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Large-scale Landsat image classification based
on deep learning methods
xuemei zhao,1,2 lianru gao,1 zhengchao chen,1 bing zhang1,3 and wenzhi liao4,5

Deep learning has demonstrated its superiority in computer vision. Landsat images have specific characteristics compared with
natural images. The spectral and texture features of the same class vary along with the imaging conditions. In this paper, we
extend the use of deep learning to remote sensing image classification to large geographical regions, and explore a way to make
deep learning classifiers transferable for different regions. We take Jingjinji region and Henan province in China as the study
areas, and choose FCN, ResNet, and PSPNet as classifiers. The models are trained by different proportions of training samples
from Jingjinji region. Then we use the trained models to predict results of the study areas. Experimental results show that the
overall accuracy decreases when trained by small samples, but the recognition ability on mislabeled areas increases. All methods
can obtain great performance when used to Jingjinji region while they all need to be fine-tuned with new training samples from
Henan province, due to the reason that images of Henan province have different spectral features from the original trained area.
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I . I NTRODUCT ION

Large-scale image classification is a critical task in remote
sensing image processing, due to various spectral features
presented in different remote sensing images. A large-scale
study area is covered by several scenes of remote sensing
image. Remote sensing images taken at the same time are
almost impossible to collect. That means, images used for
classifying large-scale study area are taken under different
imaging conditions, which lead to various spectral features
for the same object. Traditional methods are constructed
with human-designed constraints. It is difficult for them to
recognize objects imaged under different conditions.

Maximum likelihood classifier (MLC) assumes that an
object of the detected image subject to a certain distribu-
tion [1, 2]. It is used as a certain method to determine land
cover classes in remote sensing image classifications [3, 4].
However, it is sensitive to the changes of features in the same
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class. Therefore, it is also combined with feature extrac-
tion methods, such as independent component analysis,
to obtain stable classification results [5]. Nevertheless, it is
barely used these years because it lacks generality.MLC can-
not obtain satisfactory classification results when there exist
obvious difference in imaging conditions. It is difficult to
ensure the consistency of spectral features, especially for
large-scale image classification.

Decision Tree (DT) is an extension of bi-classifier. It esti-
mates the optimum thresholds to construct a stable tree
structuremodel. Different structures of DTsmay obtain dif-
ferent classification results. Brodley et al. [6] demonstrated
that hybrid DT outperforms univariate DT and multivari-
ate DT for some datasets due to their ability to handle
complex relationships among feature attributes and class
labels. Xu et al. [7] proposed an improved DT by adding
tree balance factor, setting node impurity and distinguish-
ing sample types. The classification precision was improved
6.13 compared with traditional DT when performed on
Longmen city of Guangdong province in China. To take
advantage of geospatial knowledge, [8] proposed a max-
imum variance unfolding-based co-location DT by con-
sidering the nonlinear distribution relationship of pixels
in high-dimensional space. However, the selected features
have a great impact on the classification results and dif-
ferent areas may be sensitive to different features. Besides,
thresholds for the extracted features are estimated with pre-
defined constraints, which also vary along with the change
of image locations. Therefore, it is not suitable for classifying
images covering large-scale study areas.
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Random forest (RF) is an ensemble method of DTs. It
overcomes the drawbacks of DT by variant DT models
trained with various subsets of training samples. Therefore,
it is widely used in large-scale image classification. Pelletier
et al. performed RF to land cover map and obtained the fol-
lowing conclusions: (1) its parameter has little influence on
classification accuracy; (2) adding features has little increase
on the performance; and (3) the classification accuracies
are affected by the landscape diversity over large area [9].
Nguyen et al. [10] produced a land cover map by RF used
only chemometrics as input and combined the reference
data augmented by cropland data layer for training and
validation. By this way, the classification accuracy is signif-
icantly improved. RF is sensitive to noise and outliers due
to its natural of classifying classes with a certain threshold.
To solve this problem, [11] proposed an adaptive RF which
can take the errors in the training labels into account. By
allowing a training sample to be assigned to all the classes
with a certain probability, the proposed algorithm is noise
tolerant.

