
The Journal of Symbolic Logic, Page 1 of 22

HEREDITARILY STRUCTURALLY COMPLETE EXTENSIONS OF RM

KRZYSZTOF A. KRAWCZYK

Abstract. This paper focuses on the structurally complete extensions of the system R-mingle (RM).
The main theorem demonstrates that the set of all hereditarily structurally complete extensions of RM is
countably infinite and forms an almost-chain, with only one branching element. As a corollary, we show
that the set of structurally complete extensions of RM that are not hereditary is also countably infinite and
forms a chain. Using algebraic methods, we provide a complete description of both sets. Furthermore, we
offer a characterization of passive structural completeness among the extensions of RM: specifically, we
prove that a quasivariety of Sugihara algebras is passively structurally complete if and only if it excludes
two specific algebras. As a corollary, we give an additional characterization of quasivarieties of Sugihara
algebras that are passively structurally complete but not structurally complete. We close the paper with a
characterization of actively structurally complete quasivarieties of Sugihara algebras.

§1. Informal introduction. The notion of structural completeness (SC) was
introduced by W. A. Pogorzelski in [24]. A consequence relation is SC if all of
its admissible rules are derivable. The distinction between the admissibility and
derivability of a rule lies in the extent of its applicability within a given consequence
relation. An admissible rule is one that “works” on the theorems of a given logic,
meaning it guarantees that its conclusion is a theorem whenever all its premises are
theorems. A derivable rule, on the other hand, is a rule in the “standard sense,”
meaning it can be applied to an arbitrary set of formulas. Thus, roughly speaking,
in a given consequence relation, ϕ follows from a set of premises Σ if there exists
a finite subset Γ of Σ such that Γ/ϕ is a derivable rule in the system. Clearly, if we
are working within a fixed deductive system, every derivable rule is also admissible.
However, numerous counterexamples demonstrate that the converse is not generally
true. Two paradigmatic examples of non-derivable admissible rules are the Harrop’s
rule

¬ϕ → (� ∨ �)
(¬ϕ → �) ∨ (¬ϕ → �)

for intuitionistic logic Int and the disjunctive syllogism rule DS

¬ϕ ∨ �,ϕ
�
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2 KRZYSZTOF A. KRAWCZYK

for the system of relevance logic R. Adding these rules to their respective systems
does not affect the sets of theorems but alters the consequence relations. Thus,
neither of these two logics is structurally complete (SC).

To emphasize the importance of the SC property, let us recall two major formal
definitions of the notion of “a logic.” The first treats it as a mere set of theorems,
usually generated from an initial set of axioms via certain rules. In this approach,
there is no distinction between derivable and admissible rules, as these rules are
applied only to theorems. The second definition views a logic as a consequence
relation—a binary relation between sets of formulas (premises) and single formulas
(conclusions). In a sense, the phenomenon of structural incompleteness underscores
the superiority of the second approach, as two logics can share identical sets of
theorems but differ when viewed as consequence relations.1 The distinction between
derivable and admissible rules, which is only possible within the framework of
consequence relations, is precisely why the second definition is more nuanced.

Hereditary structural completeness (HSC) is a stronger form of the standard
structural completeness (SC). A consequence relation is said to be HSC if and only
if it is SC and all of its extensions are also SC. In this paper, we will investigate
the problem of hereditary structural completeness within extensions of the logic
R-mingle (RM), which is the most well-known and widely studied extension of
Belnap and Anderson’s system of relevance logic R.

The system RM is obtained by adding the “mingle” axiom p → (p → p) to R.
Dunn established in [12] that Sugihara algebras provide an adequate algebraic
semantics for RM. The theory of Sugihara algebras will be crucial to our
investigation, as we approach the problem using the powerful framework of abstract
algebraic logic. Our final theorem will demonstrate that the structure of the poset
of all hereditarily structurally complete extensions of RM is the converse of the
well-ordering �+ with an additional element adjoined above 1:

The problem of (hereditary) structural completeness has often been explored in
the context of non-classical logics. So far, results regarding SC have been confined
to axiomatic systems. A well-known theorem proven by Citkin in [10] characterizes
HSC superintuitionistic logics (axiomatic extensions of Int) in the following manner:
a given variety of Heyting algebras is HSC if and only if it omits five specific algebras;
this is further equivalent to the statement that there are exactly five maximal non-
HSC superintuitionistic logics. Similarly, Rybakov’s theorem from [27] indicates
that, in the case of axiomatic extensions of modal logic K4, there are twenty such
algebras.

1If two logics have the same theorems, they also have the same admissible rules. Thus, the difference
must be in a rule that is admissible in both but derivable in only one.
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HEREDITARILY STRUCTURALLY COMPLETE EXTENSIONS OF RM 3

While these characterizations are sophisticated and undoubtedly elegant, they can
be seen as somewhat roundabout; they do not directly identify the HSC extensions
themselves but rather highlight the algebras that must be omitted.2 In the current
work, we will provide a direct characterization of the HSC extensions of RM: we will
construct the poset of the respective quasivarieties and describe the algebras that
generate them. In the final part of the paper, we will also examine a weaker version
of SC—passive structural completeness—and obtain a Citkin-style characterization
for passively structurally complete quasivarieties of Sugihara algebras. In this case,
only two algebras will need to be omitted.

Structural completeness has been widely investigated among substructural logics
[9, 20, 23]. In particular, the problem of SC has been addressed for certain fragments
of RM with Ackermann’s constant t added to the original signature (RMt) in [22,
23]. The positive (negation-free) fragment of RMt is HSC [22], while the purely
implicational fragment of RM is not SC (see [23]). However, we will consider RM
in its original signature.

The most pertinent result related to our inquiry is the theorem proven by Raftery
and Świrydowicz in [19], which states that there are no SC axiomatic extensions of
R other than classical propositional logic (CPL) and inconsistent logic. Since RM
is an axiomatic extension of R, it follows that neither RM nor any of its axiomatic
extensions—excluding CPL and inconsistent logic—is SC. In this paper, we will
tackle a more general problem: we will investigate arbitrary extensions of RM, not
limited to axiomatic ones.

§2. Preliminaries. We assume a countably infinite set of propositional variables,
denoted by Var = {p1, p2, p3, ...} (in practice, we will use letters p, q, r, ...). A
language L is a set of symbols; specifically, L = Var ∪ Con, where Con is the set
of logical connectives {¬,∨,∧,→,↔}. As usual, ¬ is unary and the rest of the
connectives are binary. The set of formulas F consists of properly constructed finite
strings of symbols from L; that is, p,¬ϕ,ϕ ∗ �, where ∗ is any binary connective.
A uniform substitution is a map from F to F that preserves logical operations, i.e.,
an endomorphism of the absolutely free formula algebra. We define �⊆ 2F ×F as
a consequence relation if it satisfies the following properties:

• reflexive: Σ � � for any � ∈ Σ;
• monotonic: if Σ � �, then Σ ∪ Γ � �;
• transitive: if Γ � ϕ and for any � ∈ Γ we have Σ � �, then Σ � ϕ;
• structural: if Σ � ϕ, then s(Σ) � s(ϕ) for any uniform substitution s;
• finitary: Σ � ϕ if and only if Σ′ � ϕ for some finite subset Σ′ of Σ.

