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Abstract. Star formation is spatially clustered across a range of environments, from dense stellar
clusters to unbound associations. As a result, radiative or dynamical interactions with neigh-
bouring stars disrupt (proto)planetary systems and limit their radii, leaving a lasting impact
on their potential habitability. In the solar neighbourhood, we find that the vast majority of
stars form in unbound associations, such that the interaction of (proto)planetary systems with
neighbouring stars is limited to the densest sub-regions. However, the fraction of star forma-
tion occurring in compact clusters was considerably higher in the past, peaking at ∼ 50% in
the young Milky Way at redshift z ∼ 2. These results demonstrate that the large-scale star for-
mation environment affects the demographics of planetary systems and the occupation of the
habitable zone. We show that planet formation is governed by multi-scale physics, in which
Mpc-scale events such as galaxy mergers affect the AU-scale properties of (proto)planetary
systems.
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1. Introduction

The formation of stars and (proto)planetary systems proceeds in a hierarchically
structured way (e.g. Elmegreen 2008; Kruijssen 2012; Longmore et al. 2014). In the
bound substructures, dynamical interactions and external photoionisation are common
processes that may disrupt (proto)planetary systems and affect the occupation of the
habitable zone within these systems (e.g. Scally & Clarke 2001; de Juan Ovelar et al.
2012). These external processes become more efficient towards higher gas and stellar
densities.
Observations probing the evolution of star formation in galaxies over cosmic time show

that the cosmic star formation rate peaked at redshift z = 1–3 (Madau & Dickinson 2014).
On the size scale of giant molecular clumps in which the stars are born (0.1–1 kpc, Genzel
et al. 2011), the interstellar medium in these galaxies is extreme when compared to the
conditions in the solar neighbourhood. The gas density, gas pressure, cosmic ray ionisation
rate and FUV interstellar radiation field are several orders of magnitude higher than for
clouds forming stars in the vicinity of the Sun (Swinbank et al. 2011; Tacconi et al. 2013).
This means that the conditions under which most stars and planetary systems formed
were likely very different than the conditions under which we observe the formation of
planetary systems today, with plausibly important implications for the demographics of
the planet population.
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2. Environmental effects on protoplanetary discs

The pre-ALMA suite of protoplanetary disc (PPD) observations available in the lit-
erature already demonstrated that PPD properties change as a function of the local
stellar environment. Specifically, the disc radii are statistically smaller in high-density
environments, dropping below 200 AU for stellar number densities > 5× 103 pc−2

(de Juan Ovelar et al. 2012). Since then, ALMA has revealed this effect in much
higher detail (Eisner et al. 2018). In de Juan Ovelar et al. (2012), we used a simple
analytical model to show that the observed truncation may be caused by dynamical
perturbations from passing stars, but more recent work shows that external photoevapo-
ration is likely responsible (see below). Importantly, dynamical truncations continue for
planetary systems, beyond PPD dispersal. As a result, the time for which the hab-
itable zone may be occupied by planets (the ‘HZ lifetime’) is a function of stellar
mass and ambient stellar density. Even in a low-density cluster with a stellar density
> {102, 103} pc−2 (or M > {103, 104} M�), Earth would have been ejected from the
habitable zone by the present day, with HZ lifetimes of < {4, 0.3} Gyr, respectively
(de Juan Ovelar et al. 2012).

Rosotti et al. (2014) present hydrodynamical simulations of 50 PPDs in a bound stellar
cluster. The PPDs evolve self-consistently due to viscous spreading and dynamical per-
turbations. They undergo tidally-driven morphological transformations, which in extreme
cases can completely destroy disc in a few 105 yr. The PPD radii are set by closest dynam-
ical encounter, where disc shrinkage occurs for closest encounter distances less than ∼ 6
disc radii. Consistently with the analysis by de Juan Ovelar et al. (2012), the simulations
show that PPDs in high-density environments are statistically smaller, dropping below
200 AU for projected stellar number densities > 3× 103 pc−2.
All observed candidates of environmentally-driven shrinkage in the de Juan Ovelar

et al. (2012) sample are located in the Orion Nebula Cluster. These discs are well known to
be affected by external photoevaporation (Henney & O’Dell 1999; Scally & Clarke 2001).
The question thus rises whether disc disruption is dominated by dynamical encounters or
photoevaporation. Winter et al. (2018) model disc destruction by both processes and show
that external photoevaporation dominates in clusters hosting massive stars (affecting
PPDs for UV flux densities of> 3× 103 G0 or densities> 20 pc−3). Dynamical encounters
dominate only in low-mass regions without massive stars and require extreme densities
of > 104 pc−3. This shows that external UV irradiation generally dominates over PPD
dispersal by dynamical encounters, and that (proto)planetary systems in (bound) clusters
are systematically subjected to externally-driven disruption.

