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OSCILLATION ON FINITE OR INFINITE INTERVALS 
OF SECOND ORDER LINEAR DIFFERENTIAL 

EQUATIONSC) 
BY 

D. WILLETT 

1. Introduction. Recently, Ronveaux [11] has shown how to use a combination 
of a Riccati transformation and a homographie transformation to estimate both 
from below and above the distance between a zero and the succeeding or preceding 
extremum (zero of / ) of solutions of 

(l.i) y"+P(t)y = 0. 

In this paper, we show how such transformations can be used to derive an equation 
from which the distance between successive zeros of a solution y of (1.1) can be 
estimated directly. 

More precisely, we consider the equation 

(1.2) [r(t)y']'+q(t)y = 0, 

with r G C1, qeC, r>09q>0. Suppose that y(t) is a positive solution of (1.2) on 
(a, b) with y(d)=y(b)=0. We derive sequences bn and cn9 which are functions of 
r, q, and a, such that 

bn\b and cn\b, aswfoo. 

The numbers bn and cn are defined in terms of the solutions of transcendental 
equations. For example, the number cQ relative to equation (1.1) with a=0 satisfies 

(1.3) jCJt(c0-t)p+(t)dt = c0, 

where p+(t) = max{p(t), 0}. Condition (1.3) is originally due to Hartman and 
Wintner [6]. 

The problem of determining b goes back to at least Lyapunov [8] and de la 
Vallée Poussin [12]. Considerable work (cf. the bibliography and the references 
therein) has been carried out over the years. 

In §4, we obtain similar convergent sequences for the problem involving the 
distance between a zero and adjacent extremes. This problem is one order less 
difficult than the problem of distance between zeros, the meaning of which will 
become clear in §4. 
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Finally, we derive some new necessary and sufficient criteria for disconjugacy of 
(1.2) on a finite or infinite interval [a, b). Actually, in this regard, Theorems 1 
through 3 are further results of the general method derived in Willett [14]. For a 
general survey of the oscillation results for (1.2), see (Willett [13], [14]). 

2. Disconjugacy and the distance between zeros. Throughout the remainder of 
this paper, we consider equation (1.2) under the assumptions q e C\a, b),r eCx\a,b), 
r > 0, and with 

R(t) = f r-^ds, M(t) = f R2(s)q(s)ds, 
J a J a 

P ( 0 = f R(s)[R(t)-R(s)]q(s)ds, 
J a 

/»„(/) = MiOPiOR-^t) = Mit) f M(s)r-1(s)R-2(s)ds, 
J a 

P1it)= Çp(s)[P(s)-R(s)Ms)ds, 
Ja 

Pnit) = f R*is)M-2is)Pn„1is)\pn-1is) + 2nf Pkis)]qis)ds, n = 2 , . . . , 
Ja L fc=0 J 

Qoit) = PoiO- f R(s)P(s)q(s) ds = f M\s)r-\s)R-\s) ds, 
Ja Ja 

2 i ( 0 = £ P(S) [p(s)-R(s)M 'HO £ Rir)Pir)qir) drj q(s) ds, 

Qnit) = Ç R\s)M-*(s)Qn-1(S)\QK-1(s)+2*2 0*(*)1 ?(*)*, « = 2 , . . . . 
Ja L k=0 J 

From the definition of M(t), we note that M(/) = 0 for r># can occur only if 
q(t) = 0. Hence, we define q(t)M~1(t) = 0 when t>a and M(t) = 0, and assume # 
is not identically zero on [a, b). We also assume that all integrals are improper 
integrals at a. Since 

(10) ,T+ w> - ;z 3R\t) - —3-' 
it is a simple matter to show that all the above functions are well-defined con­
tinuous functions on [a, è). 

THEOREM 1. Assume q>0 and a<b<co. Equation (7.2) is disconjugate on [a, b), 
if and only if][k=o Qkif) converges for a<t<b and 

(2.1) f 6fc(0 < M(f) o r M(f) = 0, a < t < b. 
7c = 0 

COROLLARY 1. Assume q>0 and a<b<oo. Equation (1.2) has a positive solution 
y on (a, b) such that 

y(a) = 0 = y(b\ 
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if and only if 

(2.2) | Qk(b) = M(b). 
fc=0 

Thus, ifbn is such that M(bn)>0 and 

(2.3) 2 fi*(W * ^(W, 
fc = 0 

Men 

*n > b; 

and if equality occurs in (2.3) for n>N, then 

bn^b, as/zfoo. 