Elements of 2F ×F whose first component is finite will be called rules. Instead of
writing 〈Γ, ϕ〉, we will adopt the following notation: Γ/ϕ, where Γ ∪ {ϕ} is a finite
subset of F . If a given rule Γ/ϕ is a member of a consequence relation �, then we
say that Γ/ϕ is a derivable rule of �. According to our definition, all consequence
relations are finitary, so we can identify a given consequence relation with the set of
its derivable rules. A derivable rule of a given consequence relation � of the form

2It is worth noting that due to the complexity of the lattice of superintuitionistic logics, no other
description may be attainable.
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4 KRZYSZTOF A. KRAWCZYK

∅/ϕ is called a theorem of � and is shortly denoted by ϕ. Each consequence relation
is a set of rules, some of which may be theorems. For two consequence relations
�0, �1 ⊆ 2F ×F , we say that �1 is an extension of �0 if �0 ⊆ �1. It is easy to see that
the intersection of an arbitrary set of consequence relations is also a consequence
relation:

⋂
i∈I �i is reflexive, monotonic, transitive, structural, and finitary, given

that each �i has these properties. Thus, for any set of rules X, there exists a least
consequence relation � that contains X. In such cases, we will say that X defines �.
A rule Γ/ϕ is admissible in � if and only if, for any substitution �, �(ϕ) is a theorem
of � whenever �(Γ) is a set of theorems of �. Furthermore, a rule Γ/ϕ is passive
in � iff there is no uniform substitution �, such that �(Γ) is a set of theorems of �.
Thus, each passive rule of � is vacuously admissible. A given consequence relation �
is structurally complete (SC) iff each admissible rule in � is derivable. Furthermore,
a consequence relation is hereditarily structurally complete (HSC) when all of its
extensions are SC. Consequence relations that are SC but not HSC (i.e., those that
have at least one extension that is not SC) will be called non-hereditarily structurally
complete (nHSC).

It is natural to associate a closure operator C with a given consequence relation
� in the following way: ϕ ∈ C (X ) if and only if X � ϕ for any X ⊆ F . It has also
been common to first define a structural and finitary closure operator as a primitive
notion and then treat the consequence operation as a secondary entity. However,
it seems more natural to talk about derivable rules in the context of consequence
relations (simply as their members). Since the notions of consequence operator and
consequence relation are two sides of the same coin, we decide to stick to the latter,
treating it as the fundamental notion that captures the meaning of the term ‘logic’.

A Horn formula, or quasi-identity as it is also called, is a first-order
sentence of the form ∀x1,...,xl (ϕ1(x1, ... , xl ) ≈ �1(x1, ... , xl )& ...&ϕn(x1, ... , xl ) ≈
�n(x1, ... , xl ) =⇒ ϕ(x1, ... , xl ) ≈ �(x1, ... , xl ). In practice, we will omit the
quantifiers. Identities are quasi-identities with an empty antecedent. Let Φ be
a quasi-equation and A be an algebra. A � Φ means that Φ holds in A. For a class
of algebras, we write K � Φ to indicate that Φ holds in each member of K. We
will use standard notation H, I,S,P, and PU for the well-known algebraic closure
operators defined on arbitrary classes of algebras. Thus, given a class of algebras
K, H(K), I(K),S(K),P(K),PU(K) are K’s closures under homomorphic images,
isomorphic copies, subalgebras, direct products, and ultraproducts, respectively.
For two algebras A and B, we will write A ∼= B when A ∈ I(B). Given a class of
algebras K, FK(κ) will denote the κ-generated algebra that is free in ISP(K). We will
also write V(K) for HSP(K) and Q(K) for ISPPU(K). We will use obvious notation
for finite direct powers: A1 = A, and An+1 = An × A. To indicate that an algebra A

is embeddable in (isomorphic to a subalgebra of) B, i.e., A ∈ IS(B), we will use the
following notation: A � B. We will also write A ≺ B when A � B and A �∼= B. If
K = V(K), then it is called a variety; if K = Q(K), then it is a quasivariety. Arbitrary
varieties will be referred to as V and quasivarieties as Q.3 Varieties are definable by
identities, and quasivarieties by quasi-identities.

3Remember that Q,V stand for closure operators and Q,V for classes of algebras. The usage will also
be clear from the context, so we believe that it will not lead to misunderstandings.
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HEREDITARILY STRUCTURALLY COMPLETE EXTENSIONS OF RM 5

Now, we will recall some results concerning the algebraic counterpart of the
structural completeness property, which were first formulated by Bergman in [5].4

For a consequence relation, being structurally complete is equivalent to having
no proper extensions with the same set of theorems. To see that, let �0 � �1 be
two consequence relations, where the second properly extends the first, with the
additional property that they have the same theorems, i.e., �0 ϕ if and only if
�1 ϕ for any ϕ ∈ F . Hence, there is a rule Γ/� in �1 that does not belong to
�0. However, Γ/� is admissible in �0 (otherwise, the set of theorems would be
different). Hence, �0 is not SC. For the other direction, let �0 be such that each of
its proper extensions also properly extends the set of its theorems. If there is a rule
Γ/� that is an admissible but non-derivable rule of �0, then it is easy to see that �1,
defined by the set of rules � ∪{〈Γ, �〉}, properly extends �0 and has exactly the same
theorems, contradicting the initial assumption. Thus, in algebraic terms—assuming
Blok–Pigozzi algebraizability, which ‘reverses the order’—we have the following:

Fact 2.1. A given quasivariety Q is SC if and only if, for any quasivariety Q′ � Q,
it is the case that HQ′ � HQ.

Thus, the SC quasivarieties are precisely those that are generated by their �-
generated free algebras. A given quasivariety is HSC if and only if all of its
subquasivarieties are SC—analogously, a consequence relation is HSC if and only if
it has only SC extensions. Not surprisingly, a given SC quasivariety is nHSC when
it has at least one subquasivariety that is not SC.

§3. RM and Sugihara algebras. Let A� = 〈Z;∧,∨,¬,→〉, where Z is the set of
integers, x ∧ y = min(x, y), x ∨ y = max(x, y), ¬k =– k and for → we have

k → l =

{
– k ∨ l, if k ≤ l ;
– k ∧ l, otherwise.

It is evident that there are two types of finite subalgebras of A� : those that contain
0 and those that do not. The former will be termed “odd,” while the latter will be
referred to as “even.” Consequently, we introduce the following notation for n ≥ 1:

A2n = 〈{– n, ... , – 1, 1, ... , n};∧,∨,¬,→〉,
A2n+1 = 〈{– n, ... , – 1, 0, 1, ... , n};∧,∨,¬,→〉.

A1 is the trivial one element algebra. A2 is a two element boolean algebra. An
infinite proper subalgebra of A� will be denoted by A�\{0} = 〈Z \ {0};∧,∨,¬,→〉.
An algebra A will be referred to as Sugihara algebra when A ∈ V(A�) = Q(A�).

Anderson and Belnap’s [4, p. 341] system of relevance logic R is defined by 13
axioms and two rules:

A1 p → p
A2 (p → q) → ((q → r) → (p → r))
A3 p → ((p → q) → q)

4Bergman’s work predates the seminal Blok–Pigozzi paper [7]. Thus, the notion of ‘algebraic
counterpart’ of a logic, as used by him, is an intuitive one. Systematic investigations of SC within
the framework of modern abstract algebraic logic can be found in [26].
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6 KRZYSZTOF A. KRAWCZYK

A4 (p → (p → q)) → (p → q)
A5 p ∧ q → p
A6 p ∧ q → q
A7 ((p → q) ∧ (p → r)) → (p → q ∧ r)
A8 p → p ∨ q
A9 p → q ∨ p

A10 ((q → p) ∧ (r → p)) → (q ∨ r → p)
A11 p ∧ (q ∨ r) → (p ∧ q) ∨ r
A12 (p → ¬q) → (q → ¬p)
A13 ¬¬p → p

The two rules of the system is modus ponens MP {p, p → q}/q and the adjunction
rule AD {p, q}/p ∧ q.

The logic R–mingle (RM) is obtained by adding the “mingle axiom”p → (p → p)
to the axiomatic system of relevant logic R. We will consider RM as a consequence
relation rather than merely as a set of theorems. The logic RM is algebraizable in
the sense of [7] with respect to the quasivariety of Sugihara algebras, using the set
of formulas {p → q, q → p} and the equation p ≈ p → p. For a given finitary rule
R = Γ/ϕ, where Γ = {�1, �2, ... , �n} we can say that Sugihara algebra A satisfies R if
A � �1 ≈ �1 → �1& ···&�n ≈ �n → �n =⇒ ϕ ≈ ϕ → ϕ. In such cases, we will use the
abbreviated notation A � R and say that A satisfies the rule R. It is straightforward
to observe that, to check whether R holds in A, we do not need to translate R into a
quasi-equation; instead, we can treat A as a logical matrix with the set of designated
elements {a ∈ A : a = a → a}. We naturally define an absolute value of an element
a ∈ A as |a| := a → a. We define deductive filters F ⊆ A as standard lattice filters
such that the set of designated values is included in F ; that is, {a ∈ A : a = |a|} ⊆ F .
Thus, as a consequence of algebraizability, we have an order isomorphism between
the lattices of deductive filters and congruences for a given Sugihara algebra.

