
The Ying and Yang of the M83 Nucleus

Damián Mast¹, Rubén J. Díaz², Horacio A. Dottori³, María P. Agüero⁴, Irapuán Rodrigues⁵, and Juan F. Albacete-Colombo⁶

¹Instituto de Astrofísica de Andalucía (IAA/CSIC), 18008 Granada, Spain
²Gemini Observatory, AURA, 950 N Cherry Ave, Tucson, AZ 85719
³Instituto de Física – Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
⁴Observatorio Astronómico de Córdoba, 5000 Córdoba, Argentina
⁵Universidade do Vale do Paraiba, UNIVAP, São José dos Campos, SP, Brazil
⁶Universidad del Comahue, Viedma, CP8500 Rio Negro, Argentina

Keywords. galaxies: individual (M 83), galaxies: kinematics and dynamics, galaxies: nuclei

The spiral galaxy M 83, an SB(rs)b at only 4.5 Mpc, is a privileged case for study of the detailed physics on spatial scales of a tenth of a parsec. With 3-D spectroscopic observations using CIRPASS on Gemini-S, we studied the ionized gas properties in *J*-band with spatial resolution of 0."5 (Figure 1). The Pa β velocity field shows two dynamical centers, neither of them coincident with the bulge center, identified with the optical nucleus (ON) and the hidden nucleus (HN), with masses, within a radius of 10 pc, of $M_{\rm ON} = (1.8 \pm 0.4) \times 10^7 M_{\odot}$ and $M_{\rm HN} = (1.0 \pm 0.4) \times 10^7 M_{\odot}$. Using the Pa β equivalent width together with population synthesis models, we are able to estimate the ages of both mass concentrations, $T_{\rm ON} = 8$ Myr and $T_{\rm HN} = 6-7$ Myr. Adding complexity to this puzzling scenario, we used GMOS+Gemini imaging and spectroscopy to study the radio source J133658.3–295105 (Dottori *et al.* 2008) and find that H α emission at the position of this source is redshifted by ~130 km s⁻¹ with respect to an M 83 H II region, leading us to face the possibility of that we are witnessing the ejection of an object by gravitational recoil from the M 83 nucleus. A fit to the X-ray spectrum obtained *Chandra* supports the association between this source and the disk of M 83 by the presence of the Fe K α line at 6.7 keV.

Figure 1. Left: The nuclear region of M 83 with the three CIRPASS fields superimposed (PA 120°). North is up. Right: The Pa β radial velocity field. The isovelocity contours are traced each 5 km s^{-1} . Two ellipses mark regions where disk-like rotation around a mass concentration is detected. A cross marks the position of the optical nucleus. The scale is in km s⁻¹.

Reference

Dottori, H., Díaz, R., & Mast, D. 2008, AJ, 136, 2468