THEOREM 2. Assume q>0 and a<b<co. Equation (1.2) is disconjugate on [a, b)9 

if and only */2"= o JPJC(0 converges for a<t<b and 

00 

(2.4) 2 Pk(f) < M(t) or M(t) = 0, a < t < b. 
fc = 0 

COROLLARY 2. Assume q>0 anda<b<oo. Equation (1.2) has a positive solution 
y on (a, b) such that 

y(a) = 0 = y(b), 

if and only if 

(2.5) | Pk(b) = Jlf(*). 
fe = 0 

7%ws, ifcn,n = 0,l,...9is such that 

(2.6) 2 P^n) < M(cn), 
fc = 0 

cn < b 

and (1.2) is disconjugate on [a, cn]. Furthermore, if equality occurs in (2.6) for n>N, 
then 

cn\b, as ft f oo. 

COROLLARY 3. Assume a<b<co andfeC[a,b). Let # = / + = / V O cmd assume 
M, P, andPn are defined as above. If (2.6) holds, then the equation 

(2.7) (ryj+fy = 0 

is disconjugate on [a, cn]. 
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Proof of Theorem 1. Assume that (1.2) is disconjugate on [a, b). Thus, any 
solution of (1.2) satisfying initial conditions y(a)=0, y\a)>Q is positive on {a, b). 
For one such solution, let 

(2.8) z= [l-KO^O/CO^Wl^W, a<t<b. 

L'Hôpital's Rule implies 

R(t) _ 1 . 
É-T+ y{t) r(a)y'(ay 

hence, 

(2.9) lim $1 = 0. 
t-*a + R(t) 

Furthermore, (1.2) and (2.8) imply that z is a Cx(a, è)-solution of the Riccati 
equation 

(2.10) z' = q{t)R\t) + r-\t)R-\t)z2, a < t < b. 

At this point, we assume without loss of generality that q(t) is not identically 
zero in any right neighborhood of a, for if q(t) = 0 for a < t < â with â maximal, then 
z(0 = 0 for a<t<a and we replace a by â in the following analysis. However, we 
do not replace a by â in the definition of R. Thus, (2.10) and z(a) = 0 imply 

(2.11) z(t) > Ofora < t < b. 

Next, let 

(2.12) w= [l-MiOz-^Wit), a<t<b. 

Clearly 

(2.13) 0 < w(t) < M(t), a < t < b, 

and so w(a+) = 0. Furthermore, (2.10) implies 

M2(t) R2(t) 

^ w ' - 7 u M ) + i M q ( t ) w 2 > a < t < b -
Hence, 

(2.15) w(t) = fi0(0+ f R2(s)M~2(s)q(s)w2(s)ds, a < t < b. 
Ja 

A procedure for solving integral equations of the type (2.15) is presented in 
Willett [14]. It goes as follows. Let 

JV0(0 = Ôo(0, 
( 2 ' 1 6 ) ^ " n(0 = fio(0+ f R2(s)M'2(s)q(s)w2.1(s) ds, n = 1 , . . . . 

Ja 
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By induction, it is not difficult to show that 

hence, we have 

(2.17) wn(t) = 2 Quit) < w(t) < M(t), a<t<b. 
fe = 0 

Since (2.16) implies wn>wn_ l5 it follows that 2E°=o Ôk(0 converges for a<t<b. 
Finally, (2.17) implies (2.1). 

Now, suppose that (2.1) holds, and let 

(2.18) w(t) = | 0 , (0 , a < t < b. 
fc = 0 

We are still assuming without loss of generality that q is not identical to zero in 
any neighborhood of a, that is M(t)>0 for t>a. Let 

Wn = 2 Qk 
fc = 0 

so that (2.16) holds. Since wn(t)<M(t) for a<t<b and all n9 the Lebesgue 
dominated convergence theorem implies that w(t) is a solution of (2.15). Since 
w(0 = Z£=o Qn(t)<M(t) for a<t<b by assumption, the function 

(2.19) / ( / ) = M\t)l[M(t)-w(t)]R\t)r(t) 

is positive on (a, b). Fix r, a<r<b, and define 

(2.20) j(0 = ^(0exp(-£/W*), « < t <b. 