Support vector machine (SVM) is another
bi-classification model which aim to find a hyperplane
with maximum margin. It uses hinge loss to calculate the
empirical risk and introduces regularizations to improve
the robustness of the algorithm. Xue et al. [12] combined
SVMwith a break for additive seasonal and trend approach
and a dynamic time warping approach to obtain land cover
classification result with phenology-driven factors. Zeng
and Wang [13] performed the SVM classifier along with a
radial basis function nonlinear transformation mapping to
high-dimensional space to extract nonlinear characteristics
and separability between different types. The efficiency and
accuracy of the classification is significantly improved. Liu
et al. [14] used an adaptive mutation particle swarm opti-
mizer to estimate the optimum parameters of SVM and
employed the GKclust fuzzy clustering approach to reduce
the impact of ineffective labels. Sukawattanavijit et al. [15]
combined the genetic algorithm and SVM and performed
the proposed algorithm on multifrequency RADARSAT-2
and Thaichote multispectral images. Experimental results
showed that the proposed algorithm outperformed the grid
search approach and provided higher classification accu-
racy using fewer input features.

In fact, traditional image classification algorithms are
constructed according to empirical constraints. They can
obtain outstanding performance when the training set sat-
isfies their constraints. Otherwise, the performance cannot
meet the requirements, especially for large-scale remote
sensing image classification, in which the variation of spec-
tral features should be taken into account.

Convolutional neural networks (CNNs) have demon-
strated their superiority in computer vision [16–19], but its
application in remote sensing image still needs to be paid
more attention. There are some applications of CNNs on
high resolution remote sensing images [20, 21]. However,
features of large-scale Landsat images have specific differ-
ence with those of high-resolution remote sensing images,
especially the texture features. Ikasari et al. demonstrates

that 1-D CNNs outperform the logistic regression, SVM,
and RF, and boost algorithms in Landsat image classifica-
tion (which is called semantic segmentation in computer
vision) and obtained an accuracy of 71.79 [22]. Other
experiments show an improvement of at least 1 of stacked
autoencoder (78.99) compared with RF, SVM, and arti-
ficial neural network (76.03, 77.74, and 77.86) [23].
Similar to the field of computer vision, the pretrainedmodel
has a positive effect on remote sensing image classification.
Marmanis employed pretrainedmodel on ImageNet to fine-
tune deep convolutional neural network on remote sensing
images and improved the classification accuracy from 83.1
to 92.4 [24].

Although some CNNs have achieved great performances
on Landsat images, most of them rely on patch-based train-
ingmethod. Patch-based trainingmethod is usually trained
with fully connected CNNs. Therefore, it inputs a patch of
images to the network and then the network outputs a label
for the whole image. This method is based on the assump-
tion that pixels in the patch share the same label with the
central pixel. However, the assumption is not valid, espe-
cially when the central pixel locates at the boundary of a
target. FCN [25], ResNet [26], and PSPNet [27] are the most
famous end-to-end networks. To obtain reliable classifica-
tion results of Landsat images covering large-scale areas,
we employ FCN, ResNet, and PSPNet as classifiers, and test
their transfer abilities on images which did not participate
in the training process.

The rest of the paper is organized as follows. Section II
introduces the FCN, ResNet, and PSPNet. Section III shows
the experiments of the CNNs on Landsat images. Finally,
the conclusion is presented in Section IV.

I I . METHODS

A) Basic modules
Assume X = {xi | i= 1, 2, . . . , n} is the input image, where
xi = {xk | k= 1, 2, . . . , K} is the pixel vector of the ith
pixel, k is the index of bands, K is the number of bands,
i is the index of pixels, and n is the number of pix-
els. After the convolutional layer, the output of the lth
layer is

cli =
∑

j∈Ni

wl
jx

l
j + bl (1)

where Ni is the neighborhood system of pixel i, which has
the same size as the convolutional kernel, j is the index of
pixels in Ni, xlj is the pixel vector of the ith pixel in the lth
layer, wl

j is the parameters of the convolutional kernel, and
bl is the bias.