Now, we will gather results on Sugihara algebras from [6, 11, 12, 21], which will
be crucial in the proof of the theorem.

Let us start with two important results that can be found in [6, p. 275]

Theorem 3.1 (Blok and Dziobiak, 1985). Sugihara algebras are locally finite, i.e.,
each Sugihara subalgebra generated by a finite set is finite.

Theorem 3.2 (Blok and Dziobiak, 1985). Algebras of the form An, n < � are the
only—up to isomorphism—finite subdirectly irreducible algebras.

As a consequence of these, we can restate the theorem of Dunn [12, Theorem 9,
p. 9] in its purely algebraic version:

Theorem 3.3 (Dunn, 1970). V(A1) ⊆ V(A2) ⊆ V(A3) ⊆ V(A4) ⊆ ··· ⊆ V(A�) =
V({An : n ∈ �}).

We can already observe that Sugihara algebras enjoy some nice properties. They
are locally finite, their finite subdirectly irreducibles are chains, and the lattice of
subvarieties of Sugihara algebras form an �+ well ordering. Consequently, due to
the Blok–Pigozzi algebraizability, the lattice of axiomatic extensions of RM is the
converse of �+ well-ordering. As will become evident below, there is also an elegant
characterization of directly indecomposable Sugihara algebras.
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HEREDITARILY STRUCTURALLY COMPLETE EXTENSIONS OF RM 7

Definition 3.4. Let A = 〈A;∧,∨,¬,→〉 be a Sugihara algebra. ⊥A� = 〈A ∪
{⊥,�};∧,∨,¬,→〉, where ⊥ and � are added as lower and upper bounds, ∧ and
∨ are interpreted standardly in the resulting lattice, ¬a = ¬Aa for a ∈ A, ¬� = ⊥,
¬⊥ = � and:

a → b =

⎧⎪⎨
⎪⎩
a →A b, if a, b ∈ A,

�, if a = ⊥ or b = �,
⊥, otherwise.

We also write ⊥n+1A�n+1 to indicate ⊥⊥nA�n�. Note that �,⊥ is assumed to be
disjoint from A in ⊥A�, so we must distinguish between the different ‘tops’ and
‘bottoms’ in algebras of the form ⊥nA�n where n ≥ 2. To clarify, we will use ⊥i and
�i to denote the ith bottom and top, respectively. Following this notation, ⊥nA�n
becomes ⊥n ...⊥2⊥1A�1�2 ...�n, where �i ≤ �j and ⊥j ≤ ⊥i in terms of lattice
ordering for i ≤ j.

It is immediate to see that for any subdirectly irreducible finite Sugihara algebra
A, ⊥A� is also subdirectly irreducible, i.e., ⊥An� ∼= An+2. Next, we will recall a
characterization of DI Sugihara algebras [6, Corollary 2.5, p. 278].

Theorem 3.5 (Blok and Dziobiak, 1985). A finite Sugihara algebra A is directly
indecomposable iff A ∼= A2 or A ∼= ⊥B�, where B is a finite Sugihara algebra.

Thus, DI Sugihara algebras are simply arbitrary Sugihara algebras extended
with disjoint top and bottom elements. However, the most important tool for our
investigations will be critical algebras. A finite algebra A is said to be critical if and
only if A /∈ ISP(B : B ≺ A). It is well known that every locally finite quasivariety is
generated by its critical algebras (cf. [18]). Since Sugihara algebras are locally finite,
we will use critical algebras as fundamental building blocks for quasivarieties. A
specific description of critical Sugihara algebras was provided in [11, p. 285], and
this will serve as a crucial tool in our investigations.

Theorem 3.6 (Czelakowski and Dziobiak, 1999). If a Sugihara algebra A is
critical, then it is isomorphic to an algebra of one of the following four types:

1. Ak ;
2. A2i × Ak , where 2i �= k;
3. ⊥p1A2k1 × ...⊥pnA2kn × Ak�pn ...�p1 , where 2kn < k if k is even, and kn < k

and ki < ki+1 + pi+1 for all 1 ≤ i ≤ n – 1 whenever 2 ≤ n;
4. A2k0 ×B where B is of type 3 and k0 < k1 + p1.

It is easy to see that algebras of the third type take the form ⊥mA�m, where A

is of the fourth type. To familiarize the reader with these types, we provide several
examples: ⊥2A4 × A6�2 is an algebra of the third type, while A6 ×⊥A8 × A5� and
A8 ×⊥2A6 × A5�2 are of the fourth type. Additionally, ⊥11(A6 ×⊥A8 × A5�)�11

is of the third type.
On the other hand, the following algebras do not satisfy this description: ⊥3A3 ×

A5�3—at most one algebra in the construction can be odd; ⊥A4 × A4�—algebras
within the construction cannot be the same; and A8 ×⊥2A2 × A3�2—here, 4 �<
1 + 2, contrary to the description.
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8 KRZYSZTOF A. KRAWCZYK

Furthermore, in the context of nested product operations, the “horizontal”
notation used in third- and fourth-type algebras quickly becomes difficult to
read. It is hard to determine which algebras are extended by the respective
tops and bottoms. Parentheses provide some clarification, but we argue that the
vertical “quasi-Hasse” notation is easier to read. For example, consider the algebra
⊥(A6 × (⊥3(A4 × (⊥2A2 × A3�2))�3))�. Let us present this in a vertical notation,
somewhat resembling a Hasse diagram:

A2 × A3

�
�

⊥
⊥

A4×

�
�
�

⊥
⊥
⊥

A6×

⊥

�

The scope of the extending tops and bottoms is indicated by the nearest ellipse.
Fortunately, we will later introduce a method that simplifies these nested algebras,
eliminating some notational problems in the subsequent sections.

One can observe that in algebras of the third and fourth type, for any i < n, we have
A2ki � ⊥pi+1A2ki+1 × ...⊥pnA2kn × Ak�pn ...�pi+1 . While this is straightforward to
verify directly, the observation also follows from three key facts:

• if ⊥B� is critical, then B is critical,
• if A×B is critical, then both A and B are critical, and
• the Lemma 3.4 from [11] which states that if A×B is critical, then it is

isomorphic to A2n ×⊥C� where A2n is embeddable in ⊥C� under assumption
that ⊥C� is not subdirectly irreducible.

We will also use the following result from [21, p. 1250]:

Theorem 3.7 (Krawczyk, 2022). Q(A2 × A3) and Q(A2 × A4) are the only covers
of Q(A2) (the variety of Boolean algebras) in the lattice of subquasivarieties of Q(A�)
and Q(A2 × A3) �= Q(A2 × A4).

Thus, we know that the lattice of quasivarieties of Sugihara algebras is more
complex than that of varieties: it does not form a chain, as it contains incomparable
elements. As the theorem shows, such elements already appear at the very bottom
of the lattice.

§4. The theorem and its proof. Our ultimate goal is to isolate the poset of all HSC
consequence relations extending RM. To achieve this, we begin by describing all
structurally complete quasivarieties of Sugihara algebras. Next, within the set of
SC quasivarieties, we distinguish the SC quasivarieties that possess the additional
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HEREDITARILY STRUCTURALLY COMPLETE EXTENSIONS OF RM 9

property of hereditariness from those that do not. The fundamental theorem we aim
to prove takes the following form:

Theorem 4.1. The set of all HSC subquasivarieties of Sugihara algebras is

{Q(A1),Q(A2),Q(A2 × A3)} ∪ {Q(A2 × A2k) : k ≥ 2} ∪ {Q(A2 × A�\{0})}.

