) < ϕλ(0) = 0. Since {0, x0} ⊂ H1
0 (Z) and {x ∈ H1

0 (Z) :
‖Dx‖2 = r} are homologically linked, we have H1(ϕb

λ, ϕ0
λ) �= 0, where b > max{ϕλ(tx0) :

t ∈ [0, 1]} (see [6, Theorem 1.1′, p. 84]). Taking into account [6, Theorem 1.5, p. 89],
we can find a mountain-pass-type critical point y0 ∈ H1

0 (Z) of ϕλ, and hence a solution
of (P )λ, such that

C1(ϕλ, y0) �= 0. (3.7)

By (3.6), x0 �= y0 �= v0. Moreover, by Hypotheses (H1) (v) and (vi) and [14] or [9,
Proposition 2.1], we have

Cn(ϕλ, 0) = 0 for all n ∈ N. (3.8)

By (3.7) and (3.8), we conclude that y0 �= 0 and by regularity theory one has y0 ∈
C1

0 (Z̄). �

Remark 3.1. Theorem 2.1 extends [3, Theorem 2.1] and [17, Theorem 4.1.1].

4. Proof of Theorem 2.3

Proposition 4.1. If the hypotheses of (H2) hold and λ ∈ (0, λ̄), then ϕλ satisfies the
(PS) condition.

Proof. Let {xn}n�1 ⊂ H1
0 (Z) be a sequence such that |ϕλ(xn)| � M1 for some M1 >

0, all n � 1, and ϕ′
λ(xn) → 0 in H−1(Z) as n → ∞. As is well known, it suffices to

show that {xn}n�1 ⊂ H1
0 (Z) is bounded. We proceed by contradiction. Suppose that

‖xn‖ → ∞. Let yn = xn/‖xn‖, n � 1. We may assume that

yn
w−→ y ∈ H1

0 (Z), yn → y ∈ L2(Z), yn(z) → y(z) a.e. on Z

and

|yn(z)| � k(z) a.e. on Z for all n � 1 with k ∈ L2(Z)+.
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Let Nλ : L2(Z) → L2(Z) be the Nemytskii operator corresponding to the function
(z, x) �→ f(z, x, λ), i.e.

Nλ(x)(·) = f(· , x(·), λ) for all x ∈ L2(Z).

By virtue of Hypotheses (H2) (iii) and (iv) and Krasnosel’skii’s theorem, Nλ is contin-
uous and bounded. From the choice of the sequence {xn}n�1 ⊂ H1

0 (Z), we have

|〈−∆xn − Nλ(xn), v〉| � εn‖v‖ for all v ∈ H1
0 (Z) with εn → 0+.

Consequently, ∣∣∣∣
〈

− ∆yn − Nλ(xn)
‖xn‖ , v

〉∣∣∣∣ � εn

‖xn‖‖v‖ for all v ∈ H1
0 (Z). (4.1)

Let v := yn −y. By using (4.1) and the fact that {Nλ(xn)/‖xn‖}n�1 ⊂ L2(Z) is bounded
(see (H2) (iv)), we obtain

〈−∆yn, yn − y〉 → 0 as n → ∞.

Therefore, ‖Dyn‖2 → ‖Dy‖2. Since Dyn
w−→ Dy in L2(Z, RN ), from the Kadec–Klee

property of Hilbert spaces, we have Dyn → Dy in L2(Z, RN ); hence, yn → y in H1
0 (Z),

and so ‖y‖ = 1.
Based on the above observation, we may assume that

Nλ(xn)
‖xn‖

w−→ h ∈ L2(Z) as n → ∞.

Clearly, we have that xn(z) → +∞ a.e. on {y > 0}, xn(z) → −∞ a.e. on {y < 0}
and, from the linear growth of f(z, · , λ) (see Hypotheses (H2) (iii) and (iv)), we see that
h(z) = 0 a.e. on {y = 0}. Therefore, again using Hypothesis (H2) (iv) we can easily check
that

h(z) = g(z)y(z) a.e. on Z,

with g ∈ L∞(Z)+, θ(z) � g(z) � θ̂(z) a.e. on Z.
If in (4.1) we pass to the limit as n → ∞ and since v ∈ H1

0 (Z) is arbitrary, we obtain

−∆y(z) = g(z)y(z) a.e. on Z, y|∂Z = 0. (4.2)

Exploiting the monotonicity of the eigenvalues of (−∆, H1
0 (Z)) on the weight function,

we have

λ̂m(g) < λ̂m(λm) = 1 (4.3)

and

λ̂m+1(g) > λ̂m+1(λm+1) = 1. (4.4)

Comparing the expressions in (4.2)–(4.4), we conclude that y = 0, a contradiction to the
fact that ‖y‖ = 1. This proves that {xn}n�1 ⊂ H1

0 (Z) is bounded and so ϕλ satisfies the
(PS) condition. �
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Proof of Theorem 2.3. Arguing exactly as we did in the proof of Theorem 2.1,
we may construct x0, v0 ∈ H1

0 (Z), two local minima of ϕλ. (Note that Hypothe-
sis (H2) (iii) implies (H1) (iii).) Since ϕλ verifies the (PS) condition (see Proposition 4.1),
the mountain-pass-type element y0 ∈ H1

0 can be obtained as above. �
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13. C. Maya and R. Shivaji, Multiple positive solutions for a class of semilinear elliptic
boundary-value problems, Nonlin. Analysis 38 (1999), 497–504.

14. V. Moroz, Solutions of superlinear at zero elliptic equations via Morse theory, Topolog.
Meth. Nonlin. Analysis 10 (1997), 387–398.

15. D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Multiple nontrivial solu-
tions for nonlinear eigenvalue problems, Proc. Am. Math. Soc. 135 (2007), 3649–3658.

16. D. Mugnai, Multiplicity of critical points in presence of a linking: application to a super-
linear boundary-value problem, Nonlin. Diff. Eqns Applic. 11 (2004), 379–391.

17. K. Perera, Critical groups of pairs of critical points produced by linking subsets, J. Diff.
Eqns 140 (1997), 142–160.

18. B. Ricceri, A general multiplicity theorem for certain nonlinear equations in Hilbert
spaces, Proc. Am. Math. Soc. 133 (2005), 3255–3261.

19. J. Shi, Exact multiplicity of solutions to superlinear and sublinear problems, Nonlin.
Analysis 50 (2002), 665–687.

https://doi.org/10.1017/S0013091507000665 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000665
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