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1. Introduction. By a theorem of Hurwitz [3], an algebraic curve of genus g ^ 2 cannot
have more than 84(gr-l) birational self-transformations, or, as we shall call them, auto-
morphisms. The bound is attained for Klein's quartic

of genus 3 [4]. In studying the problem whether there are any other curves for which the bound
is attained, I was led to consider the universal covering space of the Riemann surface, which, as
Siegel observed, relates Hurwitz's theorem to Siegel's own result [7] on the measure of the
fundamental region of Fuchsian groups. Any curve with 84(gr — 1) automorphisms must be
uniformized by a normal subgroup of the triangle group (2, 3, 7), and, by a closer analysis of
possible finite factor groups of (2, 3, 7), purely algebraic methods yield an infinite family of
curves with the maximum number of automorphisms. This will be shown in a later paper.

The aim of the present paper, however, is to show how one can prove the existence of such
an infinite family without any knowledge of the algebraic structure of the triangle group. All
one needs is a single curve with the maximum number of automorphisms—and for this we
may use Klein's quartic. By lifting the group of automorphisms to the universal covering
space we obtain an extension of the fundamental group of the curve. If we then collapse the
fundamental group to the first homology group modulo m—which involves factoring out a
normal subgroup of finite index—we arrive at a finite extension of the original group and a
finite-sheeted covering space of the original Riemann surface. Thus, if g is the genus of the
original curve, we obtain, for every integer m, a curve with the maximum number of auto-
morphisms and genus (g — \)m2g+1.

It is possible to construct an extension group of this kind for more general spaces, and the
main part of the paper deals with this. The results belong, on the whole, to a familiar part of
classical topology, but the present application requires a restatement of them which may be
useful in other contexts.

In what follows, we shall not necessarily be interested in the whole group of homeo-
morphisms of a space, but rather in those which preserve some local structure, e.g. a differen-
tiable or analytic structure. The term " automorphism " is used as an omnibus word to
cover " homeomorphism", " differentiate homeomorphism of class C r " , or "one-one
analytic mapping " according to context. We do not completely specify the kinds of local
structure to which the results apply—perhaps there might be applications to local affine
structures or local group structures, for instance. However, the immediate application we
have in mind is that of analytic mappings of a Riemann surface.

2. Induced mappings on orbit space. Let X be a connected topological space with
some kind of local structure, e.g. a Cr-differentiable structure or a complex analytic structure.
For any space S, let A(S) denote the group of automorphisms of S, i.e. the group of homeo-
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morphisms of S onto itself which preserve the local structure. Suppose that N is a group of
automorphisms of X with the following property.

Each x e X has a neighbourhood V(x) such that V(x) n n V(x) = 0 if 1 # « e JV. (/4)

It follows from (.4) that JV acts without fixed points. The N-orbits {nx: neN} form the
orbit space X/N and the projection mapping p : A"-> A7JV, which maps each point x on the
orbit containing it, is a local homeomorphism, defining a local structure on X/N. An auto-
morphism fe A (X) is called N-admissible if both / and / "* map each N-orbit into an iV-orbit;
that is,

xeNy if and only if fx e Nf(y),

or, in terms of the projection p,

px=py if and only if (pof)x = (pof)y. (1)

If Nx is an orbit, the N-admissible map/maps Nx on another orbit Ny, say, thus inducing a
map p*(f) of the orbit-space X/N onto itself. This map /»*(/) is defined by the relation

(p*(f))(Nx) = Ny = Nf(x),
or, in terms of the projection,

p*(f)op=pof. (2)

Clearly />•(/) o/>*(#) = p*(fog), />*(1) = 1, so that/?^/"1) is a left and right inverse of />*(/).
Thus /?*(/) is an automorphism of A7JV. The set of //-admissible automorphisms of X thus
forms a group, which we denote by Z(X, N), and p* is a homomorphism from Z(X, N) into
A(X/N). The following theorem gives the algebraic relationship between groups Z(X, N) and
N within the larger group A (X).

THEOREM 1. The group Z{X, N) is the normalizer of N in A (X), and N is the kernel of the
projection homomorphism p*.

Proof. We show first that N is the kernel. Clearly Nc Ker p*, so we need only show
Kerp* cN. Let/eKer/?*. Then, for each xe X, fxeNx; i.e., there is an neN, possibly
varying from one point x to another, such that/* = nx. For each neN, let B(ri) denote the
set of x such that/v = nx. Thus X = \JB(ri), and, by (A), the sets B(n) are disjoint.