Then the output of the lth layer is normalized to the stan-
dardized normal distribution according to the following
equation:

yli = cli − μl

σ l (2)
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Fig. 1. Structure of FCN.

where μl and σ l are the mean and variance of all the pixels
in the input batch, respectively. To improve the expression
ability, the batch normalization (BN) layer introduces two
learnable parameters and the output of BN can be expressed
as:

ŷli = γ lyli + β l (3)

The output of the BN layer is activated by activation func-
tion. ReLU is one of the most popular activation functions
in CNN and it can be expressed as

rli = max(0, ŷli) (4)

Usually, a convolutional kernel is responsible for only
one possible feature. To improve the learning ability of the
neural network, multi-kernels are used to extract features
as much as possible. However, more convolutional kernels
occupy more memory of GPU. Pooling layer is designed
to overcome this problem. It can reduce the size of image
while maintaining its dimension. The output of pooling
layer is:

pli = max{rlj|rlj ∈ Nl
i} (5)

where rlj is the pixel in the neighbor set Nl
i which is the

neighborhood system of the ith pixel in the lth layer. Actu-
ally, (5) will output the maximum value in the window of
the pooling layer.

The mentioned modules are the keys to deep CNNs.
Different combinations of the basic modules constitute
CNNs with different structures which may be suitable for
different kinds of dataset.

B) FCN
FCN is an attempt to train the network in an end-to-end
way and it has achieved great success in computer vision.
It replaces the fully connected layer in traditional CNNs by
a convolutional layer. In FCN, the first five stacked convo-
lutional and pooling layers in VGG-16 are used to extract

features of the input image. Then the extracted featuremaps
are reconstructed by the upper sampling layers. In par-
ticular, to obtain reconstructed results with more detailed
information, former extracted feature maps are concate-
nated with reconstructed feature maps. By reconstructing
the feature maps layer by layer, FCN is able to maintain
more detailed information. The structure of FCN is shown
in Fig. 1 [25]. First, convolutional and pooling layers are
stacked to extract features of the input image. Then, the
final layer (conv7) is upsampled and combined with pool4
and the combined layer is upsampled and combined with
pool3 to obtain the final outputs. Compared with tradi-
tional fully connected CNNs, FCN has the following advan-
tages:

(1) Parameters of convolutional layers are obviously less
than those of the fully connected layers.

(2) The end-to-end training improves the accuracy of
semantic segmentation compared with patch-based
training method.

(3) There is no need for inputting images with fixed size as
in traditional CNNs.

C) ResNet
Stacking convolutional layers and pooling layers to deepen
the network is an efficient way to improve the learning
ability of CNNs. However, increasing the depth of the net-
workwithout restriction cannot improve the learning ability
indefinitely. It may even result in the declination of the
accuracy. Let x express the output of the former layer, it is
concatenated with the later layer (after the convolution) as
shown in Fig. 2 [26].

The residual module in ResNet transmits the informa-
tion of the former layer directly to the later layer. The
skip connection reduces the loss of detailed information in
forward propagation and allows the model to be deeper.
In this paper, the fully connected layers in ResNet is
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Fig. 2. Residual module.

Conv

Conv

Conv

Conv

Pool

Fig. 3. Connections about pyramid pooling layer.

replaced by convolutional layers to realize end-to-end train-
ing for Landsat image classification (also called semantic
segmentation in computer vision) and we still call it ResNet
for convenience.

D) PSPNet
PSPNet added a pyramid pooling layer at the end of ResNet.
The connections about pyramid pooling layer is shown in

Original Landsat 
Images

Mosaic

Clip

Output Results

CNN Model

Mosaic

Fig. 4. Flowchart for large-scale Landsat image classification.

Fig. 3 [27]. First, the input layer (output of ResNet) is pooled
into different sizes to catch information in different scales.
Then the outputs of the convolutional layers with differ-
ent size are unsampled to the same size of the input layer.
Finally, the input layer and the outputs of pyramid pooling
layers are stacked.