(Although it is not needed, one can actually show that/(r) -> 0, as t -> a+ ; hence, 
T = # is also correct.) The fact that w is a solution of (2.14) implies that y is a solu­
tion of (1.2). Since y is positive on (a, b), Sturm theory implies that (1.2) is discon-
jugate on [a, b). We note that in case q(t) — 0 for a< t<â and â is maximal, then 
(2.20) still gives a positive solution of (1.2) provided one defines f(t) = 0 for 
a<t<a. 

Proof of Theorem 2. The main difference in the proofs of Theorems 1 and 2 is 
in the choice of initial function w0(t). Consider the general situation. Let 

L0(t) = M(t)Ç-^-ds = P0(t), 
(2.21) \ Jar(s)K{s) 

vf„(0 = fi0(0+ I R2(s)M-%s)q(s)w2
n.1(s) as, n = 1 , . . . . 

v. Ja 
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Here, we again assume without loss of generality that M(t)>0 for t>a. Then, 

M2(t) R2(t) 
w°{t) = mw)+imq{t)Wo{t)' a<t<b> 

and 3 a maximum b0, a<b0<b, such that 

w0(t) < M(t), a < t < b0. 

Since 

w'^ = Tmh + §W)^w2^ a<t<b> 
and w0(a) = 0 = w1(a), it is clear that 

wx(t) < w0(t), a < t < b0. 

Thus, 3 maximum bl9 bo^bx^b, such that 

wx(t) < M(t), a < t < b±. 

In general, 3 a sequence (wn, bn) such that 

0 < wn{t) < wn- i(0, a < t < bn-l9 

wn{t) < M(t), a < t < bn, 

6n_i <bn<b. 

Hence, 3 ^ ( 0 ^ 0 and b*<b such that 

wn | w* and bn f b%, as n f oo. 

Suppose now that (2.4) holds. If bn<b for all n = 0, 1 , . . . , then w*(t)<M(t) 
for a<t<b* and 

(2.22) Y\m[M(t)-w*{t)] = 0. 
t -b« 

But (2.21) implies 

w*(t) = lim 2 Pfc(0, 
n^oo fc=0 

so that (2.4) implies M(b*) — w*(b*)>0 if b*<b. Thus, b* = b. 
Letting w->oo in (2.21), we conclude by the Monotone convergence theorem 

that w* is a solution of (2.15). Since 

Ws >(0 < w0(0 = M(t) \ r~1(s)R-2(s)M(s)ds, a < t < bQ, 
J a 

it is also true that 

lim w*(t)/M(t) = 0. 
t-+a + 
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As in the proof of Theorem 1, it now follows that 

is a positive solution of (1.2) on (a, b). Hence, (1.2) is disconjugate on [a, b). 
Now, suppose that (1.2) is disconjugate on [a, b). Then, as in the first part of 

the proof of Theorem 1,3 a solution w e C\a, b) of (2.14) satisfying (2.13). On 
the other hand, the sequence wn defined in (2.21) converges from above to the 
solution w* e C1(a, Z>*). Hence, w and w* are solutions of the same differential 
equation on (a, b*) and satisfy the same initial condition, and 

(2.23) 0 < w(t) < w*(t) < M(t), a < t < b*. 

We will prove that 

w(t) = w*(t), a < t < b*9 

and hence, 

0 = lim [ M ( 0 - H > * ( 0 ] = lim [M(t)-w(t)]9 
t-*b*. t-+b*. 

which implies b* = b by (2.13). Thus, the conclusion of the theorem would follow 
from (2.23). 

Let 

A ( 0 = H > * ( 0 - H < 0 , a < t < b*. 

Since w and w* are both solutions of (2.15) on [a, è*), 

0 < A(0 < f M'(s)M-2(s)[w*(s) + w(s))A(s)ds 
J a 

< 2 f M'(s)M-2(s)wt(s)k(s)ds, a < t < b*. 
Ja 

This is a form of the well-known Gronwall inequality. It implies A(j) < 0, a < t < b*9 

provided M'M ~2w* is integrable on [a, t] for all t such that a<t<b*. But in the 
neighborhood of a, which is the only place there is a problem, w* < w0. Hence, 

M'(S) M\S) Cs M(T) dr M'(s) (s fM(r)12 / 3 dr 
M\s) W*{S) ~ M(s) Ja r(r)R2(r) ~ M2l\s) ) a [R\T)\ r(r) ' 

which is integrable by (2.0). 
Corollaries 1 and 2 are direct consequences of Theorems 1 and 2, respectively. 