Let xeB(n) and choose a neighbourhood Wof xso that(i) W<= V(x),(n)f(W) <= nV(x).
If n?n',f(W)r<n'W<znV(x)r\riV(x)=0, by (A). Thus W does not meet any set B(n')
except B(n), and B(n) is open.

The connected space X is thus the union of the disjoint open sets B(n), and so precisely
one of these sets, say B(n0), is non-empty. Thus B(n0) = X and /= noeN.

To complete the proof, note first that the normalizer of TV is contained in Z(X, N); for,
if tN = Nt, then tNx = Ntx and t maps the orbit Nx onto the orbit Ntx. Secondly, Z(X, N) is
contained in the normalizer, since N, being the kernel of the homomorphism p*, is normal
in Z(X, N).

3. The universal covering space. Let S be a connected, locally arc-connected, locally
simply connected topological space. In this section we replace the space A" of § 2 by the
universal covering space § of S, and we let N denote the fundamental group of S which can
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also be regarded as a discrete group of covering transformations of S. The orbit space S/N
can be identified with the original space S, and the projection p is the usual projection in the
theory of covering spaces [1, 2, 5, 6]. It is convenient to recall the definition and basic
properties of S.

A path in S is a continuous mapping C of the unit interval / = [0, 1] into S. The point
C(0) is called the initial point, C(l) the end-point, and we speak of a path from C(0) to C(l).
If C, D are two paths such that C(l) = D(0), we define CD, C"1 as usual by the rules

CD(x) = C(2x) (0 ^ x g i), CD(x) = 2)(2x-1) (i g x £ 1),

Two paths are considered equivalent if there is a homotopy from one to the other keeping
the initial and end-points fixed. Let 5* be the set of all path-classes.

If c is the class of a path C and d is the class of a path D, we use cd to denote the (well-
defined) class of CD and c"1 to denote that of C"1. If/: 5 -»• 5 is any continuous mapping
and C is a path, then/o C is a path whose class depends only on the class of C. If c is the class
of C, f* c denotes the class of/o C. Clearly

f*(cd) = (f*c)(f*d), / * c - 1 = ( / * c ) " 1 . (3)

If c is the class of a path C, define po(c) = C(0), /^(c) = C(l). Then we have also

Piicd) = Pl(«Qj (4)

Pi(f*c)=f(Pi(c)). (5)

Let N be a basis for the topology in X, consisting entirely of ,«imply-connected open sets. Let
U, VeN and let c be a path class from xe U to ye V. For c~.li ze Udefine J(z) to be the
class of any path in C/from z to x. Since Uis simply-connected, the class d(z) depends only on
z. Similarly, let e(w), for w e V, be the class of any path in V from y to w. Define UcV <=. S*
to be the set of all classes

{d(z)ce(w):zeU, weV},

and take the totality of sets UcV, where U, Ve N, ce S*, po(c) e U, p^c) e V, as a basis for a
topology in 5*.

Let (S, x) be the subspace of S* consisting of all path classes with initial point x, i.e.
(S, x)=p^1 (x). Then (S, x) is called the universal covering space of S with base point x. If h
is a path class from x to y, the left translation Xh (/lh(c) = he) maps (5, j>) into (S, x). Since
/J/J'1 and h'1h are constant path-classes, A^1 = Ah-i and the two covering spaces are homeo-
morphic. Thus, for most purposes, (S, x) and (5, y) may be regarded as identical and denoted
by S.

The closed path-classes which begin and end at x form a group—the fundamental group
n^S, x). The left-translations

form a discontinuous group N of homeomorphisms of (5, x). We shall call N the Poincari
group. The Poincare group and the fundamental group are isomorphic.
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If p denotes the restriction of the mapping/^ to (S, x), then/? is a local homeomorphism,
inducing a local structure on {§, x) to correspond with that of S. The inverse image p'\y)
of any point y e S is an iV-orbit; for if

P(a) = P(b) = y,

then ab~1 is defined,p(ab~l) = x, so ab~i = ce n^S, x), and a = Xc(b) eNb. The pointsy of S
are thus in one-one correspondence with the JV-orbits p~l(y), the homeomorphisms of N are
automorphisms and it is easily verified that the correspondence between iV-orbits and points
of S is a structure-preserving homeomorphism of S/N with S. Henceforth we drop the dis-
tinction between S/N and S.

THEOREM 2. If § is the universal covering space and N the Poincare group, then the pro-
jection homomorphism

is an epimorphism.