E) Flowchart
Flowchart for large-scale Landsat image classification is
shown in Fig. 4. Original Landsat images are mosaicked to
represent the study area. Then images of the study area are
clipped to a certain size for training and inferencing conve-
nience. The clipped Landsat images with the corresponding
reference land cover map are used to train the CNNmodel.
All clipped images covering the study area are classified
by the trained model and the corresponding results are
mosaicked to output the final classification results.

Forest

Grass land

Wetland

Water body

Cultivated land

Artificial surface

(a) (b)

Fig. 5. Original Landsat 5 Image and reference land cover map of Jingjinji region. (a) Original image. (b) Reference land cover map.
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Fig. 6. Classification results of Jingjinji region from FCN, ResNet, and PSPNet with TS-1 and TS-2.

I I I . RESULTS AND ANALYSES

A) Performance on Jingjinji region

Jingjinji contains Beijing city, Tianjin city, and Hebei
province. It is one of the most important local regions in
China. The study area is covered by six first level classes,
namely forest, grass land, wetland, water body, cultivated
land, and artificial surface. Figure 5(a) is the false-color
image of the study area composed of near infrared, red, and
green bands. The original Landsat 5 images are stretched
and mosaicked as shown in Fig. 5(a). The boundaries

between scenes are clear due to their different imaging
conditions.

Labels of Jingjinji area come from the “Land Cover Map
of the People’s Republic of China for 2010,” which can be
downloaded from http://www.geodata.cn. The downloaded
label map is called the reference land cover map in this
paper. The original reference land cover map contains 38
second level classes with an overall accuracy of 86. They
are merged to six first level classes as shown in Fig. 5(b).

The training set is constructed by original images shown
in Fig. 5(a) and reference land covermap shown in Fig. 5(b).
Even though FCN, ResNet, and PSPNet can be trained in an
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(a1) Original image
(a2) Reference land

cover map
(a3) FCN-TS-1 (a4) ResNet-TS-1

(a5) PSPNet-TS-1 (a6) FCN-TS-2 (a7) ResNet-TS-2 (a8) PSPNet-TS-2

(b1) Original image
(b2) Reference land

cover map
(b3) FCN-TS-1 (b4) ResNet-TS-1

(b5) PSPNet-TS-1 (b6) FCN-TS-2 (b7) ResNet-TS-2 (b8) PSPNet-TS-2

Fig. 7. Detailed Classification Results of FCN, ResNet, and PSPNet on TS-1 and TS-2. (a1) Original image. (a2) Reference land cover map. (a3) FCN-TS-1. (a4)
ResNet-TS-1. (a5) PSPNet-TS-1. (a6) FCN-TS-2. (a7) ResNet-TS-2. (a8) PSPNet-TS-2. (b1) Original image. (b2) Reference land cover map. (b3) FCN-TS-1. (b4)
ResNet-TS-1. (b5) PSPNet-TS-1. (b6) FCN-TS-2. (b7) ResNet-TS-2. (b8) PSPNet-TS-2.

end-to-end way, the computer cannot efficiently deal with
such a large image. Therefore, the original image should
be clipped for processing convenience. On the one hand,
the larger the size of training sample is, the richer the local
and global information it contains. On the other hand, the
larger the size of training sample is, the more GPU mem-
ory is occupied. To make a trade-off between them, the
size of training sample is chosen to be 512× 512 pixels.
Jingjinji region is clipped to 1600 sampleswith 512× 512 pix-
els. These samples are used to construct two training sets. In
the first training set, four-fifths are used for training and the
other one-fifth is used for validation. In the second training
set, we randomly select 640 images for training (about 40

of the whole samples) and another 160 images for valida-
tion. The CNN models employed in this paper are trained
on 4×Titan XP each with 12GB memory. Although near
infrared, red, and green bands are employed to show the
study area, all six bands except for thermal infrared band
are used to train the network. A pretrained model on Ima-
geNet is introduced to initialize the network according to
transfer learning theory [24].

To validate the effectiveness of FCN, ResNet, and PSP-
Net, we perform them on the two training sets constructed
above. The training set with 80 of the training samples
is called TS-1 and the training set with 40 of the train-
ing samples is called TS-2, in this paper. The classification
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Table 1. Classification accuracies of FCN and ResNet trained on TS-1 and TS-2.