Corollary 3 follows from Sturm theory, since (2.7) is disconjugate on [a, b] if 

(r(t)yj+f+y = 0 

is disconjugate on [a, b). 
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Theorem 2 and its corollaries depend essentially upon the sequence wn defined 
in (2.21). We note here that there is a feasible alternate way of choosing the sequence 
wn. Let 

(v0(t) = w0(t), 

( 2 ' 2 4 ) jt>n(0 = Go(0 + £ R2(s)M-2(s)q(s)vn^(s)vn(s) ds9 n = 1 , . . . , . 

Since the integral equation involving vn is linear in vn, it can be solved explicitly. 
So (2.24) determines a unique function vn for each value of n. It can be shown that 
the sequence vn converges monotonically to a solution v* of (2.15), and (L2) is 
disconjugate on [a, b), if and only if 

v*{t) < M(t), a < t < b. 

Thus, vn(cn)<M(cn) implies cn<b with cn f b, as n foo, in the case vn(cn) = M(cn) 
for all n > N. 

The advantage of using wn instead of vn is computational. Solution of (2.24) for 
vn will show that the formula defining vn contains exponential functions. (2.21) 
shows that this is not the case for vvn. On the other hand, the sequence vn will in 
general converge faster than the sequence wn. 

3. Application. As a special case of the results obtained in the previous section, 
consider 

(3.1) y"+p(t)y = 0, a<t<b9 p(t) > 0, 

and let 

HQ(t) = J (s-a)(t-s)p(s)ds/(b-a), 
Ja 

# i ( 0 = Ç (s-a)p(s)H0(s)ds/ Ç (s-a)2p(s)ds, 

# a ( 0 = fp(s)H§(s) dsj f (s-dfp(s) ds. 
Ja I Ja 

COROLLARY 4. Equation (3.1) is disconjugate on [a, b] if either of the following 
conditions hold: 

(J) HQ(b)<\ 

(ii) Hoi^-ib-a^^Hb-dfH^^U 
and is conjugate on [a, b] if either of the following conditions hold: 

(iii) # 0 ( 6 ) - ( * - * ) # i ( * ) £ l 
(iv) HoW-ib-àjH^ + ib-aTHM-ib-ayHKb^L 

The conditions (i)—(iv) correspond respectively to (2.6) with n = 0, 1 and (2.3) 
with n = 0, 1. For the trivial equation y"+y = 0, conditions (ii) and (iv) imply 

2.604 < 7T < 3.366. 
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A nontrivial equation to which Corollary 4 can be applied is 

(3.2) / + A (sin t)y = 0, 0 < t < ir. 

Equation (3.2) is disconjugate on [0, n] if 

A < 1.056, 

and is conjugate on [0, TT] if 

A > 1.242. 

For the equation 

(3.3) / + * ( 0 / + / ( 0 j > = 0, 

which is equivalent to (1.1) with 

r(t) = exp ( J g(s) ds}, q(t) = /(/) exp ( J g(s)j ds, 

the condition (2.6) with n = 0 and/+(0 = max (0,f(t)) is 

(3.4) f Œ r "1(T) dT) ( f T "1(r) dT)r(s)f+(s) ds ~ f r(r) dr' 
This result includes the result of Hartman and Wintner [7], which states that (3.3) 
is disconjugate on [a, b] if 

£ (s-a)(b-s)f+(s) ds+mzx { £ s \g(s)\ ds, £ (b-s) \g(s)\ <&} < b-a. 

4. Disconjugacy and the distance between zeros and focal points. The basis for 
the development in §2 involved the relationship between equation (2.14) and equa­
tion (1.2). Information about (1.2) was obtained by analyzing (2.14). A similar 
development with respect to the problem of locating the first zero of y\t) is pos­
sible using equation (2.10) in place of (2.14). We list the pertinent results in this 
section and outline the proofs. 

Let 

M0(t) = M(t) - £ R2(s)q(s)ds, 

Mi(0= Ç r-l(s)R'2(s)M2(s) ds, 

Mn(t) = f r-1(^-2(^)Mn.1(^)[Mn.1(^) + 2 Y Mk{s)} ds, n = 2,..., 
Ja L fc=0 J 

JV0(0 = R(t) faR(s)q(s) ds, 

Nt(t) = jt
ar-1(s)R-%s)N0(s)[N0(s)-R(s)]ds, 

N»(t) = P r-^R-^N^MUn-^+l nf Nk(s)} ds, n = 2,.... 
Ja L fc=0 J 
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THEOREM 3. Assume a<b<co andM>0. Equation (1.2) is disconjugate on [a, b), 
if and only if 2?= o Mk(t ) converges for a<t<b. 