In the general algebraic setting, an approach to the problem of (hereditary)
structural completeness based on projectivity has proven to be fruitful [2, 3].
However, as has already become apparent, we have a rather rich theory of Sugihara
algebras at our disposal, and thus our strategy will differ. In one way or another,
most of the proofs that follow will rely on the algebras from Theorem 3.6, since
locally finite quasivarieties are known to be generated by their critical members
[18]. However, the algebras of the third and fourth types in Theorem 3.6 are rather
complex and difficult to handle. To ease the process, we will simplify certain instances
of these algebras by providing their Q-equivalent descriptions. As will become
apparent later, this simplification reveals that Theorem 3.6 cannot be strengthened
into a full characterization (note that it presents only a necessary condition for
criticality, as it is framed as an implication). Q-equivalence, or Horn equivalence,
as we will also refer to it, is a weaker version of the standard model-theoretic
notion of elementary equivalence. As the reader likely knows, or suspects, two
algebras are Horn equivalent if they satisfy the same quasi-identities, rendering them
indistinguishable from one another from the perspective of quasivarieties. To make
things precise: by a quasi-identical theory of a given algebraA, we understand the set
Thq(A) := {ϕ : A � ϕ, ϕ is a Horn formula}. The definition of Horn-equivalence
has the following form:

Definition 4.2 (Q-equivalence). LetA,B be algebras of the same similarity type.
We say thatA andB areQ-equivalent (symbolically:A ≈q B) iffThq(A) = Thq(B).

We start with a simple observation.

Fact 4.3. For any algebras A,B of the same type, the following statements are
equivalent:

1. A ≈q B.
2. ISPPU(A) = ISPPU(B).
3. For any quasivariety Q, we have A ∈ Q iff B ∈ Q.

The equivalence of the three statements follows directly from the fact that
quasivarieties are defined by quasi-identities. In the case where both algebras are
finite, we can modify the second statement to ISP(A) = ISP(B). We are now ready
to prove the key “simplification” lemma. This lemma will be used to show that
certain algebras of the third type are Horn-equivalent to a product of two Sugihara
chains.

Lemma 4.4. Let n ∈ � and A,B,C all be Sugihara algebras such that A � B � C.
Then A×⊥nB× C�n ≈q A×⊥nC�n.

Proof. Without the loss of generality, we assume that A ⊆ B ⊆ C. We will show
that Q(A×⊥nC�n) = Q(A×⊥nB× C�n).
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For the left-to-right inclusion we prove that A×⊥nC�n � A×⊥nB× C�n. The
embedding e is given simply by

(a, c) �→ (a, (a, c)) for (a, c) ∈ A× C;

(a, xi) �→ (a, xi) for (a, xi) ∈ A× {⊥i ,�i}, 1 ≤ i ≤ n.
Is is easy to see that such a function is indeed an injective homomorphism. Thus
A×⊥nC�n ∈ S(A×⊥nB× C�n) ⊆ Q(A×⊥nB× C�n), which implies Q(A×
⊥nC�n) ⊆ Q(A×⊥nB× C�n).

For the opposite inclusion, we will show that A×⊥nB× C�n � A2 ×
(⊥nC�n)2 ∼= (A×⊥nC�n)2. Now the embedding e is defined by

(a, (b, c)) �→ ((a, a), (b, c)) for (a, b, c) ∈ A× B× C;

(a, xi) �→ ((a, a), (xi , xi)) for (a, xi) ∈ A× {⊥i ,�i}, 1 ≤ i ≤ n.
It is obvious that e is injective. To see that e preserves ¬, let (a, b, c) ∈ A× B× C.
e(¬(a, (b, c))) = e((¬a, (¬b,¬c))) = ((¬a,¬a), (¬b,¬c)) = ¬((a, a), (b, c)) =
¬e((a, (b, c))). The case when (a, xi) ∈ A× {⊥i ,�i} is equally trivial by the fact
that ¬⊥i = �i and ¬�i = ⊥i . For binary operations we check only → since ∨,∧
are trivial. Let (a, b, c), (a′, b′, c′) ∈ A× B× C. We will show two cases as examples
and leave the rest for the reader since they can be shown in the same manner.

For the first example let: e((a, (b, c))) → e((a′, (b′, c′))) = ((a, a), (b, c)) →
((a′, a′), (b′, c′)) = ((a → a′, a → a′), (b → b′, c → c′)) = e((a, (b, c))) → (a′,
(b′, c′))).

To prove one more case: e((a′,⊥i)) → e((a, (b, c))) = ((a′, a′), (⊥i ,⊥i)) →
((a, a), (b, c)) = ((a′ → a, a′ → a), (�i ,�i)) = e((a′ → a,�i)) = e((a′,⊥i) →
(a, (b, c))).

Thus, we have shown A×⊥nB× C�n ∈ SP(A×⊥nC�n) ⊆ Q(A×⊥nC�n).
This proves the right-to-left inclusion.

As we have proven the equality of the two quasivarieties, the statement from the
lemma follows immediately by the Fact 4.3. �

As a consequence of the above lemma, we can assert that Theorem 3.6 cannot be
strengthened to an equivalence. Given the assumption of Lemma 4.4, we have A×
⊥nB× C�n ∈ Q(A×⊥nC�n), which implies that A×⊥nB× C�n is not critical.
For a concrete example, consider A4 ×⊥A6 × A8�, which is clearly an algebra of
the fourth type. Yet, by Lemma 4.4, we have A4 ×⊥A6 × A8� ∈ Q(A4 × A10), and
A4 × A10 is a proper subalgebra of A4 ×⊥A6 × A8�. This shows that A4 ×⊥A6 ×
A8� is not critical.

However, the authors seem to acknowledge the potential incompleteness of their
description, referring to it as “a certain, satisfactory-for-our-purpose description”
[11, p. 281]. This description remains satisfactory for our purposes as well, as it will
suffice to prove the main theorem.

It is known that for every SC quasivariety Q, we have Q = Q(FQ(�)). However,
free algebras on finite generators are usually complicated, and �-generated ones
are even more so. Therefore, we seek an alternative description of SC Sugihara
quasivarieties—specifically, simpler, possibly finite algebras that generate them. By
Theorem 3.3, there are countably infinitely many varieties of Sugihara algebras,
each generated by a single algebra of the form Aα , where α ≤ �. Thus, we can
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partition the lattice of subquasivarieties of Sugihara algebras into a countable set
of equivalence classes, with each class corresponding to the algebras that generate
the same variety. In this framework, SC quasivarieties are precisely the minimal
elements of each equivalence class, represented by V(Aα) for α ≤ �.

In practice, the case where α = � turns out to be special, so we will first address
the finite cases, where n < �, and then move on to the remaining infinite case.

Definition 4.5. Let Q1, Q2 be quasivarieties of Sugihara algebras. We define
an equivalence relation on quasivarieties of Sugihara algebras putting: Q1 ∼ Q2 iff
H(Q1) = H(Q2).

In order to determine the equivalence class of a given quasivariety, we introduce
the notion of the degree of a given critical Sugihara algebra.

Definition 4.6. Let A be isomorphic to one of the four types of algebras from
Theorem 3.6. We define the degree of A, deg(A) to be:

deg(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
n, if A ∼= An,

max({2i, k}), if A ∼= A2i × Ak,

max({2kn, k}) + 2(pn + ··· + p1), if A ∼= B,

max({2kn, k}) + 2(pn + ··· + p1), if A ∼= A2k0 ×B,

where B = ⊥p1A2k1 × ...⊥pnA2kn × Ak�pn ...�p1 .

Observe that the notion of the degree of a given Sugihara algebra does not
coincide with the standard lattice-theoretic notion of height (i.e., the cardinality
of the longest chain in a lattice). To illustrate this, consider B = ⊥A2 × A3�. By
definition 4.6, deg(B) = 5. However, the set {⊥, (– 1, 0), (0, 0), (1, 0), (1, 1),�} ⊆ B
forms a six-element subchain of B.