 FCN-TS-1 ResNet-TS-1 PSPNet-TS-1 FCN-TS-2 ResNet-TS-2 PSPNet-TS-2

Forest 83.12 82.70 80.59 81.91 78.41 80.01
Grass land 65.22 54.16 51.18 48.98 50.22 51.06
Wetland 65.11 66.81 53.67 17.77 22.89 19.23
Water body 81.16 76.95 73.66 74.42 75.42 77.18
Cultivated land 84.05 84.91 89.03 81.20 85.03 83.17
Artificial surface 71.33 58.59 65.18 63.34 53.48 64.89
Overall accuracy 79.16 77.90 77.97 74.07 74.24 74.96

results of FCN, ResNet, and PSPNet on TS-1 and TS-2 are
shown in Fig. 6. In general, all the six classes can be distin-
guished in the six classification results. Classification results
of FCN, ResNet, and PSPNet trained on TS-1 are more sim-
ilar to the reference land cover map compared with those
trained on TS-2.

The detailed classification results of FCN, ResNet, and
PSPNet on TS-1 and TS-2 are shown in Fig. 7. Figure 7(a1)
is wetland. CNNs trained on TS-2 cannot recognize it very
well. Actually, wetland is a disadvantage class in the train-
ing set because it only takes a small proportion in the study
area. For these kinds of classes, models trained on larger
training set obtains better classification results than models
trained on smaller training set. Affected by imaging condi-
tions, cultivated land in Fig. 7(b1) presents different spectral
features. Accordingly, classification results in the reference
land covermap (as shown in Fig. 7(b2)) classified the darker
part of the cultivated land as forest. Classification results of
FCN, ResNet, and PSPNet trained on TS-1 also classify this
part as forest, while those obtained from TS-2 can correctly
classify the darker part as cultivated land as shown in Fig.
7(b6)–(b8).

CNNs employed in this paper are sensitive to the selec-
tion of samples. It cannot obtain satisfactory classification
result when the training set contains classes which are inac-
curate or insufficient. Besides, the networks tend to be
overfit when trained on TS-2 with 80 of all the training
samples.

Classification accuracies of FCN, ResNet, and PSPNet
trained on TS-1 and TS-2 are shown in Table 1. The accu-
racies of classes in classification results trained on TS-1 are
all higher than those trained on TS-2. Combined with clas-
sification results shown in Figs 5 and 6, we can deduce that
there are two main reasons for higher classification accura-
cies trained on TS-1: (1) there are enough training samples
for the networks to learn detailed features of classes and (2)
the classification results are overfitting. FCN obtains much
higher overall accuracy (79.16) than ResNet (77.90) and
PSPNet (77.97) when trained on TS-1, while it obtains
lower overall accuracy (74.07) compared with ResNet
(74.24) and PSPNet (74.96) when trained on TS-2. That
means FCN ismore likely to be overfit thanResNet andPSP-
Net. PSPNet obtains better overall accuracy than ResNet
with the contribution of pyramid pooling layer. CNNs with
different structures have preferences for different types of
objects. For example, FCN tends to learn more detailed
information of forest and artificial surface, while ResNet

Fig. 8. Changes of loss with the learning rate.

favors cultivated land. On the other hand, when training
samples are insufficient (e.g. trained on TS-2), the learning
ability of PSPNet and ResNet is slightly higher than FCN
since they have much higher layers. Therefore, they obtain
better accuracies on grass land, wetland, and water body
with insufficient training samples. Actually, by comparing
the classification accuracies of all the classes we can find that
training samples has a greater impact on the classification
accuracy than the structure of models.

To explore the effect of the initial learning rate, we show
the changes of loss with the increase of learning rate in
Fig. 8. The larger the initial learning rate is, the faster the
network learns, which means the network may converge to
local optimum. Smith provided a method to find the ini-
tial learning rate [28]. According to his method, we try the
initial learning rate from 10−10 to 1 with a step of 10−1 and
compare their losses. In Fig. 8, the loss is minimized when
the learning rete equals to 10−4. Therefore, 10−4 is set as the
initial learning rate.