THEOREM 4. Assume a<b<oo, M>0, and (1.2) is disconjugate on [a, b). Let y be 
any nontrivial solution of (1.2) such that y(a) = 0. Then, 3c e (a, b) such that y\c) = 0, 
if and only if 

(4.1) f Mk(c) = R(c). 
fc = 0 

COROLLARY 4. Assume that y is a solution of (1.2) such that y(a) = 0, y'(c) = 0, 
andy'(t)>0for a<t<c. If 

(4.2) I Mk(bn) > R(bn), 
k = 0 

then 

bn > c. 

Furthermore, if equality occurs in (4.2) for n>N, then 

bn\c, asflfoo. 

THEOREM 5. Assume a<b<oo, M>0, and (1.2) is disconjugate on [a, b). Let y 
be any nontrivial solution of (1.2) such that y(a) = 0. Then, 3ce(a,b) such that 
y'(c) — 0 and y'(t) ^ 0 for a<t<c, if and only if 2?= o ^ ( 0 converges for a<t<c 
and 

(4.3) | Nk{c) = R(c). 
k=0 

COROLLARY 5. Assume that y is a solution of (1.2) such that y(a) = 0, y'(c) = 0, 
andy'(t)>0for a<t<c. If 

(4.4) 2 Nk(cn) < R(cn), 
/c = 0 

then, 

c > cn. 

Furthermore, if equality occurs in (4.4) for n>N, then 

cn\ c, as « f oo. 

When n = 0 in Corollaries 4 and 5, the bounds 

cQ < c < b0, 

where 

f ° R2(s)q(s) ds > R(b0) and f ° R(s)q(s) ds < 1 
Ja J a 

are obtained. These estimates have previously been obtained by Ronveaux [11]. 
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Proof of Theorem 3 (outline). The proof of Theorem 3 is similar to the proof of 
Theorem 1. The proof depends primarily upon the fact that the equation 

(4.5) z' = qR2 + z2/rR2 

has a unique solution in C(a, b) satisfying 

<4-6> »• m = °' 
if and only if, equation (1.2) is disconjugate on [a, b). The unique solution of 
(4.5)-(4.6) can be obtained by iterating in either the manner described in the 
proof of Theorem 1 or in the proof of Theorem 2. In the former case, 

(4.7) z{t) = | Mk(t), 
k = 0 

which holds for a < t < b. In the latter case, 

(4.8) z(0 = f Nk(t), 
k = 0 

which holds for all t such that z(t)<R(t). 
We will now prove that (4.5)-(4.6) has at most one solution. Suppose it has two 

solutions zx and z2 on an interval [a, b). Then 

A(0 = |zi(0-*a(0l ^ [lZl^^)lHs)ds. 

Once again, the Gronwall inequality implies A(/)=0 if 

f(s) = r-WR-^lz^ + zM 

is integrable on [a, t] for all a<t<b. Clearly, we need to show only that/is in­
tegrate in some right neighborhood of a. For any solution z of (4.5), we obtain 

©'-«*+£&->)• 
Hence, if z also satisfies (4.6), then 3S = 82>0 such that 

[z{t)R-\t)\ < q(t)R(t), a < t < a+8. 

So 

z(t) < R(t) J R(s)q(s)ds, a 
Ja 

< t < a+8. 

Hence, for the solutions z1 and z2 and for 

8 = min (82l, 822), 
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we obtain 

fit) < 2r-\t)R-\t)^R(s)q(s)ds 

< 2r~\t) q(s)ds, a < t < a + &, 

and s o / ( 0 is integrable on [a, a+S]. 

Proof of Theorem 4. Since (1.2) is disconjugate, the solution y does not vanish 

on (a, b). Hence, the function z defined by (2.8) is C\a, b) and satisfies (4.5)-(4.6). 

(2.8) also implies that / ( c ) = 0 , if and only if z(c) = R(c). The conclusion of the 

theorem follows from the fact that (4.5)-(4.6) has the unique solution (4.7) on 

(a,b). 

Proof of Theorem 5. The proof is the same as the proof of Theorem 4 with the 

substitution of (4.8) for (4.7). 
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