By local finiteness of Sugihara algebras, we have the following:

Lemma 4.7. Letm ∈ �. Let K be a class of critical algebras. Q(K) ∈ [V(Am)]/∼ iff
there is a critical algebra A ∈ K such that deg(A) = m and there is no critical algebra
B in K such that deg(B) > m.

Proof. First we will show that for any critical algebra A s.t. deg(A) = m, we have
V(A) = V(Am). The cases when A is of the first and second type (see Theorem 3.6)
are trivial. Hence assume that A ∼= ⊥p1A2k1 × ...⊥pnA2kn × Ak�pn ...�p1 . We will
show that 1) Am ∈ H(A) and 2) A ∈ V(Am).

For 1) we will proceed inductively. Let n = 1. Thus A ∼= ⊥p1A2k0 × Ak�p1 . Let
z = max{2k0, k}. Obviously Az ∈ H(A2k0 × Ak). It is equally easy to see that
Am

∼= ⊥p1Az�p1 ∈ H(⊥p1A2k0 × Ak�p1). Now let A ∼= ⊥p1A2k1 × ...⊥pnA2kn ×
Ak�pn ...�p1 , where n ≥ 2. By inductive hypothesis Am–p1 ∈ H(⊥p2A2k2 ×
...⊥pnA2kn × Ak�pn ...�p2). Thus Am–p1 ∈ H(A2k1 ×⊥p2A2k2 × ...⊥pnA2kn ×
Ak�pn ...�p2), since A2k1 is embeddable in ⊥p2A2k2 × ...⊥pnA2kn × Ak�pn ...�p2 .
But then it is easy to see that Am ∼= ⊥p1Am–p1�pn ∈ H(⊥p1A2k1 × ...⊥pnA2kn ×
Ak�pn ...�p1).

For 2) notice that for any B ∈ V(Al ) it is the case that ⊥B� ∈ V(⊥Al�), because
if B is a subdirect product of {Ali : i ∈ I, li ≤ l}, then ⊥B� is a subdirect product
of {⊥Ali� : i ∈ I, li ≤ l}. Also, if B ∈ V(Al ) and C � B, then B× C ∈ V(Al ).
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We start from the fact that A2kn × Ak ∈ V(Az), where z = max({2kn, k}). Then
we combine two previous observations using them alternately to get 2).

The result for the remaining fourth type of algebras follows immediately from the
previous case.

Now, to prove the lemma, let K be a class of critical algebras, and Q(K) ∈
[V(Am)]/∼. Hence K ⊆ Q(K) ⊆ HQ(K) = V(Am). If there is k > m, B ∈ K such
that deg(B) = k, then Ak ∈ H(B) ⊆ V(Am) which cannot be the case, since it
contradicts Theorem 3.3. If, on the other hand, for each B ∈ K, deg(B) < m,
then let z = max({deg(B) : B ∈ K}). Obviously z < m, so Q(K) ∼ V(Az) which
contradicts the assumption. This gives us the right-hand side of the equivalence
from the lemma.

For the other direction, assume that there is a critical algebra A ∈ K such that
deg(A) = m and there is no critical algebra B in K such that deg(B) > m. From
the first conjunct we know that V(Am) ⊆ HQ(K). From the second conjunct we get
K ⊆ V(Am). Thus Q(K) ∼ V(Am). �

In Lemma 4.7, we addressed all finite cases, i.e., the members of the equivalence
classes [V(Am)]/ ∼ for m ∈ �. We now turn to the infinite case, involving the
members of [A�]/ ∼.

Lemma 4.8. Let K be a class of critical algebras. Q(K) ∈ [V(A�)]/∼ iff for each
n ∈ � there is a critical algebra A ∈ K such that deg(A) ≥ n.

Proof. For the left to right direction assume that there is n ∈ � s.t. there is no
m ≥ n, s.t. deg(A) = m and A ∈ K. But then by Lemma 4.7, we get Q(K) ⊆ V(Am)
which means that Q(K) /∈ [V(A�)]/∼.

For the right to left assume that for each n ∈ � there is a critical algebra A ∈ K
such that deg(A) ≥ n. Then, using the fact that for each critical B, s.t. deg(B) = m
we have Am ∈ H(B), we obtain that for each n there is m ≥ n s.t. Am ∈ H(K).
But also An ∈ HS(Am) for each n ≤ m. This way we have shown that for each n,
An ∈ V(K), which proves the Lemma. �

Lemmas 4.7 and 4.8 establish an equivalent condition for membership in a given
equivalence class, which ultimately depends on the degree of critical algebras. Based
on this result, we will characterize each SC quasivariety as being generated by a
single (in most cases finite) algebra.

Lemma 4.9. For any m ≥ 2, Q(A2 × Am) is SC.

Proof. It is enough to show that for any non-trivial quasivariety Q of
Sugihara algebras such that: Q ∈ [V(Am)]/∼, (m ≥ 2), we have Q(A2 × Am) ⊆ Q.
By Lemma 4.7, there is a critical A ∈ Q s.t. deg(A) = m. Obviously A2 ∈ Q. By
Theorem 3.6, there are four cases to consider.

If A ∼= Am, then obviously A2 × Am ∈ Q.
If A ∼= Aj × Am where j < m and at least one of these numbers is even, then

A2 × Am � Aj × Am, so A2 × Am ∈ Q.
Let A ∼= ⊥p1A2k1 × ...⊥pnA2kn × Ak�pn ...�p1 . Obviously A2 × A ∈ Q. We have

A2 � A2k1 and A2ki � ⊥pi+1A2ki+1 × ...⊥pnA2kn × Ak�pn ...�pi+1 for each i < n, so
we can apply Lemma 4.4 n – 1 times and getA2 × A ≈q A2 ×⊥lA2kn × Ak�l , where
l = p1 + ··· + pn. Obviously A2 is embeddable in both A2kn and Ak . If 2kn > k, then
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m = 2(kn + l) and A2 ×⊥lA2 × A2kn�l � A2 ×⊥lA2kn × Ak�l , so A2 ×⊥lA2 ×
A2kn�l ∈ Q and we can apply Lemma 4.4 one more time: A2 ×⊥lA2 × A2kn�l ≈q

A2 ×⊥lA2kn�l ∼= A2 × Am. Hence, A2 × Am ∈ Q. If, on the other hand, 2kn < k,
then 4.4 can be applied immediately, since A2kn � Ak , and thus we get A2 × A ≈q

A2 ×⊥lAk�l ∼= A2 × Am. Again, we obtain A2 × Am ∈ Q.
Finally, if A is of the fourth type, that is A ∼= A2k0 ×B, where B is of the third

type, then A2 ×B � A and we can repeat the reasoning from the previous case. �

Once again, we address the infinite case separately.

Lemma 4.10. Q({A2 × A2m : m ∈ �}) = Q(A2 × A�\{0}) is SC.

Proof. First we prove equality, then we will move on to structural completeness.
Inclusion from the left to right is trivial. To see that Q(A2 × A�\{0}) ⊆ Q({A2 ×
A2m : m ∈ �}) let U be a non-principal ultrafilter over �. It can be proven
that A2 × A�\{0} is embeddable in (Πn∈�(A2 × A2n))/U . To see that, first define
a function f from {– 1, 1} × Z \ {0} into the direct product: Πn∈�({– 1, 1} ×
{– n, ... , – 1, 1, ... , n}) by

f((x, n))(m) =

{
(1, 1), if m < n,
(x, n), otherwise.

Now e given by e((x, n)) = [f((x, n))]/U can be easily seen to be an embedding of
A2 × A�\{0} into Πn∈�(A2 × A2n)/U .