The models are trained on 4 Titan XP GPU, each of
which has 12GB memory. FCN consumes 10 h 32min and
6 h 24min to train TS-1 and TS-2, respectively. Although
ResNet is much deeper than FCN, it consumes less time. Its
training process on TS-1 and TS-2 consume 6 h 01min and
3 h 54min. PSPNet consumes 7 h 21min and 4 h 59min to
perform on TS-1 and TS-2. The reason is that, the model
of ResNet and PSPNet is smaller than FCN. The parame-
ters of the ResNet occupy 377MB memory, PSPNet occu-
pies 533MB memory, while the parameters of FCN occupy
1.50GB.
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(a) Original images (b) FCN-TS-1 (c) ResNet-TS-1 (d) PSPNet-TS-1 (e) FCN-TS-2 

(f) ResNet-TS-2 (g) PSPNet-TS-2 (h) FCN-TF (i) ResNet-TF (j) PSPNet-TF 

Fig. 9. Original Landsat 5 Images in Henan province and its classification results. (a) Original images. (b) FCN-TS-1. (c) ResNet-TS-1. (d) PSPNet-TS-1. (e)
FCN-TS-2. (f) ResNet-TS-2. (g) PSPNet-TS-2. (h) FCN-TF. (i) ResNet-TF. (j) PSPNet-TF.

(a1) 
Original
image 

(a2) FCN-
TS-1 

(a3) ResNet-
TS-1 

(a4) 
PSPNet-TS-

1

(a5) FCN-
TS-2 

(a6) ResNet-
TS-2 

(a7) 
PSPNet-TS-

2

(a8) FCN-
TF 

(a9) ResNet-
TF 

(a10) 
PSPNet-TF

(b1) 
Original
image 

(b2) FCN-
TS-1 

(b3) 
ResNet-TS-

1

(b4) 
PSPNet-TS-

1

(b5) FCN-
TS-2 

(b6) 
ResNet-TS-

2

(b7) 
PSPNet-TS-

2

(b8) FCN-
TF 

(b9) 
ResNet-TF 

(b10) 
PSPNet-TF

(c1) 
Original
image 

(c2) FCN-
TS-1 

(c3) ResNet-
TS-1 

(c4) 
PSPNet-TS-

1

(c5) FCN-
TS-2 

(c6) ResNet-
TS-2 

(c7) 
PSPNet-TS-

2

(c8) FCN-
TF 

(c9) ResNet-
TF 

(c10) 
PSPNet-TF

Fig. 10. Detailed classification results in Henan province. (a1) Original image. (a2) FCN-TS-1. (a3) ResNet-TS-1. (a4) PSPNet-TS-1. (a5) FCN-TS-2. (a6)
ResNet-TS-2. (a7) PSPNet-TS-2. (a8) FCN-TF. (a9) ResNet-TF. (a10) PSPNet-TF. (b1) Original image. (b2) FCN-TS-1. (b3) ResNet-TS-1. (b4) PSPNet-TS-1. (b5)
FCN-TS-2. (b6) ResNet-TS-2. (b7) PSPNet-TS-2. (b8) FCN-TF. (b9) ResNet-TF. (b10) PSPNet-TF. (c1) Original image. (c2) FCN-TS-1. (c3) ResNet-TS-1. (c4)
PSPNet-TS-1. (c5) FCN-TS-2. (c6) ResNet-TS-2. (c7) PSPNet-TS-2. (c8) FCN-TF. (c9) ResNet-TF. (c10) PSPNet-TF.

