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THERMAL CONDUCTIVITY OF ICE IN THE
TEMPERATURE RANGE o.5 TO 5.0 K
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ApstrACcT. A method is described for measuring the thermal conductivity of ice in the temperature
range from 0.5 to 5.0 K using a 3He apparatus. The results from our first experiments are not too far from
the theoretical law for the low-temperature thermal conductivity of ice A = 0.4273. Measurements at still
lower temperatures are necessary to confirm our resulls.

REsuME. Conduction thermique de la glace dans la gamme de température de 0,5 @ 5,0 K. Nous décrivons une
méthode permettant la mesure du coefficient de conduction thermique de la glace dans la gamme de tempéra-
ture de 0,5 2 5,0 K & 'aide d’un appareil a 3He. Les résultats de nos premiéres expériences ne sont pas trop
éloignés de la loi théorique de la conduction thermique de la glace 4 basse température A = 0,4273. 1l est
nécessaire d’effectuer des mesures A des températures encore plus basses pour contréler nos résultats.

ZUSAMMENFASSUNG. Warmeleitfahigkeit von Eis im Temperaturbereich von 0,5 bis 5,0 K. Eine Methode wird
beschrieben, die die Messung des Wiarmeleitfihigkeitskoeflizienten von Eis im Temperaturbereich von
0,5 bis 5,0 K mittels einer 3He-Apparatur erlaubt. Die Ergebnisse unserer ersten Versuche sind nicht zu weit
entfernt vom theoretischen Tieftemperaturwiirmeleit{zhigkeitsgesetz fiir Eis A = 0,42 73, Messungen bei
noch tieferen Temperaturen sind nétig, um unsere Ergebnisse zu tiberprifen.

INTRODUCTION

Callaway (1959) showed that the thermal conductivity coeflicient A of a dielectric crystal
can be expressed as:
e/T
kT3 (kN3
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0
where x = fiw/kT, k is Boltzmann’s constant, T is the absolute temperature, 2= is Planck’s
constant, w is the phonon frequency, and © is the Debye temperature. The total relaxation
time 7 is obtained by using the equation

el — _i ! (2)

where the 7; are the relaxation times corresponding to different phonon interaction
mechanisms.

As Klinger (1975) pointed out, the correction term A, can be neglected for ice samples,
and the relaxation time due to phonon interaction with crystal imperfections can be written
as:

Tqd = deR: (3)
where R takes the values 2 or 3 depending on the origin of the sample.

In order to describe phonon—phonon interactions it is sufficient to use a relaxation time
for umklapp processes given by

Tu= 175X 107 7w?*T exp (— 0O/6.5T). (4)
* Present address: Unité INSERM, U 121, Hopital Cardio-vasculaire, B.P. Lvon Montchat, I 69394 Lyon
Cedex 3, France.
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According to Casimir (1948) the thermal conductivity coeflicient depends on a constant
relaxation time

e ' = vfLe, (5)

at sufficiently low temperatures at which the phonons are scattered at the boundaries of the
sample. Here L. is the Casimir length given by:

Lo = 2H(ab|n)}, (6)
with a and b the sides of the crystal parallelepiped perpendicular to the heat flow. H is a
coefficient near to one due to the finite length of the sample.

In this case the thermal conductivity coefficient can be approximated by:
o

ol l‘ic_('%y f #+ €% (e5—1)2 dx. (7)

27yt
o
As the temperature region where Equation (7) is valid could not be attained in his experi-
ments, Klinger (1975) used a Casimir length calculated from Equation (6) with H =1 in
order to fit his experimental results. This method is only valid if the chosen mean value of the
sound velocity is the most appropriate one. On the other hand if there are small-angle grain
boundaries present in the crystal, the “apparent Casimir length”, will be smaller than that
calculated from the macroscopic crystal. As an incorrect value for 7. can lead to erroneous
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Fig. 1. Simplified view of the sample holder used in our experiments.
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parameters in Equation (3), it is necessary to measure the heat conduction directly in the
temperature region where Equation (7) is valid in order to give a more reliable interpretation
of the influence of lattice defects on low-temperature heat conduction data for ice. This is the
purpose of the present work.

EXPERIMENTAL PROCEDURE

Heat conduction experiments have been done between 0.58 K and 4.01 K on a $He-
apparatus at the Service des Basses Températures, Centre d’Etudes Nucléaires de Grenoble.

The major difficulty was to ensure a good thermal contact between the sample and the
cooling bath. Asice is very fragile, it was not possible to ensure a sufficiently good contact by
pressing the sample between copper plates as Klinger (1975) did at higher temperatures.

As the thermal dilatation coefficient of ice is very much higher than that of copper it is not
possible to freeze the crystal on a compact copper block.

We developed the sample holder shown in Figure 1 which gave good results: a small
Plexiglas (polymethylmethacrylate) vessel contained a loose bundle of 340 tinned copper
wires each 0.15 mm in diameter. These wires were related to the 3He bath.