Let Q(K) ∈ [V(A�)]/∼, where K is a class of critical algebras. By Lemma 4.8 for
each n there is A ∈ K such that deg(A) ≥ n. By the reasoning from 4.9 we know that
there is A2 × Am ∈ Q(A), where n ≤ m = deg(A). Thus A2 × Am ∈ Q(K). Also for
any 2j = l ≤ m, A2 × Al � A2 × Am, which means that Q({A2 × A2m : m ∈ �}) ⊆
Q(K). �

By combining Lemmas 4.9 and 4.10, we can now state that the set of all SC
quasivarieties of Sugihara algebras is {Q(A1),Q(A2 × A�\{0})} ∪ {Q(A2 × An) :
2 ≤ n ∈ �}. As will become apparent later, this subposet of the entire lattice of
quasivarieties of Sugihara algebras is illustrated in Figure 1. We are now ready to
eliminate some of the SC quasivarieties from Figure 1 as non-hereditary.

Lemma 4.11. For each n ≥ 2, it is the case that Q(A2 × A2n+1) is not HSC.

Proof. By Theorem 3.7, we know that Q(A2 × A3,A2 × A4) is not SC, since
Q(A2 × A3,A2 × A4) � Q(A2 × A4) andQ(A2 × A3,A2 × A4) ∼ Q(A2 × A4). Also,
A2 × A3,A2 × A4 � A2 × A2n+1 for n ≥ 2 which means thatQ(A2 × A3,A2 × A4) �
Q(A2 × A2n+1) and consequently falsifies the heredity of SC for Q(A2 × A2n+1). �

We have spotted infinitely many quasivarieties which are nHSC. To prove that the
remaining SC extensions are hereditary, let us define three special rules.

{p,¬p}/q (NP)

{p,¬p ∨ q}/q (DS)

{p, q,¬(p → q)}/r (R)
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Q(A1)

Q(A2)

Q(A2 × A4)

Q(A2 × A6)

Q(A2 × A�\{0})

Q(A2 × A3)

Q(A2 × A5)

Q(A2 × A7)

Figure 1. Structurally complete quasivarieties of Sugihara algebras.

We have a non-paraconsistency rule NP, disjunctive syllogism DS and a special rule
R. Due to algebraizability, these rules are equivalent to respective quasi-identities—
here, we chose the ‘logical notation’ over the ‘algebraic’ one for the sake of readability.

Lemma 4.12. It is the case that:

A2 × A�\{0} � NP, DS, R

A3 � NP

A4 � R

A2 × A3 � DS

Proof. Designated values (positive elements) on A2 × A�\{0} are elements of
the form (1, k) where k ≥ 1. It is easy to see that for any interpretation i s.t. i(p) =
(1, k), it must be that case that i(¬p) = (– 1, – k) and thus the premises of NP are
not satisfiable, which means A2 × A�\{0} � NP. On the other hand, if we take the
interpretation i s.t. i(p) = 0 and i(q) =– 1 on A3, we see that A3 � NP.

Now, if we take any interpretation such that i(p) = (1, j) and i(q) = (1, j), for
j, k ≥ 1, we immediately see that i(p → q) = (1, j → k) and thus i(¬(p → q)) =
(– 1,¬(j → k)), which shows that the set of premises of R are not satisfiable in
A2 × A�\{0} and consequentlyA2 × A�\{0} � R. Now let i(p) = 2, i(q) = 1, i(r) =–
1 in A4. Hence i(¬(p → q)) =– (2 → 1) =–– 2 = 2. This interpretation falsifies R
in A4, i.e., A4 � R.

Finally, let i(p) = (1, k) where k ≥ 1. Hence i(¬p) = (– 1, – k) which means that
in order for i(¬p ∨ q) to be positive, it must be the case that i(q) = (1, j) for some
j ≥ 1. This gives us A2 × A�\{0} � DS. Lastly we show that A2 × A3 � DS: take i s.t.
i(p) = (1, 0), i(q) = (1, – 1). �

Lemma 4.13. Let Q be a quasivariety of Sugihara algebras and n ∈ �. If Q ⊆
Q(A2 × A2n) and Q �= Q(A1), then Q = Q(A2 × A2m), where m ≤ n.
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Proof. First observe that A2 × A2n � A2 × A�\{0}, so A2 × A2n � NP, DS, R.
Let A ∈ Q ⊆ Q(A2 × A2n) be critical. We can assume that A is not a Boolean
algebra, since Q(A2) = Q(A2 × A2). If A ∼= Ak , then either A3 � A or A4 � A. By
Lemma 4.12, it means that either A � NP or A � R. Hence A /∈ Q(A2 × A2n), so it
must be the case that A �∼= Ak for any k. If A ∼= A2k × Am and A �∼= A2 × Aj for any j,
then m > 2 and k > 1, so either A4 � A (when m is even) or A2 × A3 � A (when
m is odd), hence either A � R or A � NP which by Lemma 4.12 cannot be the case.
If A ∼= ⊥p1A2k1 × ...⊥pnA2kn × Ak�pn ...�p1 , then—due to the fact that for any
non-trivial finite B, it is the case that A4 � ⊥B�—we get A4 � A which, as we
have previously showed, cannot be the case. If A ∼= A2k0 ×⊥p1A2k1 × ...⊥pnA2kn ×
Ak�pn ...�p1 , then either k0 > 1, or k0 = 1. If k0 > 1, then A4 � A—contradiction.
If k0 = 1, then by Lemma 4.4, A ≈q A2 ×⊥lA2kn × An�l , where l = p1 + ··· + pn.
If n is odd, then it can be easily seen that A2 × A3 � A2 ×⊥lA2 × A3�l �
A2 ×⊥lA2kn × An�l , hence again A � DS—contradiction. If n = 2m, then
A2 � A2k0 � An which by Lemma 4.4 gives us A ≈q A2 × A2(m+l).

This way, we have shown that all critical Sugihara algebras from Q(A2 × An) are
Horn-equivalent to algebras of the form A2 × A2m, which proves the lemma. �

Lemma 4.14. If Q is a non-trivial quasivariety of Sugihara algebras and Q �

Q(A2 × A�\{0}), then Q = Q(A2 × A2n) for some n ∈ �.

Proof. Let Q ⊆ Q(A2 × A�\{0}) be a quasivariety and Q ⊇ K be its class of
critical algebras. Obviously Q = Q(K). By previous reasoning, it must be the case
that members of K are of the form A2 × A2n. Since Q is properly included in Q(A2 ×
A�\{0}) it must be the case that A2 × A�\{0} /∈ Q, which proves the Lemma. �

The only remaining step for the main result to follow is to prove the following:

Lemma 4.15. Q(A2 × A3) is HSC.

Proof. By Lemma 4.9, we already know that Q(A2 × A3) is SC. By Theorem 3.7,
we know that it is HSC as its only subquasivarieties are the Boolean algebras and
the trivial class. �

The fundamental Theorem 4.1 follows from Lemmas 4.9–4.11 and 4.13–4.15.
Additionally, we have an immediate corollary stating that the quasivarieties from
Lemma 4.11 are the only ones that are nHSC. Formally, from Lemmas 4.9–4.11,
and Theorem 4.1, we derive the following corollary:

Corollary 4.16. The set of all nHSC quasivarieties of Sugihara algebras is
{Q(A2 × A2k+1) : k ≥ 2}.

The content of Theorem 4.1, along with Corollary 4.16, is depicted in Figure 2.

§5. Passive structural completeness. Finally, let us note that there is a weaker
version of the SC property discussed in the literature. This is the concept of overflow,
or passive structural completeness, as formulated in [30]. A logical system (or a
quasivariety) is said to be overflow complete if all of its passive admissible rules
are derivable. It has been shown that a quasivariety is overflow complete if and
only if all of its non-trivial members satisfy exactly the same positive sentences
[30, Fact 2, p. 68]. Recall that a positive first-order sentence is one constructed using
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Q(A1)

Q(A2)

Q(A2 × A4)

Q(A2 × A6)

Q(A2 × A�\{0})

Q(A2 × A3)

(a) Subposet of HSC quasivarieties

Q(A2 × A5)

Q(A2 × A7)

Q(A2 × A9)

Q(A2 × A11)

(b) Sublattice of nHSC quasivarieties

Figure 2. Structurally complete quasivarieties of Sugihara algebras.

the existential quantifier ∃, the falsum constant f, and the connectives of conjunction
& and disjunction �. Using the previously proven lemmas, along with some new
ones, we can provide a Citkin-style characterization of overflow complete extensions
of RM in terms of two ‘omitting’ algebras.

