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In a sequence of two papers which appeared in 1968 and 1969 Herbert Abels [1, 2] has
developed, from a method originated by Gerstenhaber [6], a means for extending the study
of properly discontinuous groups of transformations to that of proper transformation groups
in general. We recall that, if G is a Hausdorff locally compact group of transformations of a
locally compact space X, then the action of G is proper when, for any two compact subsets K
and L, the subset G(K, L) = {geG: gLnKjtO} of G is compact (see [3], p. 55). In what
follows all groups and spaces will be Hausdorff and locally compact. If H is a closed subgroup
of G, then it is clear that the property just defined is possessed by the action of H as a group of
left translations of G.

Let Z(G) be the space of closed subgroups of G with the following topology. A neigh-
bourhood Nd(H; K, U) of a subgroup H is determined by each compact subset K of G and
open neighbourhood U of the identity of G by the definition

Nd(H; K, U) = {//': H'nK<=HU and HnKczH'U}.

We refer to this as the Chabauty topology, it having been defined first by Chabauty [5] for
discrete subgroups. It is easy to verify (c.f. Bourbaki [4]) that the neighbourhoods defined
above constitute a basis for a Hausdorff topology and that the same topology is generated if,
in the above definition of Nd(H; K, U), HU and / / ' ( / a r e replaced respectively by UH and
£///'.

The object of this note is to apply the method of Abels to obtain a proof of the following

THEOREM. Let G be a connected Lie group, 2.(G) the Chabauty space of closed subgroups
of G and 20(G) the subspace o/I(G) consisting of subgroups HofG with the property that the
quotient space GjH is compact. Then 20(G) is open in I(G).

We begin by describing the basic notion of a fundamental system as defined in [1]. (The
application we wish to make does not require the more specialized " uniform fundamental
system " introduced in [2].) Let G be a continuous group of homeomorphisms of a space X.
For any two subsets K and L of X, we let G(K, L)= {geG: gLnK^ 0} and H(K, L) =
G(K, L)r\H for any subset H of G. A subset F of X, is called a fundamental set for G acting
on A'when (i) Fis a (/-covering: GF = Xand (ii) G(K, F) is relatively compact for each com-
pact subset AT of X. A fundamental system is a " localization " of the notion of a fundamental
set obtained by restricting these requirements to suitable subsets of X and G respectively.
More precisely, a triple (F, Q, E) in which Fis a closed subset of A', Q is an open neighbourhood
of F and E is an open neighbourhood of the identity of G is called a fundamental system (for
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G acting on X) when the following conditions are satisfied:

(1) QFnQ # 0, VgeE, i.e., E(Q, F) = E.
(2) If K is a nonempty compact subset of Q, then E(K, F) is nonempty and compact.
(3) For each xeQ and geE(x, F),

E(g-lx,F)=g-1E(x,F).
(4) E generates G.

Condition (2) says in particular that EF => Q. Indeed, if we replace E by G and Q by X,
then conditions (1), (3) and (4) hold for any nonempty subset /"and condition (2) says precisely
that F is a fundamental set. The problem is in fact just this: Given a fundamental system
(F, Q, E), to determine conditions under which F is then necessarily a fundamental set. It is
shown in [1] how to construct a space X' on which G acts as a continuous group of trans-
formations and a local homeomorphism n of X' into X with the following properties, (i) n
commutes with the actions of G on X and X', i.e., the diagram

GxX'

idx

GxX

U A A *• A.

\ I
is commutative, (ii) Furthermore, X' contains an open subset Q' which is homeomorphic under
n to Q and F' = TZ\Q.\F) is a closed fundamental set with respect to the action of G on X'.
The principal result concerning the " associated pair " (A", n) which we shall employ is

THEOREM (H. Abels). Let (F, Q, E) be a fundamental system with respect to the continuous
group of transformations G acting on X and let (X', n) be the " associated pair ". If

(1) X is locally connected and connected,
(2) Q is connected,
(3) there exists a G-invariant uniform structure which induces the topology ofX,
(4) F is compact,

then (X1, n) is a covering space ofX.
We proceed now to the proof of our theorem. G being a connected Lie group, it is the

product of a maximal compact subgroup and a euclidean space. Its fundamental group is
therefore finitely generated. Furthermore, G admits a simply connected covering space. It
follows (see [1, Proposition 4]) that G has the following property. There exists a compact
subset K of G such that, for any covering space {X1, p) of X, if X' contains a subset L which is
homeomorphic to Kunderp\L, then {X',p) is a trivial covering space.

Let H be in 20(C). Then there exists a compact subset F of G such that HF = G; we may
further suppose that FID K and eeF. Since G is locally compact, locally connected and
connected, any two points of G are contained in a relatively compact connected subset, from
which it follows that F, being compact, can be covered by a finite number of relatively compact
connected sets having a common point. Hence F has a relatively compact connected open
neighbourhood. So let Q be such a neighbourhood of F and let E = H(Q, F). Then E
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is a relatively compact subset containing the identity which is open in H. We choose W,
a compact neighbourhood of the identity, such that WF a Q and consider the neighbourhood
Nd(H, E, W) of H in Z(G). Let H'eNd(H, E, W); then H'nE <= HW and HnE cH'W.
IfqeQ, then q = gr/for some geEand feF. Also, geEimplies that g =g'w for some g'eH'
and weW. Thus q=g'wf and QcH'WF. Set E' = H\Q,WF); then clearly E' =
£"(£?» fW) and g c £ ' WF. Let A: be any nonempty compact subset of Q. Then E\K, WF)
is nonempty and furthermore E'(K, WF) = KF-1W~lr\H', a closed subset of KF~lW~l

which is compact; hence E'(K, WF) is compact. Let xeQ and geE'(x, WF). Since / / '
is a subgroup, it is clear that g~lxF~lW~lnH' =g~l[xF~1W~1nH'] and hence
E\g-lx, WF) = g-1E'(x, WF). Now let H" be the subgroup of H' generated by E'.
What we have shown is that {WF, Q, £") is a fundamental system for H" acting on G. The
conditions of Abels's theorem are satisfied, enabling us to conclude therefore that (C, n), the
associated space of ( WF, Q, E'), is a covering space of G. We have moreover that G' contains
a subset F' which is homeomorphic to WF under n |F.. It follows that n must therefore be a
homeomorphism. Since, furthermore, F' is a fundamental set and n commutes with the
actions of H" on G' and G, we find that Fis a fundamental set for H" acting on G, so that,
in particular, H"WF=G. Now, for £ £ # ' , g = gj, where gxeH" and feWF. This
implies that g " ^ , e //'(*?. 0 T ) c H'(Q, WF) = £ ' ; h e n c e g - 1 ^ , - ^ ' <= H". Thus// ' = H"
and the proof is complete.

We conclude by remarking that, if S(G) and S0(G) denote the subspaces of !((?) and
Z0(<J), respectively, obtained by restricting to discrete subgroups, then A. M. Macbeath [7] has
shown that S0(G) is the union of open subsets of S(G) consisting of isomorphic subgroups.
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