Proof. Let/e A (S). Let h be a path class from x tof(x). If c e (§, x) then

(/•e)e (£/(*))
and the mapping c-*f*c is a homeomorphism of (S, x) onto (S,f(x)). Define the auto-
morphism

feA(S,x)
by the relation/(c) = h(J* c). By (4) and (5),

p(f(c))=p(f*c)=Xp(c)). (6)

It follows that, if p{c) = p(d), then p(f(c))=p(f(d)), with a similar result for/"1 , since
/-!(C) = h'if1 * c), where H =f* * A"1. Thus, by (l)JeZ(S, N). Finally, (2) and (6) show
that f=p*(J), which proves Theorem 2.

Now let us consider the action of the automorphism fe A (5) on a closed path class
CBuy(S,x). The automorphism / maps c into f*cen1(S,f(x)). To identify the two
fundamental groups n^S, x) and Jii(S,/(x)) we need a path class h from x to f(x) and we
choose this to be the same h that was chosen in the proof of Theorem 2. The pair (/, h)
induces the group automorphism of Ki(S, x):

Now consider the relation between the corresponding elements Xc, Xc, of the Poincar6 group.
From the relation in (S, x),

b = Xc(a) = ca,

we deduce, by (3), in (S,f(x))

To return to (5, x) we need the path h, and derive

b) = h(f*c)h-lh(f*a),

= c'f(a).

https://doi.org/10.1017/S2040618500034365 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034365


94 A. M. MACBEATH

Since b = Ac(a), and a is arbitrary,
/ o A c = Ac, of,

or
ke.=fokeo}-1.

We have thus proved

THEOREM 3. A group automorphism ofn^S) induced by an automorphism f of S is the same
as the group automorphism of N obtained by transformation with a certainfep*'1^) c Z{§, N).

4. Regular covering spaces. Let S1 be a connected, locally arc-connected, locally simply-
connected space, and let Nt be a group of automorphisms of 5\ satisfying condition (A). If
there is a structure-preserving homeomorphism of SVNi onto S, then St is called a regular
covering of 5.

Regular coverings of S can be obtained from the universal covering spaces 5 as follows.
Let M be a normal subgroup of the Poincare group TV. Then, as in the proof of Theorem 1,
Nx = N/M acts as a group of transformations of Sl =S/M, the orbit space Sj/A^ being
identifiable with S/N — S. It can be shown that every regular covering space of S can be
obtained in this way, and that any regular covering space of 5 which is simply-connected can
be mapped one-to-one onto 5 by a homeomorphism which commutes with the projection
operator. See e.g. [2], [6].

If the group Nt has a finite number k of elements, each point of S will correspond to k
points of St and St is called a k-sheeted regular covering. In this case, k is the index of M in
N. If 5 is triangulable, then to any fine enough triangulation of S corresponds a triangulation
of 5 t in which there are exactly k times as many simplexes of each dimension. Thus, if x
benotes the Euler characteristic, we have

x(S1) = kX(S). (7)

Let the projections and their associated homomorphisms be denoted by

p:S->S, r:S^Su q:Sl^S,

p*:Z(S,N)^A(S), r*:Z(S,M)^A(Sl), q* :Z(SU Nt)-+ A(S).

Thenp = qo r,p and r are onto, ./V<=• Z(S, M) (since M is normal in N) and r*{N) = Nt.
We shall call St a. full covering space of 5 if q* is an epimorphism. Thus the universal

covering space is a full covering space.

THEOREM 4. SjM is a full covering space ofS if and only if

Z(S, N) c Z(S, M).

From Theorem 1, we deduce

COROLLARY 1. SjM is a full covering space ofS if and only if M is normal in Z(S, N).

From Theorem 3, we deduce

COROLLARY 2. SjM is a full covering space of S if and only if M is invariant under all the
group automorphisms of N induced by transformations of A{S).

COROLLARY 3. If M is a characteristic subgroup ofN, then S/M is a full covering.

In the proof of Theorem 4, we require the following lemma.
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LEMMA 1. JffeZ(S, M) andr*(f)eZ(Su NJ, then p*(f) = fa* o /•*)(/).

Proof. Since r*(f)eZ(Su N,), it follows that fa* o /•*)(/) is defined. From the formulae
(cf. (2))

(r 0/)(.v) = (r*(/) O r)(x), fa of My) = fa*(/,) 0 q){y),

it follows, on putting^ = r*(/), y = r(x), that

fao r of)(x) = 9 o (/•*(/) o r)(x) = fao/OC) = (<?*(/,) o<?)0>) = fa* o /•*)(/) o fao r)x.
That is

(/>o/)x = fa* o/•*)(/) o/>(x). (8)
An exactly similar argument applies to / " 1 . On comparing (8) with the defining property (2)
of/>*(/), we deduce that p*(f) = (q* o r*)(f).