In order to prove the theorem, we shall first recall the original Wroński
characterization of overflow completeness, and then modify it for our purposes.
Standardly, by Th(K) we will understand a first-order theory of a class of
structures K.

Fact 5.1 (Wroński, 2009). Let Q+ be a class of all non-trivial members of a
quasivariety Q. The following conditions are equivalent:

1. Q is overflow complete.
2. Th(Q+) ∩ {ϕ,¬ϕ} �= ∅, for every positive sentence ϕ.

We can slightly weaken the assumption of the above characterization.

Fact 5.2. Let Q = Q(K), where K does not contain a trivial algebra. Let K∗ =
K ∪ {FQ(�)}. The following conditions are equivalent:

1. Q is overflow complete.
2. Th(K∗) ∩ {ϕ,¬ϕ} �= ∅, for every positive sentence ϕ.

Proof. One direction follows immediately from the original characterization.
The second implication is just a matter of rewriting Wroński’s original proof—the
weaker assumption is just enough. For the sake of self-containment let us include it
here. Assume 2. Let R be a passive rule which is equivalent to a quasi-identity ϕ1 ≈
�1 & ... &ϕn ≈ �n =⇒ x ≈ y. Further, let R be admissible for Q = Q(K). This
means that FQ(�) � ∃x1,...,xk (ϕ1 ≈ �1 & ... &ϕn ≈ �n), where x1, ... , xk exhaust
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all of the variables from the conjunction of identities. From assumption, we get
K � ∃x1,...,xk (ϕ1 ≈ �1 & ... &ϕn ≈ �n) which means that R is derivable. �

In the first formulation, proving overflow completeness comes down to showing
positive equivalence of all non-trivial members of a given quasivariety. In the second
variant, we can restrict ourselves to the generating class plus the free algebra on
infinitely many free generators.

Lemma 5.3. For any n,m ∈ �, A2 × An is positively equivalent to A2 × Am.

Proof. Without the loss of generality assume that n ≤ m. If both n and m are
even or if m is odd, then A2 × An ∈ Q(A2 × Am). But by Lemma 4.9 Q(A2 × Am)
is SC. Thus, it is also overflow complete which by Fact 5.1 means that all of its
non-trivial members are positively equivalent. The remaining case is when n is odd
and m is even. But then A2 × An,A2 × Am ∈ Q(A2 × Am+1) and we can repeat the
reasoning. �

Lemma 5.4. Let Q be a quasivariety of Sugihara algebras, n a natural number.
FQ(�) is positively equivalent to A2 × An.

Proof. Since Q ∼ V = V(Aα) for some ordinal α ≤ �, it must be the case that
FQ(�) = FV(�). If α is a natural number k, then FV(�) ∈ Q(A2 × Ak) and Q(A2 ×
Ak) is SC, so also overflow complete and thus by Fact 5.1 A2 × Ak is positively
equivalent to FV(�). But by Lemma 5.3 A2 × Ak is positively equivalent to A2 × An,
so the result follows. If, on the other hand, α = �, then FV(�) ∈ Q(A2 × A�\{0}) =
Q({A2 × A2n : n ≥ 0}) which is SC and we repeat the reasoning. �

Now we can move on to the proof of the theorem:

Theorem 5.5. A subquasivariety of Sugihara algebras Q is overflow complete iff
A3 /∈ Q and A4 /∈ Q.

Proof. For the left to right direction assume that either A4 or A3 belong to Q. By
the Lemma 4.10 it must be the case that A2 × An ∈ Q for some n ≤ �. If A3 ∈ Q,
then define ϕ := ∃x(x = ¬x) and5 note that A3 � ϕ while A2 × An � ϕ. If A4 ∈ Q,
then let � := ∃x∃y (|x| ≈ x & |y| ≈ y & |¬(x → y)| = ¬(x → y)). Observe that
A4 � � and A2 × An � �. This means that Q is not overflow complete.

For the opposite direction assume that A3 /∈ Q and A4 /∈ Q. We will show that
all of its critical algebras are of the form A2 × An for some n ∈ �. Obviously
Q cannot contain any chains longer than A2. Any algebra of the second type
from the Theorem 3.6 must be of the form A2 × An (otherwise A4 ∈ Q). If B

is a non-trivial finite algebra, then A4 � ⊥B�, so any algebra of the third type
cannot be included in Q. If an algebra is of the fourth type, then by the already
established reasoning (Lemmas 4.4 and 4.9) it has to be Horn-equivalent to
an algebra of the form A2 ×⊥lA2k × Aj�l (otherwise A4 ∈ Q). If 2k ≤ j, then
Lemma 4.4 applies again and we get an equivalent algebra A2 × Aj+2l . If j < 2l
and j is even, then the situation is completely analogous. Lastly, if j is odd
and j < 2k, then both A2 ×⊥lA2k�l and A2 ×⊥lAj�l are subalgebras of A2 ×
⊥lA2k × Aj�l . For the first embedding take e1(i, a) = (i, (a, 0)), if a ∈ A2k and

5‘¬’ is a symbol for an algebraic operation here—not a negation connective, so ϕ is positive.
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e1(i, x) = (i, x), if x ∈ {⊥1, ... ,⊥l ,�1, ... ,�l}. For the embeddability of the second
algebra observe that by Lemma 4.4 A2 ×⊥lAj�l � A2 ×⊥lA2 × Aj�l � A2 ×
⊥lA2k × Aj�l . But then A2 ×⊥lA2k × Aj�l � A2 × A2 ×⊥lA2k�l ×⊥lAj�l ∼=
A2 ×⊥lA2k�l × A2 ×⊥lAj�l Thus Q is generated by the algebras of the form
A2 × An, so we can apply Lemmas 5.3 and 5.4 and Fact 5.2 to conclude the proof. �

On the basis of our main Theorems 4.1 and 5.5, we can characterize those
quasivarieties of Sugihara algebras which are overflow complete but not SC.

Corollary 5.6. A quasivariety Q of Sugihara algebras is overflow complete but
not SC iff either:

(i) Q = Q(A2 × A2n+1,A2 × A2m) for some m > n, or
(ii) Q = Q(A2 × A�\{0},A2 × A2n+1) for some n, or

(iii) Q = Q(A2 × A�).

§6. Active structural completeness. Another variant of SC is active or almost
structural completeness (ASC), a concept recently introduced and algebraically
developed in [13]. This notion can be seen as complementary to PSC. A consequence
relation is said to be ASC if its only admissible non-derivable rules are passive.

We will adopt a strategy similar to the one used previously: first, we will modify the
original algebraic characterization of ASC to align with the techniques established
in the proof of the main theorem. Then, we will apply these methods to characterize
all ASC subquasivarieties of Sugihara algebras and, subsequently, to isolate those
that are ASC but not SC.

Among the many equivalent algebraic properties for a quasivariety to be ASC,
we recall the condition most useful for our purposes [13, Theorem 3.1, p. 532]:

Theorem 6.1 (Dzik and Stronkowski, 2016). A quasivariety Q is ASC iff for any
A ∈ Q, A× FQ(�) ∈ ISPPU(FQ(�)).

Once again, we will modify the theorem in a manner similar to the approach taken
for PSC: restricting A to be a critical algebra and replacing the free algebra with the
product of a two-element Boolean algebra and a characteristic chain. This leads to
the following modified version:

Lemma 6.2. Let Q be a quasivariety of Sugihara algebras such that Q ∼ V(An) for
some n ∈ �. Then Q is ASC iff for any critical B ∈ Q, B× A2 × An ∈ ISPPU(A2 ×
An). If Q ∼ V(A�), then Q is ASC iff for any critical B ∈ Q, B× A2 × A�\{0} ∈
ISPPU(A2 × A�\{0}).