B) Transferred to Henan province

To test the generality and transferring ability of FCN,
ResNet, and PSPNet, the models trained on samples of
Jingjinji region are directly performed on Henan province.
The original Landsat 5 images and the classification results
of the trainedmodels are shown in Fig. 9(a)–(g). In the clas-
sification results obtained by models trained on samples of
Jingjinji region, there exist obviousmisclassification areas as
shown in the blue circles in Fig. 9(a). In these areas, artifi-
cial surface densely distributed, and the features of artificial
surface have no difference compared with adjacent areas.
The misclassification is caused by the special spectral fea-
tures, which are obviously different with other areas. FCN
tends to recognize more artificial surface compared with
ResNet. Another distinct difference among the six classifi-
cation results locates inside the yellow rectangle in Fig. 9(a).
The six models obtain different classification results about

forest, grass land, and cultivated land in this area. PSPNet
trained on TS-2 tends to classify most of the cultivated
land in southeast Henan province to grass land. The reason
caused this phenomenon is the confusion of labels among
grass lands.

To obtain more accurate classification results in Henan
province, we artificially labeled some typical training sam-
ples, and transferred the models trained on Jingjinji region
to Henan province. In the transfer process, the trained
model is used to initialize model parameters. Then the
parameters are fine-tuned by the training set of Henan
province. Performances of the transferred models are
shown in Fig. 9(h)–(j). Transferred FCN, ResNet, and PSP-
Net are called FCN-TF, ResNet-TF, and PSPNet-TF for
short.

The transferred classification results of the area in blue
circlers in Fig. 9(a) are more reasonable compared with the
models trained on Jingjinji region. All the CNN models
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can distinguish the three kinds of vegetation shown in
the yellow rectangle. Besides, as the transferred models
learn detailed information from the training set in Henan
province, their classification results are more precise com-
pared with models trained on Jingjinji region.

Detailed classification results of Henan province are
shown in Fig. 10 to further explore the performances. Figure
10(a1) is a part in the lower blue circle in Fig. 9(a). It is cov-
ered by cultivated land but presents similar spectral features
to artificial surface. Therefore, models trained on Jingjinji
region cannot classify this area correctly. The transferred
models are fine-tuned by the samples in Henan province.
Therefore, it has a chance to learn this kind of feature of
cultivated land and recognize it. Figure 10(b1) is mostly cov-
ered by cultivated land artificial surface. CNNs trained on
Jingjinji region cannot distinguish artificial surface from
cultivated land. While the fine-tuned models can classify
this area very well. Figure 9(c1) shows another nontypi-
cal artificial surface which presents darker spectral features,
while typical artificial surface has much lighter spectral fea-
tures compared with the vegetation around them. Models
trained on Jingjinji region cannot recognize this kind of
artificial surface. On the contrary, the transferred models
can obtain satisfactory classification results. The transferred
models can even recognize the small water body in this area.

In summary, models trained on Jingjinji region cannot
recognize classes in Henan province, which have different
features with those in Jingjinji region. In the models trained
on Jingjinji region, models trained on TS-2 behave better
than those trained on TS-1, except for PSPNet trained on
TS-2. Models transferred to Henan province obtain better
classification results than models directly used on Henan
province. Its advantages mainly concentrate on the follow-
ing two aspects: (1) stronger recognition ability and (2) finer
classification results with more detailed information.

I V . CONCLUS IONS

This paper performed FCN, ResNet, and PSPNet on
Jingjinji region in China with 80 and 40 of the training
samples, respectively. Then the trained models are directly
carried out on and also transferred to Henan province.
From the experiments on Jingjinji regionwith different pro-
portions of training samples, the following conclusions are
drawn. (1) Inaccurate training samples may lead to overfit.
(2) CNNs cannot learn detailed information from insuf-
ficient training samples. (3) Compared with ResNet and
PSPNet, FCN is more likely to be overfitted. (4) CNNs with
different structures have different preferences on types of
objects. (5) The effect of training sample is greater than that
of the structures of CNNs. Actually, performances of FCN,
ResNet, and PSPNet on this study area have much similar
than difference.

Classification results obtained directly from models
trained on Jingjinji region and transferred from them have
obviously different performances. The transferred models
obtain much better classification results compared with the

directly used ones. From experimental results of the models
trained onTS-1, TS-2 and transferred toHenanprovince, we
can see that: (1) CNNs cannot correctly recognize features
which did not appear in the training set. (2) Classification
results of insufficient models are better than overfitted ones
when they are performed on images without any training
samples. (3) Transferred models obtain better classification
results compared with models directly carried out on target
area.
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