Proof of Theorem 4. (i) First suppose that Z(S, N) c Z(§, M). If feA(S), then, by
Theorem 2, /=/>*(/) where feZ(S, N), so that (Theorem l)/N=Nf. Apply the homo-
morphism r. Then r*(f)Nl = A^1r*(/). Thus /•*(/)eZ(51( A î). Hence by Lemma 1, since
feZ(S, M), /=/»•( / ) = fa* o r*)(/)e?*(Z(Si, JV,)), and q* is an epimorphism.

(ii) Conversely, suppose that q* is an epimorphism, so that, for each/eZO?, AO, there
exists/j sZ(Su Ni) such that/?*(/) = q*(A)- Now 5, being simply-connected, is the universal
covering space of Si, and so, by Theorem 2,

fi=r*(fi), f2eZ(S,M).

Then, by Lemma 1,/>•(/) = q*(fY) = fa* o r*)(/2) = />*(/2). Hence /e /^ . But/2 eZ(5, M)
and iV c Z(5, Af), since M is normal in N. Hence/eZ(5, M) and Z(5, N) <= Z(^, M).

5. Analytic manifolds. Let S be a compact complex analytic manifold and suppose that
the first homology group with integer coefficients H^S, Z) has positive rank. Suppose also
that the group A (S) is known to be finite. Let iV denote the Poincare group, so that N is
finitely generated and Ht(S, Z) ~ NI\_N, N~\. The commutator subgroup [TV, N~\ is a charac-
teristic subgroup.

Similarly, if m is any integer, the Burnside w-kernel {Â m} generated by the wth powers of
all elements of N is a characteristic subgroup. Hence the product M{m) ={Nm}[N, N~\ is
also a characteristic subgroup and the factor group

NAm) = N/M(m)

is finite, being a finitely generated abelian group in which each mth power is equal to unity.
However, the order t(m) is at least equal to mR\ where RY is the first Betti number, so that
t{m) tends to infinity with m.

Let S^m) = SjM{m). Since M(m) is a characteristic subgroup, by Theorem 4, Corollary
3, S^m) is a full covering of S with t{m) sheets. Hence, dropping the m for convenience, we
deduce that Z(SU N^/N^AiS). The order of Z(SU Nx) is t(m) times the order of A(S),
and the order of A (Si) is at least as great as that of the subgroup Z(St, Nt). We have shown:

If the compact analytic manifold S, with positive first Betti number, admits a group A(S) of
n automorphisms, then, for infinitely many values of the integer k, there is a k-sheeted regular
covering space of S with at least kn automorphisms.
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6. Application to algebraic curves. Let S be the Riemann surface of an algebraic curve,
genus g ̂  2. Suppose that the number of automorphisms of S is h (g — 1), where A is a rational
number whose denominator is a factor of g — 1.

The Poincare group of S [6, p. 170] is defined by 2g generators au bu ..., ag, bg, and the
relation

fl K, &.] = i-
v = l

If, as in § 5, we form the product of the commutator subgroup and the Burnside kernel, the
resulting factor group N^m) is a product Z%> of 2g cyclic groups of order m. The corres-
ponding covering space St will have genus gt given by

by (7), since x(si) = 2-2gu x(S) = 2 — 2g. Hence we have proved

THEOREM 6. If there is a curve of genus g ^ 2 with a group of h(g — l) birational self-
transformations, then there is a curve of genus gY withh(^g1 — 1) birational self-transformations,
where

and m is any positive integer.

COROLLARY. If we take S to be Klein's quartic of genus 3 with 168 birational self-transforma-
tions, we deduce that, for any integer m, there is a curve of genus 2m6 +1 with 84(# —1)
birational self-transformations.*

Thus Hurwitz's bound 84(# — 1) is attained for infinitely many values of g.
I am indebted to Dr I. T. Adamson for having read through the first draft of this paper

and making several useful suggestions.
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QUEEN'S COLLEGE

DUNDEE

* Note added in proof. The group corresponding to the curve of least genus found above (g= 129, m=2)
turns out to be isomorphic to the group (8, 71 2, 3) considered by Leech and Mennicke (these Proceedings 5
(1961), 25-29).
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