3. The fraction of planetary systems born in dense stellar clusters

A wide range of recent work shows that the efficiency of cluster formation depends on
the local gas density (Elmegreen 2008; Kruijssen 2012). In the interstellar medium, the gas
density probability distribution function (PDF) is lognormal, of which the width increases
with the gas pressure (Vazquez-Semadeni 1994; Padoan et al. 1997; Krumholz & McKee
2005). Towards the high-density tail of the density PDF, the gas has short free-fall times.
At a fixed star formation efficiency per free-fall time (e.g. Leroy et al. 2017; Utomo et al.
2018), this implies high integrated star formation efficiencies, low gas fractions, and, as
a result, high bound stellar fractions (Kruijssen 2012). In other words, unbound associa-
tions form at the low-density end of the gas density PDF, whereas compact, bound stellar
clusters form at the high-density end. Note that the external photoevaporation of PPDs
does not strictly require the young stars to reside in a gravitationally bound cluster, but
the long-term disruption of planetary systems by dynamical perturbations does.
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When integrating the gas density PDF, we obtain the fraction of star formation
occurring in bound clusters (the cluster formation efficiency or CFE; Bastian 2008;
Kruijssen 2012) as a function of the gas pressure. The resulting CFEs range from a few
% at low gas pressures (or surface densities, ∼ 10 M� pc−2), such that few planetary
systems are affected by environmental effects, to up to ∼ 50% at high gas pressures (or
surface densities, > 200 M� pc−2), where many planetary systems are affected by envi-
ronmental effects. The prediction that the CFE is a function of the gas pressure has been
quantitatively confirmed in observational studies of young stellar cluster populations
(Adamo et al. 2015; Johnson et al. 2016; Ward & Kruijssen 2019). For instance, the solar
neighbourhood is observed (Lada & Lada 2003) and predicted (Kruijssen 2012) to form
7% of all stars in bound stellar clusters, whereas the CFE is predicted and observed to
be about 40% at the high gas pressures near the Galactic Centre (Ginsburg & Kruijssen
2018), which are similar to those at high redshift (Kruijssen & Longmore 2013).

4. Cosmological context

Given the environmental dependence of the CFE, a general statement regarding its
impact on the externally-driven dispersal of (proto)planetary systems requires a repre-
sentative census of the CFE as a function of galactic environment and cosmic time. This
is now possible thanks to the E-MOSAICS project (for MOdelling Star cluster population
Assembly In Cosmological Simulations within EAGLE; Pfeffer et al. 2018; Kruijssen et al.
2019), which is a set of hydrodynamical cosmological ‘zoom-in’ simulations of 25 Milky
Way-mass galaxies that include a physically-motivated, sub-grid model for the formation
and dynamical evolution of the entire star cluster population. These simulations repre-
sent the first time that the formation and evolution of the cluster population can be
followed self-consistently across cosmic history.
The E-MOSAICS simulations show that the CFE systematically increases with redshift

(Pfeffer et al. 2018), such that more (proto)planetary systems are affected by external
disruption at earlier cosmic epochs (see Figure 1 for an example). The conditions in
the present-day Universe thus represent a lower limit to the fraction of (proto)planetary
systems undergoing externally-driven disruption. At the formation time of the Sun, the
CFE was typically a factor of 1.5–2 larger than at the present day, whereas the CFE
peaked at 30–50% at the peak of the star formation history at z ∼ 2, corresponding to
a lookback time of about 10 Gyr. At lookback times > 8 Gyr, most planetary systems
are expected to be affected by environmental effects. In addition, the sharp peaks at
redshifts z = {0.7, 2, 2.5} correspond to galaxy mergers, which drive an increase of the
gas pressure and a corresponding increase of the CFE. As a result, the external disruption
of (proto)planetary systems is enhanced at these redshifts, and generally towards earlier
cosmic times. This shows that Mpc-scale events can have an important impact on the
formation and evolution of AU-scale planetary systems.

5. Conclusion: planetary systems are shaped by galactic environment

In summary, the presented results lead to the following conclusions.
(a) Dynamical interactions and (especially) external photoevaporation affect

properties of (proto)planetary discs and planetary systems, mostly limiting the maximum
radius where planets reside and shortening disc lifetimes.

(b) These environmental effects can sterilise planetary systems by preventing planet
formation or ejecting planets from the habitable zone.

(c) The fraction of planetary systems potentially subject to these influences is
environmentally dependent, increasing from a few % at present (with a CFE of 7% in the
current solar neighbourhood) to > 50% when most stars in Milky Way formed.
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Figure 1. Cluster formation efficiency (fraction of star formation occurring in bound clusters)
as a function of redshift for one of the cosmological zoom-in simulations of Milky Way-mass
galaxies from the E-MOSAICS project (Pfeffer et al. 2018; Kruijssen et al. 2019), which include
a model for the formation and evolution of the stellar cluster population. The data are colour-
coded by metallicity, with the median and standard deviation at each redshift indicated by
the thick and thin solid lines, respectively. The peaks at z = {0.7, 2, 2.5} correspond to galaxy
mergers, which drive an increase of the gas pressure and a corresponding increase of the CFE. As
a result, the external disruption of (proto)planetary systems is enhanced at these redshifts, and
generally towards earlier cosmic times. This shows that Mpc-scale events can have an important
impact on the formation and evolution of AU-scale planetary systems. Figure from Pfeffer et al.
(2018).

Building on these results, we have derived a model for PPD lifetimes as a function of the
local density at which star formation proceeds in the context of the galactic environment
(Winter et al. 2019). This model will enable a systematic assessment of environmental
effects on (proto)planetary systems.
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Discussion

Palous: What is the role of metallicity in setting the cluster formation efficiency?

Kruijssen: In the model for the cluster formation efficiency that I showed, metallicity
could enter through the star formation efficiency or the bound fraction. However, neither
of these have strong dependencies on metallicity. So metallicity is largely a tracer of birth
environment (galaxy mass, redshift; see the colour coding in Figure 1), but plays no role
in setting the cluster formation efficiency directly.
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