Proof. Let Q ∼ V(An).
Assume that Q is ASC. Let q := ϕ ⇒ s(x1, ... , xn) ≈ t(x1, ... , xn) where ϕ :=

s0(x1, ... , xn) ≈ t0(x1, ... , xn) & ...& sk(x1, ... , xn) ≈ tk(x1, ... , xn) be such that
FQ(�) � q. Let B ∈ Q. If q is passive, then FQ(�) � ∃x1, ... , xnϕ. By Lemmas 5.3
and 5.4 we get A2 × An � ∃x1, ... , xnϕ. But then also B× A2 × An � ∃x1, ... , xnϕ
which vacuously means B× A2 × An � q. Now, assume that q is not passive. But
then q is derivable in Q, so B � q and also B× A2 × An � q.

For the other direction, let q := (s0(x) ≈ t0(x) & ...& sk(x) ≈ tk(x)) ⇒ s(x) ≈
t(x) where x = x1, ... , xn be an admissible rule in Q. Thus, FQ(�) � q. By
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Lemma 4.9, this means that A2 × An � q. Suppose further that there is a critical
B ∈ Q such that B � q. Then there are b1, ... , bn ∈ B such that s0(b1, ... , bn) =
t0(b1, ... , bn),...,sk(b1, ... , bn) = tk(b1, ... , bn) and s(b1, ... , bn) �= t(b1, ... , bn). Let
ϕ := (s0(x) ≈ t0(x) & ...& sk(x) ≈ tk(x)). Assume for reductio that FQ(�) � ∃xϕ.
By Lemmas 5.3 and 5.4 we get that A2 × An � ∃xϕ. Let a1, ... , an ∈ A2 ×
An be such that s0(a1, ... , an) = t0(a1, ... , an),...,sk(a1, ... , an) = tk(a1, ... , an). But
then s0((a1, b1), ... , (an, bn)) = t0((a1, b1), ... , (an, bn)),...,sk((a1, b1), ... , (an, bn)) =
tk((a1, b1), ... , (an, bn)), but s((a1, b1), ... , (an, bn)) �= t((a1, b1), ... , (an, bn)). This
means that A× A2 × An � q—contradiction. Thus FQ(�) � ∃xϕ which means that
q is passive, so Q is ASC.

The case where Q ∼ V(A�) is covered similarly—just substitute A2 × A�\{0} for
A2 × An in the above proof. �

Theorem 6.3. Let Q be a quasivariety of Sugihara algebras. Q is ASC iff either:
A2 × A3 /∈ Q or Q ∼ V(A2n+1) for some n ∈ �.

Proof. For one direction, assume that Q �∼ (A2n+1) and A2 × A3 ∈ Q. Thus,
either i) Q ∼ V(A2n), where n ≥ 2 (if n = 1, then it must be the case that A2 × A3 /∈
Q), or ii) Q ∼ V(A�). But then A2 × A3 � A2 × A3 × A2 × A2n /∈ Q(A2 × A2n)
which by Lemma 6.2 means that Q is not ASC. If Q ∼ V(A�), then A2 × A3 �
A2 × A3 × A2 × A�\{0} /∈ Q(A2 × A�\{0}).

For the opposite direction, first assume that Q ∼ V(A2n+1). We will show that for
any critical algebra B of Q it is the case that A2 ×B× A2n+1 ≈q A2 × A2n+1. By
Lemma 6.2, this will be enough to show that Q is ASC. Let B ∈ Q be critical. By
Lemma 4.7, its degree must be less or equal to 2n + 1. Thus we can keep applying
the reasoning from the simplification Lemma 4.4 to obtain Horn equivalence.

In case Q �∼ V(A2n+1), we have that A2 × A3 /∈ Q. But this means that for any
critical B ∈ Q it must be the case that deg(B) is even (otherwise A2 × A3 � A2 ×
B). But then by our key simplification Lemma 4.4 we have A2 ×B ≈q A2 × A2m

for some m. Furthermore, A2 ×B× A2n ≈q A2 × A2n for any n > m which proves
the theorem. �

We have an immediate corollary:

Corollary 6.4. Q is ASC but not SC iff either:
(i) A3 ∈ Q ∼ V(A2n+1) for some n ∈ �, or

(ii) A4 ∈ Q ∼ V(A2n+1) for some n ∈ �, or
(iii) A4 ∈ Q and A2 × A3 /∈ Q.

§7. Conclusion. Let us conclude with several remarks. First, observe that if it were
not for Q(A2 × A3), the poset of RM’s HSC extensions would be a chain—a chain
isomorphic to RM’s axiomatic extensions. The covering relation in the HSC poset
of Figure 2a is the restricted covering relation within the entire lattice of Sugihara
quasivarieties. In contrast, the nHSC quasivarieties form a chain; however, the
covering relation in its lattice, shown in Figure 2b, is not a restriction of the covering
relation in the entire lattice of Sugihara quasivarieties. To see this, note that we have
Q(A2 × A2n+1) � Q(A2 × A2n,A2 × A2n–1) � Q(A2 × A2n–1).

Next, let us examine the three rules from Lemma 4.12 more closely. All of these
rules are admissible in RM—we have shown that they are derivable for ISPPU(A2 ×
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A�\{0}), and the logic associated with this quasivariety is RM’s SC extension with
the same set of theorems (admissible rules).6 The first and third rules are similar
in a certain way: arbitrary formulas follow from their premises, so proving their
non-derivability in a given Sugihara matrix involves finding an interpretation under
which the set of premises is satisfiable. Failure of NP satisfaction has commonly been
adopted as a definition of paraconsistency. The R rule, on the other hand, is a new
rule introduced specifically to separate algebras containing the 4-element Sugihara
subchain from the HSC quasivarieties. A somewhat similar rule can be found in
Tokarz’s work [28, p. 66]. Tokarz’s rule takes the form ¬((p → p) ↔ (q → q)/r.
This rule can also be observed to hold in A2 × A�\0 but not in A4. Lastly, the only
non-passive rule from Lemma 4.12 is the disjunctive syllogism DS, also referred to
as the (�) rule in [4]. The structural incompleteness of R has long been known,
stemming from the nonderivability of DS.

Finally, to put our result in a broader context, let us once again mention RMt

and its positive fragment. As it turns out, odd Sugihara monoids, which serve as
adequate semantics for RMt, are categorically equivalent to relative Stone algebras,
which, in turn, provide adequate algebraic semantics for positive fragment Gödel–
Dummett logic (for representation theorems for Sugihara monoids, see [15–17]).
The lattice of subvarieties of linear Stone algebras forms an �+ well-ordering, just
like the subvarieties of Sugihara algebras. Gödel–Dummett logic is known to be
hereditarily structurally complete (HSC) [14, 25], which, in algebraic terms, implies
that any subquasivariety of Stone algebras is, in fact, a variety. By categorical
equivalence, this property also holds for odd Sugihara monoids.

More generally, it is interesting to note that having isomorphic lattices of
subvarieties does not necessarily yield any similarity in the structure of respective
lattices of subquasivarieties. It is known that the structure of subvarieties of p-
algebras (implication-free reducts of Heyting algebras with intuitionistic negation)
is also that of�+ well-ordering, yet the lattice of its subquasivarieties is uncountable
[1, 29]. The cardinality of the set of subquasivarieties of Sugihara algebras remain
unknown. It has been established that the number of subquasivarieties of a
quasivariety generated by a finite set of finite Sugihara algebras has to be finite
[6]. Thus, the cardinality of the whole lattice must be determined by the size of the
class [V(A�)]∼.

There are two clear conclusions to be drawn from these final remarks. First,
modifying the original signature of the logic or its corresponding algebras (as in
this case, by adding the constant t or removing negation) can significantly alter
the structure of the extensions of a given logic. Secondly, an isomorphism between
the lattices of subvarieties of two classes of algebras does not necessarily imply any
similarity in the structure of their lattices of subquasivarieties.

Funding. This research has been funded by the National Science Center (Poland),
grant number 2022/45/B/HS1/00606.

6Thus, this is a corollary of our results from the main section. Instead of our argument, one could also
use the admissibility algorithm from [8], which was specifically devised for testing admissibility within
Sugihara algebras.
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