The sample mounting was done in a cold room at 257 K. We introduced supercooled
water into the vessel and froze the sample to the copper wires. The cooling down of the sample
from cold-room temperature to liquid-nitrogen temperature was done at a rate of about
0.6 K /min.

We applied the steady-state heat-flow method and computed the thermal conductivity
coefficient from Fourier’s law:

Pl
T abAT’ (8)

where P is the power applied to the sample, a and b the section of the sample, / is the distance
between thermometers, and AT the measured temperature difference.

We used two Allen Bradley carbon resistors as thermometers. The carbon resistor at the
“hot” side of the sample was calibrated by comparing it to a “Cryo Resistor” germanium
resistance of known characteristics. On the basis of this calibration the absolute temperature
of the carbon resistor was computed using an empirical law. The heater delivering the power
P was a strain gauge of 110 ). Another heating device fixed on the sample holder allowed us
to elevate the temperature of the sample without applying power to it. In order to eliminate
errors due to radiation and conduction in the heating wires, we used the double heating
method.

We apply a known power to the sample and read the values of the two resistance thermo-
meters. Then we heat the sample holder without applying power to the sample until the
temperature of the thermometer near to the heat sink is at the same value. AT is given by the
difference of the temperatures indicated by the calibrated carbon resistor near to the heat
source and the absolute temperature by the mean value indicated by the calibrated thermo-
meter in the two cases.

The dimensions of the sample used were:

A

a = 0.5614-0.003 cm,
b = 0.5884-0.003 cm.

The distance between thermometers was:
[ = 4.05-10.05 cm,
This gives us a form factor:

llab = 12.9-F0.3 cm. (9)
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EXPERIMENTAL ERRORS

The error on the form factor given by Equation (9) affects only the absolute value of A.
The systematic error due to the variation of A in the temperature interval AT can be neglected
if we take care to satisfy the condition AT/T < 5%.

Accidental errors are essentially due to the measurement of AT. Tt is not possible to
evaluate these errors in a general manner as errors in A7 depend simultaneously on the
sensitivities of the carbon resistors and on the fact that the power dissipated in the resistors
has to be negligible compared to the power applied to the sample. This fact limits the sensiti-
vity of the detection device. In genecral we can say that these errors are situated between 6
and 20%,. In one exceptional case it was as large as 60%,. Error bars are given for all results
in Figure 2.

REesurTs

Five runs of the thermal conductivity measurements have been done on one sample cut
perpendicular to the ¢-axis within the temperature range from 0.58 to 4.01 K. The results are
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Fig. 2. Heat conduction of an ice sample cul perpendicular to c-axis between 0.58 and g.o1 K. Full line: theoretical low-
temperature law.

https://doi.org/10.3189/5002214300003344X Published online by Cambridge University Press


https://doi.org/10.3189/S002214300003344X

THERMAL CONDUCTIVITY OF ICE 245

indicated in Figure 2. Qualitatively the interactions of phonons with crystal imperfections
seem to become ineffective at temperatures as low as 1.5 to 1.2 K. Forstill lower temperatures
alaw A oc 773 seems to be verified.

The points of run 4 are slightly displaced to lower values compared to the points of runs
1, 2, 3, and 5.

The extrapolation of our values to higher temperatures using thermal conductivity values
from Klinger (1975) obtained on crystals with comparable crystallographic orientation
suggests the existence of a maximum of thermal conductivity between 2 and g K.

Discussion

The value of the integral in Equation (7) is 4m#/15. If we take H = 1 since the sample
length is much greater than a and b, Equation (6) gives us the Casimir length L. = 0.65 cm,
and if we use as mean value of the sound velocity v = 2.5 % 105 cm/s, Equation (7) gives us a
low-temperature law of thermal conductivity of the form

A= 04273 (10)

This is not too far from our experimental results as shown in Figure 2 if we take into
account that we took a mean value of the sound velocity for the computation of the factor in
Equation (10).

We were not able to explain in a satisfying manner the slight systematic displacement of
run 4 relative to the other runs. A loss of power due to incomplete pumping of the exchange
gas seems to be excluded as it would result in higher apparent A values. Further the apparent
A values would depend on the applied power. In run 3 we repeated the measurements with
different applied powers, but there was no important change in A. It seems more plausible
to explain the systematic deviation by a slight overheating of the calibrated carbon resistor
due to a higher measuring current suggesting in this way a higher apparent AT,

A definite answer whether or not we attained the region of constant mean free path can
only be given if we are able to extend our measurements to still lower temperatures. Those
measurements will give us at the same time information concerning which conditions of
sample preparation lead to specular reflection of the phonons at the boundaries of the sample.
A definitive interpretation of the type of interaction of phonons with defects in ice would seem
possible when we have extended the range of heat conduction measurements on one sample
from say o.1 K to 20 K (the temperature where the influence of phonon scattering on defects
becomes negligible compared to phonon—phonon interactions of the “umklapp™ type (see
Klinger, 1975). This work is in progress in our laboratory.
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